平行四边形的面积公式 运动不确定 为什么

平行四边形机构 - 搜狗百科
平行四边形机构
parallelogram linkage 各构件呈平行四边形的平面连杆机构。它是一种链四杆机构,根据曲柄存在条件属于双曲柄机构(见平行四边形机构)。 当平行四边形机构的四个杆处于一直线位置时,动件的运动不确定,为了避免发生这种现象,平行四形机构中常增加一平行杆□(图中a平行四边形机构)。
词条标签:
合作编辑者:
搜狗百科词条内容由用户共同创建和维护,不代表搜狗百科立场。如果您需要医学、法律、投资理财等专业领域的建议,我们强烈建议您独自对内容的可信性进行评估,并咨询相关专业人士。
点击编辑词条,进入编辑页面
意见反馈及投诉第三苹干燥烘霜机械结构的设计与研究和图3―13一b看出,I型风刀内胆与外壳形成渐缩通道,气流通道缓慢减小,气流有足够的时间与空间去均衡流动;此外,内胆与外壳之间有两个狭缝通道,气流的流通面积较大,因此气流出风口速度较小,气流全压损失也相对最小。由图3―13一c和图3―13一d看出,II型风刀出风口处气流流通面积不连续,出风口出节流效果最强,在出风口处气流的速度比较大,但同时气流全压损失也比较大。图3.13.e和图3.13.f是Ⅲ型风刀的速度云图与压力云图,IⅡ型风刀出风口处有连续的流通面积,气流能以较舒服的方式从狭缝出口流出,出风口节流作用较弱,因此全压损失也较小。为更好研究风刀阻力造成的能量损失随流量的变化关系,将进口流量边界条件分别设置0.001m3/s、0.002m3/s、0.003m3/s、0.004m3/s、0.005m3/s、O.006IIl:玩、0.007m3/s、0.008m3/S、0.009m3/s,求出各型式风刀在不同流量下的压力损失,在excel中制成表格,如表3.3所示,并做出相应的阻力特性曲线,如图3一14所示。表3.3各型式风刀进出口全压差流量(m3/s)0.00lO.0020.0030.004O.005O.0060.0070.008O.009I型压差(Pa)0.642.1l4.337.3211.1915.9021.4727.9335.19Ⅱ型压差(Pa)1.264.9511.0319.4930.3643.6559.3477.4697.93Ⅲ型压差(Pa)0.893.127.2511.9418.4826.3335.8548.9l58.26*轴鼯糟∞和制嘲删鞴惦∞∞∞ooOQOI口0阪00D5a0D‘00孵0舯5n册7a日∞8E髓0.01图3.14各风刀阻力特性曲线从表3.3和图3一14可看出,风刀的工作阻力随着流量增加而增大,II型风刀阻力特性较差,ⅡI型次之,I型风刀阻力特性较好。当空气流量在0.001ma/s~O.004ma/s范围进入箱体时,风刀的阻力增大较缓慢;当空气流量在0.005m3/s一..O.009ma/s范围进入箱体时,风刀的阻力随流量提高而急剧增加I型风刀。这是由于当进入流量较小时,气流在箱体内的速度较小,气流在风刀的内腔有足够的时间与空间进行调整后流出风刀,风刀对气流的阻碍作用较小。因此,在保证干燥均匀性和干燥强度的前提下,风刀的进口流量要尽量的小,以保证压力损失最小化。通过对以上三种型式风刀的分析,可以得出:II型风刀的均流效果较差、阻力较大,特别是在较高空气流量时,阻力明显高于其它风刀;I型风刀的均流效果较好、阻力最小,但是气流速度较小;III型风刀(狭缝式风刀)的均流效果最好、干燥速度较适中。且在工况条件Y(o.005m3/s)风刀的阻力也较小。因此,本课题选择ⅡI型风刀作为干燥烘箱的风刀。在下文的干燥烘箱研究中也将采用ⅡI型风刀为干燥执行元件。3.1.3检视窗设计检视窗是干燥烘箱的重要辅助设备,对烘箱的密封性、操作的灵活性起着重要作用。当干燥烘箱内极片发生断带时,可以打开检视窗对片幅进行接带、传带操作;当干燥烘箱处于停机维护时,打开检视窗来清理烘箱内壁及管道内的灰尘。19万方数据东南大学硕士学位论文l、机构设计如图3.15所示,为本课题设计的检视窗三维结构图。1.曲柄杆2.连杆3曲柄杆4.机架5.拉块6.气缸7.气缸双耳底座8.横杆9.检视窗图3.15检视窗三维结构图如图3.15所示,检视窗机构由检视窗、气缸、气缸双耳底座、拉块、横杆、杆轴、连杆、曲柄杆、机架(与烘箱内胆相连接)等组成。机架安装在烘箱内胆侧壁上(参考图3.1),曲柄和机架连接后,打入圆柱销,圆柱销两端铆接固定,保证曲柄及摇杆可在机架上自由转动和检视窗在连杆带动下可以沿竖直方向升降运动。气缸与气缸双耳底座通过螺钉相连,气缸可以在底座内沿螺钉摆动。拉块与气缸杆螺纹相连接固定,并焊接在横杆上,使横杆随气缸一起摆动。动作原理:如图3一15所示,机架、气缸双耳底座固定安装予烘箱室体上。气缸通气后,活塞杆一方面带动拉块沿气缸内壁做前后直线移动,另一方面气缸与其相连的零件一起沿着双耳底座做微幅摆动,并通过横杆带动曲柄杆绕机架做旋转,从而控制检视窗的升降。当气缸活塞杆升程达到最大时,检视窗口完全关闭,对烘箱隔热保温;当气缸活塞杆回程退到气缸最底端时,检视窗提升到最高位,检视窗口完全打开,使操作人员能对烘箱的工作状态进行检查维护。2、运动学分析根据图3.15检视窗三维结构图绘制机构的运动简图,如图3一16所示。图3.16机构运动简图20万方数据第三苹干燥烘箱机械结构的设计与研究机构中各构件相对于机架的所能有韵独立运动的数目称为机构的自由度。如果一个平面机构由N个构件,其中必有一个固定,该机构受到了3个约束,自由度为零。这时候机构中活动构件数为n=N.1,当未组成运动副时,这些构件的自由度为3n。当机构加入低幅PL和高副PH时,则机构的自由度减少为3n-2PtrPn,平面机构的自由度以F表示之,即平面机构自由度计算公式为:F=3n一2置一弓式中:F为自由度;n为活动件个数;PL为低副数;PH为高副数。(3.4)当机构的自由度小于零时,机构蜕化成刚性桁架,机构将无法运动:当机构原动机数大于自由度,机构遭到破坏;原动件数小于机构自由度时,机构运动不确定。欲使机构具有确定的运动,必须使机构的原动件数目等于机构的活动数。如图3一16所示,该机构由机架1与7、原动件3、构件2、构件4、构件5及构件6构成,其中构件2、构件3、构件4与机架7构成铰链四杆机构。在六杆机构中构件3为原动件,与构件2构成移动副,而构件2与构件1构成转动副。四杆机构与构件3构成转动副,其内部各个构件均为转动副,其个数为4。由以上分析可知,机构为一个六杆机构,活动杆件数为5,转动副为6,移动副为1,高副为0。转动副和移动副均为低副,这样有n=5,PL=7,PF0,代入式(3。4)得:F=3×5―2×7―0=l该机构有一个原动件,机构的自由度数等于原动件数,机构具有确定的运动。铰链四杆机构是检视窗机构的设计核心,在机构之间起着承上启下的作用。下面就四杆机构的运动特性进行分析计算。在铰链四杆机构中,按连杆能否做整周转动,可将铰链四杆机构分为曲柄摇杆机构、双曲柄机构及双摇杆机构。在双曲柄机构中,若两杆平行且相对,则称其为平行四边形机构,它有两个显著特点:一是两曲柄以相同速度同向转动;二是连杆做平动。铰链四杆机构存在曲柄应满足杆长条件,即:厶坞≤厶+厶(3.5)式中:L。为最短杆;L2为最长杆;L3为次短杆;L4为次长杆。在满足杆长条件后,当最短杆为连架杆时,机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构。在图3―16中,LDE=205mm,LEv=165mm,LFG-205mm,I坩D=165mm,代入公式(3.5)得:205+165=205+165铰链四杆机构符合杆长条件,且最短杆L6I)为机架,故该铰链四杆机构为平行四边形机构,曲柄LDE和曲柄LFG以相同角速度转动,连杆LEF在竖直方向做直线移动。双曲柄机构跟曲柄摇杆机构一样,具有急回特性。在主动件盐柄旋转一周的过程中,主动曲柄与连杆两次共线时,从动曲柄分别处于两个极限位置。机构所处的这两个位置为极位,主动曲柄所处的两个位置之问的夹角0称为极位夹角。当机构极位夹角0存在时,机构便具有急回特性,0角越大,机构的急回运动特性越显著。为了表示急回运动程度,可用行程速比系数K来衡量,即:k=(180。+口)/(180。一秒)(3.6)21万方数据东南大学硕士学位论文图3.17为本课题设计的铰链四杆机构的极位图。/,,。7一~、\’\‘\图3-17四杆机构的极位图由图3.17可以看出,机构在极限位置时,平行四边形机构的四根杆共线,极位夹角0=00,行程系数K=I,机构无急回特性。则连杆链接的检视窗在正、反行程中均以相同的速度运动。根据上文分析知,连杆在竖直方向上升降高度随着活塞杆在气缸内的移动而变化。当气缸活塞杆处于升程状态时,连杆在竖直方向上缓慢降低,活塞杆升程达到最高位时,连杆与机架共线,连杆处在最低位置。反之,当气缸活塞杆处于回程状态时,连杆在竖直方向上逐渐升高,活塞杆回程到最低端时,连杆升到最高位置。综上所述,连杆具体升降高度如下式表示:办:2三硒一2k×co虽×cosa-1=2‰(1-COS2=2LrGsin2导(3.7)二二厶三式中:h_连杆竖直上升高度;0【一主动曲柄LDE与机架LDG的夹角;LFG一从动曲柄的长度,为205mm。由上文知,当连杆处于下极限位置时,连杆与机架共线,检视窗闭合,连杆处于最低位;活塞杆完全退回气缸底端时,检视窗口完全打开,连杆处于最高位置。此时连杆的上极限位置可由作图法求出哺’。图3.18是根据作图法求出连杆的上极限位置三F3E3。图3.18连杆上极限位置图22万方数据第三章干燥烘箱机械结构的设计与研究此时u为110。,代入公式(3.7),得连杆上升高度h为:Jiz:2x205×sin堂:410x0.820:336.2删23、机构力学分析机构的力学分析主要指机构静力学分析与机构动力学分析。机构静力学分析主要研究机构在力的作用的平衡规律科学;机构动力学分析研究施加于物体上的力与物体运动的关系叼1。本课题设计的检视窗机构做近似匀速运动,机构在各个时刻位置受力平衡,故本课题只需对机构做静力学分析。利用静力学分析求出机构在不同位置时的受力状态,并根据机构在不同时刻位置活塞杆受力最大值来选择气缸,图3.19是检视窗举升机构的受力图。p图3.19检视窗举升机构受力图由理论力学知识知:构件6、构件5及构件3为二力杆,则其受力大小分别为:FE=FFe=P。为求出气缸活塞杆的推力最大值FBc,对构件4做受力分析。并根据在不同运动状态下a的大小,分别做出图3.20和图3.21。图3.20n为锐角时构件4受力情况万方数据 上传我的文档
 下载
 收藏
该文档贡献者很忙,什么也没留下。
 下载此文档
机械设计禁忌
下载积分:30
内容提示:机械设计禁忌
文档格式:PDF|
浏览次数:898|
上传日期: 19:06:53|
文档星级:
全文阅读已结束,如果下载本文需要使用
 30 积分
下载此文档
该用户还上传了这些文档
机械设计禁忌
官方公共微信5. A 解析:考查对矢量式的理解.加速度是矢量.负号不表示大小.A正确.两物体的初速度方向不确定.不能判断是加速还是减速.B错,若两物体均做减速运动.某时刻速度可以为零.C错,两个物体的运动方向可以——精英家教网——
暑假天气热?在家里学北京名师课程,
5. A 解析:考查对矢量式的理解.加速度是矢量.负号不表示大小.A正确.两物体的初速度方向不确定.不能判断是加速还是减速.B错,若两物体均做减速运动.某时刻速度可以为零.C错,两个物体的运动方向可以相同.D错. 【】
题目列表(包括答案和解析)
下面为同学们推荐部分热门搜索同步练习册答案,要查找更多练习册答案请点击访问
第一部分 &力&物体的平衡第一讲 力的处理一、矢量的运算1、加法表达:&+&&=&&。名词:为“和矢量”。法则:平行四边形法则。如图1所示。和矢量大小:c =&&,其中α为和的夹角。和矢量方向:在、之间,和夹角β= arcsin2、减法表达:&=&-&。名词:为“被减数矢量”,为“减数矢量”,为“差矢量”。法则:三角形法则。如图2所示。将被减数矢量和减数矢量的起始端平移到一点,然后连接两时量末端,指向被减数时量的时量,即是差矢量。差矢量大小:a =&&,其中θ为和的夹角。差矢量的方向可以用正弦定理求得。一条直线上的矢量运算是平行四边形和三角形法则的特例。例题:已知质点做匀速率圆周运动,半径为R&,周期为T&,求它在T内和在T内的平均加速度大小。解说:如图3所示,A到B点对应T的过程,A到C点对应T的过程。这三点的速度矢量分别设为、和。根据加速度的定义&=&得:=&,=&由于有两处涉及矢量减法,设两个差矢量&=&-&,=&-&,根据三角形法则,它们在图3中的大小、方向已绘出(的“三角形”已被拉伸成一条直线)。本题只关心各矢量的大小,显然:&=&&=&&=&&,且:&=&=&&,&= 2=&所以:=&&=&&=&&,=&&=&&=&&。(学生活动)观察与思考:这两个加速度是否相等,匀速率圆周运动是不是匀变速运动?答:否;不是。3、乘法矢量的乘法有两种:叉乘和点乘,和代数的乘法有着质的不同。⑴ 叉乘表达:×&=&名词:称“矢量的叉积”,它是一个新的矢量。叉积的大小:c = absinα,其中α为和的夹角。意义:的大小对应由和作成的平行四边形的面积。叉积的方向:垂直和确定的平面,并由右手螺旋定则确定方向,如图4所示。显然,×≠×,但有:×=&-×⑵ 点乘表达:·&= c名词:c称“矢量的点积”,它不再是一个矢量,而是一个标量。点积的大小:c = abcosα,其中α为和的夹角。二、共点力的合成1、平行四边形法则与矢量表达式2、一般平行四边形的合力与分力的求法余弦定理(或分割成RtΔ)解合力的大小正弦定理解方向三、力的分解1、按效果分解2、按需要——正交分解第二讲 物体的平衡一、共点力平衡1、特征:质心无加速度。2、条件:Σ&= 0 ,或&&= 0 ,&= 0例题:如图5所示,长为L 、粗细不均匀的横杆被两根轻绳水平悬挂,绳子与水平方向的夹角在图上已标示,求横杆的重心位置。解说:直接用三力共点的知识解题,几何关系比较简单。答案:距棒的左端L/4处。(学生活动)思考:放在斜面上的均质长方体,按实际情况分析受力,斜面的支持力会通过长方体的重心吗?解:将各处的支持力归纳成一个N ,则长方体受三个力(G 、f 、N)必共点,由此推知,N不可能通过长方体的重心。正确受力情形如图6所示(通常的受力图是将受力物体看成一个点,这时,N就过重心了)。答:不会。二、转动平衡1、特征:物体无转动加速度。2、条件:Σ= 0 ,或ΣM+&=ΣM-&如果物体静止,肯定会同时满足两种平衡,因此用两种思路均可解题。3、非共点力的合成大小和方向:遵从一条直线矢量合成法则。作用点:先假定一个等效作用点,然后让所有的平行力对这个作用点的和力矩为零。第三讲 习题课1、如图7所示,在固定的、倾角为α斜面上,有一块可以转动的夹板(β不定),夹板和斜面夹着一个质量为m的光滑均质球体,试求:β取何值时,夹板对球的弹力最小。解说:法一,平行四边形动态处理。对球体进行受力分析,然后对平行四边形中的矢量G和N1进行平移,使它们构成一个三角形,如图8的左图和中图所示。由于G的大小和方向均不变,而N1的方向不可变,当β增大导致N2的方向改变时,N2的变化和N1的方向变化如图8的右图所示。显然,随着β增大,N1单调减小,而N2的大小先减小后增大,当N2垂直N1时,N2取极小值,且N2min&= Gsinα。法二,函数法。看图8的中间图,对这个三角形用正弦定理,有:&=&&,即:N2&=&&,β在0到180°之间取值,N2的极值讨论是很容易的。答案:当β= 90°时,甲板的弹力最小。2、把一个重为G的物体用一个水平推力F压在竖直的足够高的墙壁上,F随时间t的变化规律如图9所示,则在t = 0开始物体所受的摩擦力f的变化图线是图10中的哪一个?解说:静力学旨在解决静态问题和准静态过程的问题,但本题是一个例外。物体在竖直方向的运动先加速后减速,平衡方程不再适用。如何避开牛顿第二定律,是本题授课时的难点。静力学的知识,本题在于区分两种摩擦的不同判据。水平方向合力为零,得:支持力N持续增大。物体在运动时,滑动摩擦力f = μN ,必持续增大。但物体在静止后静摩擦力f′≡ G ,与N没有关系。对运动过程加以分析,物体必有加速和减速两个过程。据物理常识,加速时,f < G ,而在减速时f > G 。答案:B 。3、如图11所示,一个重量为G的小球套在竖直放置的、半径为R的光滑大环上,另一轻质弹簧的劲度系数为k ,自由长度为L(L<2R),一端固定在大圆环的顶点A ,另一端与小球相连。环静止平衡时位于大环上的B点。试求弹簧与竖直方向的夹角θ。解说:平行四边形的三个矢量总是可以平移到一个三角形中去讨论,解三角形的典型思路有三种:①分割成直角三角形(或本来就是直角三角形);②利用正、余弦定理;③利用力学矢量三角形和某空间位置三角形相似。本题旨在贯彻第三种思路。分析小球受力→矢量平移,如图12所示,其中F表示弹簧弹力,N表示大环的支持力。(学生活动)思考:支持力N可不可以沿图12中的反方向?(正交分解看水平方向平衡——不可以。)容易判断,图中的灰色矢量三角形和空间位置三角形ΔAOB是相似的,所以:& & & & & & & & & & & & & & & & & &⑴由胡克定律:F = k(- R) & & & & & & & &⑵几何关系:= 2Rcosθ & & & & & & & & & & ⑶解以上三式即可。答案:arccos&。(学生活动)思考:若将弹簧换成劲度系数k′较大的弹簧,其它条件不变,则弹簧弹力怎么变?环的支持力怎么变?答:变小;不变。(学生活动)反馈练习:光滑半球固定在水平面上,球心O的正上方有一定滑轮,一根轻绳跨过滑轮将一小球从图13所示的A位置开始缓慢拉至B位置。试判断:在此过程中,绳子的拉力T和球面支持力N怎样变化?解:和上题完全相同。答:T变小,N不变。4、如图14所示,一个半径为R的非均质圆球,其重心不在球心O点,先将它置于水平地面上,平衡时球面上的A点和地面接触;再将它置于倾角为30°的粗糙斜面上,平衡时球面上的B点与斜面接触,已知A到B的圆心角也为30°。试求球体的重心C到球心O的距离。解说:练习三力共点的应用。根据在平面上的平衡,可知重心C在OA连线上。根据在斜面上的平衡,支持力、重力和静摩擦力共点,可以画出重心的具体位置。几何计算比较简单。答案:R 。(学生活动)反馈练习:静摩擦足够,将长为a 、厚为b的砖块码在倾角为θ的斜面上,最多能码多少块?解:三力共点知识应用。答:&。4、两根等长的细线,一端拴在同一悬点O上,另一端各系一个小球,两球的质量分别为m1和m2&,已知两球间存在大小相等、方向相反的斥力而使两线张开一定角度,分别为45和30°,如图15所示。则m1&: m2??为多少?解说:本题考查正弦定理、或力矩平衡解静力学问题。对两球进行受力分析,并进行矢量平移,如图16所示。首先注意,图16中的灰色三角形是等腰三角形,两底角相等,设为α。而且,两球相互作用的斥力方向相反,大小相等,可用同一字母表示,设为F 。对左边的矢量三角形用正弦定理,有:&=&& & & & &①同理,对右边的矢量三角形,有:&=&& & & & & & & & & & & & & & & &②解①②两式即可。答案:1 :&。(学生活动)思考:解本题是否还有其它的方法?答:有——将模型看成用轻杆连成的两小球,而将O点看成转轴,两球的重力对O的力矩必然是平衡的。这种方法更直接、简便。应用:若原题中绳长不等,而是l1&:l2&= 3 :2 ,其它条件不变,m1与m2的比值又将是多少?解:此时用共点力平衡更加复杂(多一个正弦定理方程),而用力矩平衡则几乎和“思考”完全相同。答:2 :3&。5、如图17所示,一个半径为R的均质金属球上固定着一根长为L的轻质细杆,细杆的左端用铰链与墙壁相连,球下边垫上一块木板后,细杆恰好水平,而木板下面是光滑的水平面。由于金属球和木板之间有摩擦(已知摩擦因素为μ),所以要将木板从球下面向右抽出时,至少需要大小为F的水平拉力。试问:现要将木板继续向左插进一些,至少需要多大的水平推力?解说:这是一个典型的力矩平衡的例题。以球和杆为对象,研究其对转轴O的转动平衡,设木板拉出时给球体的摩擦力为f&,支持力为N&,重力为G&,力矩平衡方程为:f R + N(R + L)= G(R + L)& & & & & &①球和板已相对滑动,故:f = μN & & & &②解①②可得:f =&再看木板的平衡,F = f 。同理,木板插进去时,球体和木板之间的摩擦f′=&&= F′。答案:&。第四讲 摩擦角及其它一、摩擦角1、全反力:接触面给物体的摩擦力与支持力的合力称全反力,一般用R表示,亦称接触反力。2、摩擦角:全反力与支持力的最大夹角称摩擦角,一般用φm表示。此时,要么物体已经滑动,必有:φm&= arctgμ(μ为动摩擦因素),称动摩擦力角;要么物体达到最大运动趋势,必有:φms&= arctgμs(μs为静摩擦因素),称静摩擦角。通常处理为φm&=&φms&。3、引入全反力和摩擦角的意义:使分析处理物体受力时更方便、更简捷。二、隔离法与整体法1、隔离法:当物体对象有两个或两个以上时,有必要各个击破,逐个讲每个个体隔离开来分析处理,称隔离法。在处理各隔离方程之间的联系时,应注意相互作用力的大小和方向关系。2、整体法:当各个体均处于平衡状态时,我们可以不顾个体的差异而讲多个对象看成一个整体进行分析处理,称整体法。应用整体法时应注意“系统”、“内力”和“外力”的涵义。三、应用1、物体放在水平面上,用与水平方向成30°的力拉物体时,物体匀速前进。若此力大小不变,改为沿水平方向拉物体,物体仍能匀速前进,求物体与水平面之间的动摩擦因素μ。解说:这是一个能显示摩擦角解题优越性的题目。可以通过不同解法的比较让学生留下深刻印象。法一,正交分解。(学生分析受力→列方程→得结果。)法二,用摩擦角解题。引进全反力R&,对物体两个平衡状态进行受力分析,再进行矢量平移,得到图18中的左图和中间图(注意:重力G是不变的,而全反力R的方向不变、F的大小不变),φm指摩擦角。再将两图重叠成图18的右图。由于灰色的三角形是一个顶角为30°的等腰三角形,其顶角的角平分线必垂直底边……故有:φm&= 15°。最后,μ= tgφm&。答案:0.268 。(学生活动)思考:如果F的大小是可以选择的,那么能维持物体匀速前进的最小F值是多少?解:见图18,右图中虚线的长度即Fmin&,所以,Fmin&= Gsinφm&。答:Gsin15°(其中G为物体的重量)。2、如图19所示,质量m = 5kg的物体置于一粗糙斜面上,并用一平行斜面的、大小F = 30N的推力推物体,使物体能够沿斜面向上匀速运动,而斜面体始终静止。已知斜面的质量M = 10kg ,倾角为30°,重力加速度g = 10m/s2&,求地面对斜面体的摩擦力大小。解说:本题旨在显示整体法的解题的优越性。法一,隔离法。简要介绍……法二,整体法。注意,滑块和斜面随有相对运动,但从平衡的角度看,它们是完全等价的,可以看成一个整体。做整体的受力分析时,内力不加考虑。受力分析比较简单,列水平方向平衡方程很容易解地面摩擦力。答案:26.0N 。(学生活动)地面给斜面体的支持力是多少?解:略。答:135N 。应用:如图20所示,一上表面粗糙的斜面体上放在光滑的水平地面上,斜面的倾角为θ。另一质量为m的滑块恰好能沿斜面匀速下滑。若用一推力F作用在滑块上,使之能沿斜面匀速上滑,且要求斜面体静止不动,就必须施加一个大小为P = 4mgsinθcosθ的水平推力作用于斜面体。使满足题意的这个F的大小和方向。解说:这是一道难度较大的静力学题,可以动用一切可能的工具解题。法一:隔离法。由第一个物理情景易得,斜面于滑块的摩擦因素μ= tgθ对第二个物理情景,分别隔离滑块和斜面体分析受力,并将F沿斜面、垂直斜面分解成Fx和Fy&,滑块与斜面之间的两对相互作用力只用两个字母表示(N表示正压力和弹力,f表示摩擦力),如图21所示。对滑块,我们可以考查沿斜面方向和垂直斜面方向的平衡——Fx&= f + mgsinθFy&+ mgcosθ= N且 f = μN = Ntgθ综合以上三式得到:Fx&= Fytgθ+ 2mgsinθ & & & & & & & ①对斜面体,只看水平方向平衡就行了——P = fcosθ+ Nsinθ即:4mgsinθcosθ=μNcosθ+ Nsinθ代入μ值,化简得:Fy&= mgcosθ & & &②②代入①可得:Fx&= 3mgsinθ最后由F =解F的大小,由tgα=&解F的方向(设α为F和斜面的夹角)。答案:大小为F = mg,方向和斜面夹角α= arctg()指向斜面内部。法二:引入摩擦角和整体法观念。仍然沿用“法一”中关于F的方向设置(见图21中的α角)。先看整体的水平方向平衡,有:Fcos(θ- α) = P & & & & & & & & & & & & & & & & & ⑴再隔离滑块,分析受力时引进全反力R和摩擦角φ,由于简化后只有三个力(R、mg和F),可以将矢量平移后构成一个三角形,如图22所示。在图22右边的矢量三角形中,有:&=&=&& &&&⑵注意:φ= arctgμ=&arctg(tgθ) = θ & & & & & & & & & & & & & & & & & & & & & & &⑶解⑴⑵⑶式可得F和α的值。
第六部分 振动和波第一讲 基本知识介绍《振动和波》的竞赛考纲和高考要求有很大的不同,必须做一些相对详细的补充。一、简谐运动1、简谐运动定义:=&-k& & & & & & &①凡是所受合力和位移满足①式的质点,均可称之为谐振子,如弹簧振子、小角度单摆等。谐振子的加速度:=&-2、简谐运动的方程回避高等数学工具,我们可以将简谐运动看成匀速圆周运动在某一条直线上的投影运动(以下均看在x方向的投影),圆周运动的半径即为简谐运动的振幅A&。依据:x&=&-mω2Acosθ=&-mω2对于一个给定的匀速圆周运动,m、ω是恒定不变的,可以令:mω2&= k&这样,以上两式就符合了简谐运动的定义式①。所以,x方向的位移、速度、加速度就是简谐运动的相关规律。从图1不难得出——位移方程:&= Acos(ωt +&φ) & & & & & & & & & & & & & & & & & & & &②速度方程:&=&-ωAsin(ωt +φ) & & & & & & & & & & & & & & & & & &&③加速度方程:=&-ω2A cos(ωt +φ) & & & & & & & & & & & & & & & & &&④相关名词:(ωt +φ)称相位,φ称初相。运动学参量的相互关系:=&-ω2A =&tgφ=&-3、简谐运动的合成a、同方向、同频率振动合成。两个振动x1&= A1cos(ωt +φ1)和x2&= A2cos(ωt +φ2)&合成,可令合振动x = Acos(ωt +φ)&,由于x = x1&+ x2&,解得A =&&,φ= arctg&显然,当φ2-φ1&= 2kπ时(k = 0,±1,±2,…),合振幅A最大,当φ2-φ1&=&(2k + 1)π时(k = 0,±1,±2,…),合振幅最小。b、方向垂直、同频率振动合成。当质点同时参与两个垂直的振动x = A1cos(ωt +&φ1)和y = A2cos(ωt +&φ2)时,这两个振动方程事实上已经构成了质点在二维空间运动的轨迹参数方程,消去参数t后,得一般形式的轨迹方程为+-2cos(φ2-φ1) = sin2(φ2-φ1)显然,当φ2-φ1&= 2kπ时(k = 0,±1,±2,…),有y =&x&,轨迹为直线,合运动仍为简谐运动;当φ2-φ1&=&(2k + 1)π时(k = 0,±1,±2,…),有+= 1&,轨迹为椭圆,合运动不再是简谐运动;当φ2-φ1取其它值,轨迹将更为复杂,称“李萨如图形”,不是简谐运动。c、同方向、同振幅、频率相近的振动合成。令x1&= Acos(ω1t +&φ)和x2&= Acos(ω2t +&φ)&,由于合运动x = x1&+ x2&,得:x =(2Acost)cos(t +φ)。合运动是振动,但不是简谐运动,称为角频率为的“拍”现象。4、简谐运动的周期由②式得:ω=&&,而圆周运动的角速度和简谐运动的角频率是一致的,所以T = 2π& & & & & & & & & & & & & & & & & & & & & & & & & & &&⑤5、简谐运动的能量一个做简谐运动的振子的能量由动能和势能构成,即=&mv2&+&kx2&=&kA2注意:振子的势能是由(回复力系数)k和(相对平衡位置位移)x决定的一个抽象的概念,而不是具体地指重力势能或弹性势能。当我们计量了振子的抽象势能后,其它的具体势能不能再做重复计量。6、阻尼振动、受迫振动和共振和高考要求基本相同。二、机械波1、波的产生和传播产生的过程和条件;传播的性质,相关参量(决定参量的物理因素)2、机械波的描述a、波动图象。和振动图象的联系b、波动方程如果一列简谐波沿x方向传播,振源的振动方程为y = Acos(ωt + φ),波的传播速度为v ,那么在离振源x处一个振动质点的振动方程便是y = Acos〔ωt + φ -&·2π〕= Acos〔ω(t -&)+ φ〕这个方程展示的是一个复变函数。对任意一个时刻t ,都有一个y(x)的正弦函数,在x-y坐标下可以描绘出一个瞬时波形。所以,称y = Acos〔ω(t -&)+ φ〕为波动方程。3、波的干涉a、波的叠加。几列波在同一介质种传播时,能独立的维持它们的各自形态传播,在相遇的区域则遵从矢量叠加(包括位移、速度和加速度的叠加)。b、波的干涉。两列波频率相同、相位差恒定时,在同一介质中的叠加将形成一种特殊形态:振动加强的区域和振动削弱的区域稳定分布且彼此隔开。我们可以用波程差的方法来讨论干涉的定量规律。如图2所示,我们用S1和S2表示两个波源,P表示空间任意一点。当振源的振动方向相同时,令振源S1的振动方程为y1&= A1cosωt ,振源S1的振动方程为y2&= A2cosωt ,则在空间P点(距S1为r1&,距S2为r2),两振源引起的分振动分别是y1′= A1cos〔ω(t&?&)〕y2′= A2cos〔ω(t&?&)〕P点便出现两个频率相同、初相不同的振动叠加问题(φ1&=&&,φ2&=&),且初相差Δφ=&(r2&– r1)。根据前面已经做过的讨论,有r2&?&r1&= kλ时(k = 0,±1,±2,…),P点振动加强,振幅为A1&+ A2&;r2&?&r1&=(2k&?&1)时(k = 0,±1,±2,…),P点振动削弱,振幅为│A1-A2│。4、波的反射、折射和衍射知识点和高考要求相同。5、多普勒效应当波源或者接受者相对与波的传播介质运动时,接收者会发现波的频率发生变化。多普勒效应的定量讨论可以分为以下三种情况(在讨论中注意:波源的发波频率f和波相对介质的传播速度v是恒定不变的)——a、只有接收者相对介质运动(如图3所示)设接收者以速度v1正对静止的波源运动。如果接收者静止在A点,他单位时间接收的波的个数为f&,当他迎着波源运动时,设其在单位时间到达B点,则= v1&,、在从A运动到B的过程中,接收者事实上“提前”多接收到了n个波n =&=&=&显然,在单位时间内,接收者接收到的总的波的数目为:f + n =&f&,这就是接收者发现的频率f1&。即f1&=&f&显然,如果v1背离波源运动,只要将上式中的v1代入负值即可。如果v1的方向不是正对S&,只要将v1出正对的分量即可。b、只有波源相对介质运动(如图4所示)设波源以速度v2正对静止的接收者运动。如果波源S不动,在单位时间内,接收者在A点应接收f个波,故S到A的距离:= fλ&在单位时间内,S运动至S′,即= v2&。由于波源的运动,事实造成了S到A的f个波被压缩在了S′到A的空间里,波长将变短,新的波长λ′=&=&=&=&而每个波在介质中的传播速度仍为v&,故“被压缩”的波(A接收到的波)的频率变为f2&=&=&f&当v2背离接收者,或有一定夹角的讨论,类似a情形。c、当接收者和波源均相对传播介质运动当接收者正对波源以速度v1(相对介质速度)运动,波源也正对接收者以速度v2(相对介质速度)运动,我们的讨论可以在b情形的过程上延续…f3&=&&f2&=&f&关于速度方向改变的问题,讨论类似a情形。6、声波a、乐音和噪音b、声音的三要素:音调、响度和音品c、声音的共鸣第二讲 重要模型与专题一、简谐运动的证明与周期计算物理情形:如图5所示,将一粗细均匀、两边开口的U型管固定,其中装有一定量的水银,汞柱总长为L&。当水银受到一个初始的扰动后,开始在管中振动。忽略管壁对汞的阻力,试证明汞柱做简谐运动,并求其周期。模型分析:对简谐运动的证明,只要以汞柱为对象,看它的回复力与位移关系是否满足定义式①,值得注意的是,回复力系指振动方向上的合力(而非整体合力)。当简谐运动被证明后,回复力系数k就有了,求周期就是顺理成章的事。本题中,可设汞柱两端偏离平衡位置的瞬时位移为x&、水银密度为ρ、U型管横截面积为S&,则次瞬时的回复力ΣF =&ρg2xS =&x由于L、m为固定值,可令:&= k&,而且ΣF与x的方向相反,故汞柱做简谐运动。周期T&=&2π=&2π答:汞柱的周期为2π&。学生活动:如图6所示,两个相同的柱形滚轮平行、登高、水平放置,绕各自的轴线等角速、反方向地转动,在滚轮上覆盖一块均质的木板。已知两滚轮轴线的距离为L 、滚轮与木板之间的动摩擦因素为μ、木板的质量为m ,且木板放置时,重心不在两滚轮的正中央。试证明木板做简谐运动,并求木板运动的周期。思路提示:找平衡位置(木板重心在两滚轮中央处)→ú力矩平衡和Σ?F6= 0结合求两处弹力→ú求摩擦力合力…答案:木板运动周期为2π&。巩固应用:如图7所示,三根长度均为L = 2.00m地质量均匀直杆,构成一正三角形框架ABC,C点悬挂在一光滑水平轴上,整个框架可绕转轴转动。杆AB是一导轨,一电动松鼠可在导轨上运动。现观察到松鼠正在导轨上运动,而框架却静止不动,试讨论松鼠的运动是一种什么样的运动。解说:由于框架静止不动,松鼠在竖直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。设松鼠的质量为m ,即:N = mg & & & & & & & & & & & & & &①再回到框架,其静止平衡必满足框架所受合力矩为零。以C点为转轴,形成力矩的只有松鼠的压力N、和松鼠可能加速的静摩擦力f ,它们合力矩为零,即:MN&= Mf现考查松鼠在框架上的某个一般位置(如图7,设它在导轨方向上距C点为x),上式即成:N·x = f·Lsin60° & & & & & & & & ②解①②两式可得:f =&x ,且f的方向水平向左。根据牛顿第三定律,这个力就是松鼠在导轨方向上的合力。如果我们以C在导轨上的投影点为参考点,x就是松鼠的瞬时位移。再考虑到合力与位移的方向因素,松鼠的合力与位移满足关系——=&-k其中k =&&,对于这个系统而言,k是固定不变的。显然这就是简谐运动的定义式。答案:松鼠做简谐运动。评说:这是第十三届物理奥赛预赛试题,问法比较模糊。如果理解为定性求解,以上答案已经足够。但考虑到原题中还是有定量的条件,所以做进一步的定量运算也是有必要的。譬如,我们可以求出松鼠的运动周期为:T = 2π&= 2π&= 2.64s 。二、典型的简谐运动1、弹簧振子物理情形:如图8所示,用弹性系数为k的轻质弹簧连着一个质量为m的小球,置于倾角为θ
第十部分 磁场第一讲 基本知识介绍《磁场》部分在奥赛考刚中的考点很少,和高考要求的区别不是很大,只是在两处有深化:a、电流的磁场引进定量计算;b、对带电粒子在复合场中的运动进行了更深入的分析。一、磁场与安培力1、磁场a、永磁体、电流磁场→磁现象的电本质b、磁感强度、磁通量c、稳恒电流的磁场*毕奥-萨伐尔定律(Biot-Savart law):对于电流强度为I&、长度为dI的导体元段,在距离为r的点激发的“元磁感应强度”为dB&。矢量式d= k,(d表示导体元段的方向沿电流的方向、为导体元段到考查点的方向矢量);或用大小关系式dB = k结合安培定则寻求方向亦可。其中&k = 1.0×10?7N/A2&。应用毕萨定律再结合矢量叠加原理,可以求解任何形状导线在任何位置激发的磁感强度。毕萨定律应用在“无限长”直导线的结论:B = 2k&;*毕萨定律应用在环形电流垂直中心轴线上的结论:B = 2πkI&;*毕萨定律应用在“无限长”螺线管内部的结论:B = 2πknI&。其中n为单位长度螺线管的匝数。2、安培力a、对直导体,矢量式为&= I;或表达为大小关系式&F = BILsinθ再结合“左手定则”解决方向问题(θ为B与L的夹角)。b、弯曲导体的安培力⑴整体合力折线导体所受安培力的合力等于连接始末端连线导体(电流不变)的的安培力。证明:参照图9-1,令MN段导体的安培力F1与NO段导体的安培力F2的合力为F,则F的大小为F =&& = BI& = BI关于F的方向,由于ΔFF2P∽ΔMNO,可以证明图9-1中的两个灰色三角形相似,这也就证明了F是垂直MO的,再由于ΔPMO是等腰三角形(这个证明很容易),故F在MO上的垂足就是MO的中点了。证毕。由于连续弯曲的导体可以看成是无穷多元段直线导体的折合,所以,关于折线导体整体合力的结论也适用于弯曲导体。(说明:这个结论只适用于匀强磁场。)⑵导体的内张力弯曲导体在平衡或加速的情形下,均会出现内张力,具体分析时,可将导体在被考查点切断,再将被切断的某一部分隔离,列平衡方程或动力学方程求解。c、匀强磁场对线圈的转矩如图9-2所示,当一个矩形线圈(线圈面积为S、通以恒定电流I)放入匀强磁场中,且磁场B的方向平行线圈平面时,线圈受安培力将转动(并自动选择垂直B的中心轴OO′,因为质心无加速度),此瞬时的力矩为M = BIS几种情形的讨论——⑴增加匝数至N&,则&M = NBIS&;⑵转轴平移,结论不变(证明从略);⑶线圈形状改变,结论不变(证明从略);*⑷磁场平行线圈平面相对原磁场方向旋转α角,则M = BIScosα&,如图9-3;证明:当α&= 90°时,显然M = 0&,而磁场是可以分解的,只有垂直转轴的的分量Bcosα才能产生力矩…⑸磁场B垂直OO′轴相对线圈平面旋转β角,则M = BIScosβ&,如图9-4。证明:当β&= 90°时,显然M = 0&,而磁场是可以分解的,只有平行线圈平面的的分量Bcosβ才能产生力矩…说明:在默认的情况下,讨论线圈的转矩时,认为线圈的转轴垂直磁场。如果没有人为设定,而是让安培力自行选定转轴,这时的力矩称为力偶矩。二、洛仑兹力1、概念与规律a、&= q,或展开为f = qvBsinθ再结合左、右手定则确定方向(其中θ为与的夹角)。安培力是大量带电粒子所受洛仑兹力的宏观体现。b、能量性质由于总垂直与确定的平面,故总垂直&,只能起到改变速度方向的作用。结论:洛仑兹力可对带电粒子形成冲量,却不可能做功。或:洛仑兹力可使带电粒子的动量发生改变却不能使其动能发生改变。问题:安培力可以做功,为什么洛仑兹力不能做功?解说:应该注意“安培力是大量带电粒子所受洛仑兹力的宏观体现”这句话的确切含义——“宏观体现”和“完全相等”是有区别的。我们可以分两种情形看这个问题:(1)导体静止时,所有粒子的洛仑兹力的合力等于安培力(这个证明从略);(2)导体运动时,粒子参与的是沿导体棒的运动v1和导体运动v2的合运动,其合速度为v&,这时的洛仑兹力f垂直v而安培力垂直导体棒,它们是不可能相等的,只能说安培力是洛仑兹力的分力f1&= qv1B的合力(见图9-5)。很显然,f1的合力(安培力)做正功,而f不做功(或者说f1的正功和f2的负功的代数和为零)。(事实上,由于电子定向移动速率v1在10?5m/s数量级,而v2一般都在10?2m/s数量级以上,致使f1只是f的一个极小分量。)☆如果从能量的角度看这个问题,当导体棒放在光滑的导轨上时(参看图9-6),导体棒必获得动能,这个动能是怎么转化来的呢?若先将导体棒卡住,回路中形成稳恒的电流,电流的功转化为回路的焦耳热。而将导体棒释放后,导体棒受安培力加速,将形成感应电动势(反电动势)。动力学分析可知,导体棒的最后稳定状态是匀速运动(感应电动势等于电源电动势,回路电流为零)。由于达到稳定速度前的回路电流是逐渐减小的,故在相同时间内发的焦耳热将比导体棒被卡住时少。所以,导体棒动能的增加是以回路焦耳热的减少为代价的。2、仅受洛仑兹力的带电粒子运动a、⊥时,匀速圆周运动,半径r =&&,周期T =&b、与成一般夹角θ时,做等螺距螺旋运动,半径r =&&,螺距d =&这个结论的证明一般是将分解…(过程从略)。☆但也有一个问题,如果将分解(成垂直速度分量B2和平行速度分量B1&,如图9-7所示),粒子的运动情形似乎就不一样了——在垂直B2的平面内做圆周运动?其实,在图9-7中,B1平行v只是一种暂时的现象,一旦受B2的洛仑兹力作用,v改变方向后就不再平行B1了。当B1施加了洛仑兹力后,粒子的“圆周运动”就无法达成了。(而在分解v的处理中,这种局面是不会出现的。)3、磁聚焦a、结构:见图9-8,K和G分别为阴极和控制极,A为阳极加共轴限制膜片,螺线管提供匀强磁场。b、原理:由于控制极和共轴膜片的存在,电子进磁场的发散角极小,即速度和磁场的夹角θ极小,各粒子做螺旋运动时可以认为螺距彼此相等(半径可以不等),故所有粒子会“聚焦”在荧光屏上的P点。4、回旋加速器a、结构&原理(注意加速时间应忽略)b、磁场与交变电场频率的关系因回旋周期T和交变电场周期T′必相等,故&=c、最大速度&vmax&=&= 2πRf5、质谱仪速度选择器&粒子圆周运动,和高考要求相同。第二讲 典型例题解析一、磁场与安培力的计算【例题1】两根无限长的平行直导线a、b相距40cm,通过电流的大小都是3.0A,方向相反。试求位于两根导线之间且在两导线所在平面内的、与a导线相距10cm的P点的磁感强度。【解说】这是一个关于毕萨定律的简单应用。解题过程从略。【答案】大小为8.0×10?6T&,方向在图9-9中垂直纸面向外。【例题2】半径为R&,通有电流I的圆形线圈,放在磁感强度大小为B&、方向垂直线圈平面的匀强磁场中,求由于安培力而引起的线圈内张力。【解说】本题有两种解法。方法一:隔离一小段弧,对应圆心角θ&,则弧长L =&θR&。因为θ&→
第四部分 &曲线运动 &万有引力第一讲 基本知识介绍一、曲线运动1、概念、性质2、参量特征二、曲线运动的研究方法——运动的分解与合成1、法则与对象2、两种分解的思路a、固定坐标分解(适用于匀变速曲线运动)建立坐标的一般模式——沿加速度方向和垂直加速度方向建直角坐标;提高思想——根据解题需要建直角坐标或非直角坐标。b、自然坐标分解(适用于变加速曲线运动)基本常识:在考查点沿轨迹建立切向τ、法向n坐标,所有运动学矢量均沿这两个方向分解。动力学方程,其中改变速度的大小(速率),改变速度的方向。且= m,其中ρ表示轨迹在考查点的曲率半径。定量解题一般只涉及法向动力学方程。三、两种典型的曲线运动1、抛体运动(类抛体运动)关于抛体运动的分析,和新课教材“平跑运动”的分析基本相同。在坐标的选择方面,有灵活处理的余地。2、圆周运动匀速圆周运动的处理:运动学参量v、ω、n、a、f、T之间的关系,向心力的寻求于合成;临界问题的理解。变速圆周运动:使用自然坐标分析法,一般只考查法向方程。四、万有引力定律1、定律内容2、条件a、基本条件b、拓展条件:球体(密度呈球对称分布)外部空间的拓展----对球体外一点A的吸引等效于位于球心的质量为球的质量的质点对质点A的吸引;球体(密度呈球对称分布)内部空间的拓展“剥皮法则”-----对球内任一距球心为r的一质点A的吸引力等效于质量与半径为&r的球的质量相等且位于球心的质点对质点A的吸引;球壳(密度呈球对称分布)外部空间的拓展----对球壳外一点A的吸引等效于位于球心的质量为球壳的质量的质点对质点A的吸引;球体(密度呈球对称分布)内部空间的拓展-----对球壳内任一位置上任一质点A的吸引力都为零;并且根据以为所述,由牛顿第三定律,也可求得一质点对球或对球壳的吸引力。c、不规则物体间的万有引力计算——分割与矢量叠加3、万有引力做功也具有只与初末位置有关而与路径无关的特征。因而相互作用的物体间有引力势能。在任一惯性系中,若规定相距无穷远时系统的万有引力势能为零,可以证明,当两物体相距为r时系统的万有引力势能为EP&=&-G五、开普勒三定律天体运动的本来模式与近似模式的差距,近似处理的依据。六、宇宙速度、天体运动1、第一宇宙速度的常规求法2、从能量角度求第二、第三宇宙速度万有引力势能EP&=&-G3、解天体运动的本来模式时,应了解椭圆的数学常识第二讲 重要模型与专题一、小船渡河物理情形:在宽度为d的河中,水流速度v2恒定。岸边有一艘小船,保持相对河水恒定的速率v1渡河,但船头的方向可以选择。试求小船渡河的最短时间和最小位移。模型分析:小船渡河的实际运动(相对河岸的运动)由船相对水流速度v1和水相对河岸的速度v2合成。可以设船头与河岸上游夹角为θ(即v1的方向),速度矢量合成如图1(学生活动)用余弦定理可求v合的大小v合=(学生活动)用正弦定理可求v合的方向。令v合与河岸下游夹角为α,则α= arcsin1、求渡河的时间与最短时间由于合运动合分运动具有等时性,故渡河时间既可以根据合运动求,也可以根据分运动去求。针对这一思想,有以下两种解法解法一:&t =&&其中v合可用正弦定理表达,故有&t =&&=&解法二:&t =&&=&&=&此外,结合静力学正交分解的思想,我们也可以建立沿河岸合垂直河岸的坐标x、y,然后先将v1分解(v2无需分解),再合成,如图2所示。而且不难看出,合运动在x、y方向的分量vx和vy与v1在x、y方向的分量v1x、v1y以及v2具有以下关系vy&= v1yvx&= v2&- v1x由于合运动沿y方向的分量Sy&≡&d&,故有解法三:&t =&&=&&=&t (θ)函数既已得出,我们不难得出结论当θ= 90°时,渡河时间的最小值&tmin&=&(从“解法三”我们最容易理解t为什么与v2无关,故tmin也与v2无关。这个结论是意味深长的。)2、求渡河的位移和最小位移在上面的讨论中,小船的位移事实上已经得出,即S合&=&&=&&=&但S合(θ)函数比较复杂,寻求S合的极小值并非易事。因此,我们可以从其它方面作一些努力。将S合沿x、y方向分解成Sx和Sy&,因为Sy&≡&d&,要S合极小,只要Sx极小就行了。而Sx(θ)函数可以这样求——解法一:&Sx&= vxt =(v2&- v1x)&=(v2&– v1cosθ)为求极值,令cosθ= p&,则sinθ=&,再将上式两边平方、整理,得到这是一个关于p的一元二次方程,要p有解,须满足Δ≥0&,即≥整理得&≥所以,Sxmin=&,代入Sx(θ)函数可知,此时cosθ=&最后,Smin=&=&d此过程仍然比较繁复,且数学味太浓。结论得出后,我们还不难发现一个问题:当v2<v1时,Smin<d&,这显然与事实不符。(造成这个局面的原因是:在以上的运算过程中,方程两边的平方和开方过程中必然出现了增根或遗根的现象)所以,此法给人一种玄乎的感觉。解法二:纯物理解——矢量三角形的动态分析从图2可知,Sy恒定,Sx越小,必有S合矢量与下游河岸的夹角越大,亦即v合矢量与下游河岸的夹角越大(但不得大于90°)。我们可以通过v1与v2合成v合矢量图探讨v合与下游河岸夹角的最大可能。先进行平行四边形到三角形的变换,如图3所示。当θ变化时,v合矢量的大小和方向随之变化,具体情况如图4所示。从图4不难看出,只有当v合和虚线半圆周相切时,v合与v2(下游)的夹角才会最大。此时,v合⊥v1&,v1、v2和v合构成一个直角三角形,αmax&= arcsin并且,此时:θ= arccos有了αmax的值,结合图1可以求出:S合min&=&d最后解决v2<v1时结果不切实际的问题。从图4可以看出,当v2<v1时,v合不可能和虚线半圆周相切(或αmax&= arcsin无解),结合实际情况,αmax取90°即:v2<v1时,S合min&= d&,此时,θ= arccos结论:若v1<v2&,θ= arccos时,S合min&=&d& & &&若v2<v1&,θ= arccos时,S合min&= d二、滑轮小船物理情形:如图5所示,岸边的汽车用一根不可伸长的轻绳通过定滑轮牵引水中的小船,设小船始终不离开水面,且绳足够长,求汽车速度v1和小船速度v2的大小关系。模型分析:由于绳不可伸长,滑轮右边绳子缩短的速率即是汽车速度的大小v1&,考查绳与船相连的端点运动情况,v1和v2必有一个运动的合成与分解的问题。(学生活动)如果v1恒定不变,v2会恒定吗?若恒定,说明理由;若变化,定性判断变化趋势。结合学生的想法,介绍极限外推的思想:当船离岸无穷远时,绳与水的夹角趋于零,v2→v1&。当船比较靠岸时,可作图比较船的移动距离、绳子的缩短长度,得到v2>v1&。故“船速增大”才是正确结论。故只能引入瞬时方位角θ,看v1和v2的瞬时关系。(学生活动)v1和v2定量关系若何?是否可以考虑用运动的分解与合成的知识解答?针对如图6所示的两种典型方案,初步评说——甲图中v2&= v1cosθ,船越靠岸,θ越大,v2越小,和前面的定性结论冲突,必然是错误的。错误的根源分析:和试验修订本教材中“飞机起飞”的运动分析进行了不恰当地联系。仔细比较这两个运动的差别,并联系“小船渡河”的运动合成等事例,总结出这样的规律——合运动是显性的、轨迹实在的运动,分运动是隐性的、需要分析而具有人为特征(无唯一性)的运动。解法一:在图6(乙)中,当我们挖掘、分析了滑轮绳子端点的运动后,不难得出:船的沿水面运动是v2合运动,端点参与绳子的缩短运动v1和随绳子的转动v转&,从而肯定乙方案是正确的。即:v2&= v1&/ cosθ解法二:微元法。从考查位置开始取一个极短过程,将绳的运动和船的运动在图7(甲)中标示出来,AB是绳的初识位置,AC是绳的末位置,在AB上取=得D点,并连接CD。显然,图中BC是船的位移大小,DB是绳子的缩短长度。由于过程极短,等腰三角形ACD的顶角∠A→0,则底角∠ACD→90°,△CDB趋于直角三角形。将此三角放大成图7(乙),得出:S2&= S1&/ cosθ&。鉴于过程极短,绳的缩短运动和船的运动都可以认为是匀速的,即:S2&= v2&t&,S1&= v1&t&。所以:v2&= v1&/ cosθ三、斜抛运动的最大射程物理情形:不计空气阻力,将小球斜向上抛出,初速度大小恒为v0&,方向可以选择,试求小球落回原高度的最大水平位移(射程)。模型分析:斜抛运动的常规分析和平抛运动完全相同。设初速度方向与水平面夹θ角,建立水平、竖直的x、y轴,将运动学参量沿x、y分解。针对抛出到落回原高度的过程0 = Sy&= v0y&t +&(-g)t2Sx&= v0x&t解以上两式易得:Sx&=&sin2θ结论:当抛射角θ= 45°时,最大射程Sxmax&=&(学生活动)若v0&、θ确定,试用两种方法求小球到达的最大高度。运动学求解——考查竖直分运动即可;能量求解——注意小球在最高点应具备的速度v0x&,然后对抛出到最高点的过程用动能定理或机械能守恒。结论:Hm&=&&。四、物体脱离圆弧的讨论物理情形:如图8所示,长为L的细绳一端固定,另一端系一小球。当小球在最低点时,给球一个vo&= 2的水平初速,试求所能到达的最大高度。模型分析:用自然坐标分析变速圆周运动的典型事例。能量关系的运用,也是对常规知识的复习。(学生活动)小球能否形成的往复的摆动?小球能否到达圆弧的最高点C ?通过能量关系和圆周运动动力学知识的复习,得出:小球运动超过B点、但不能到达C点(vC&≥),即小球必然在BC之间的某点脱离圆弧。(学生活动)小球会不会在BC之间的某点脱离圆弧后作自由落体运动?尽管对于本问题,能量分析是可行的(BC之间不可能出现动能为零的点,则小球脱离圆弧的初速度vD不可能为零),但用动力学的工具分析,是本模型的重点——在BC阶段,只要小球还在圆弧上,其受力分析必如图9所示。沿轨迹的切向、法向分别建τ、n坐标,然后将重力G沿τ、n分解为Gτ和Gn分量,T为绳子张力。法向动力学方程为T + Gn&=&ΣFn&= man&= m由于T≥0&,Gn>0&,故v≠0&。(学生活动:若换一个v0值,在AB阶段,v = 0是可能出现的;若将绳子换成轻杆,在BC阶段v = 0也是可能出现的。)下面先解脱离点的具体位置。设脱离点为D,对应方位角为θ,如图8所示。由于在D点之后绳子就要弯曲,则此时绳子的张力T为零,而此时仍然在作圆周运动,故动力学方程仍满足Gn&= Gsinθ= m& & & & & & & & & & & & & & & & & & & & &①在再针对A→D过程,小球机械能守恒,即(选A所在的平面为参考平面):m+ 0 = mg ( L + Lsinθ) +m& & & & & & & & & & & &&②代入v0值解①、②两式得:θ= arcsin&,(同时得到:vD&=&)小球脱离D点后将以vD为初速度作斜向上抛运动。它所能到达的最高点(相对A)可以用两种方法求得。解法一:运动学途径。先求小球斜抛的最大高度,hm&=&&=&&代入θ和vD的值得:hm&=&L小球相对A的总高度:Hm&= L + Lsinθ+ hm&=&L解法二:能量途径小球在斜抛的最高点仍具有vD的水平分量,即vDsinθ=&&。对A→最高点的过程用机械能守恒定律(设A所在的平面为参考平面),有m+ 0 =&&+ mg Hm容易得到:Hm&=&L五、万有引力的计算物理情形:如图9所示,半径为R的均质球质量为M,球心在O点,现在被内切的挖去了一个半径为R/2的球形空腔(球心在O′)。在O、O′的连线上距离O点为d的地方放有一个很小的、质量为m的物体,试求这两个物体之间的万有引力。模型分析:无论是“基本条件”还是“拓展条件”,本模型都很难直接符合,因此必须使用一些特殊的处理方法。本模型除了照应万有引力的拓展条件之外,着重介绍“填补法”的应用。空腔里现在虽然空无一物,但可以看成是两个半径为R/2的球的叠加:一个的质量为+M/8&,一个的质量为-M/8&。然后,前者正好填补空腔——和被挖除后剩下的部分构成一个完整的均质球A&;注意后者,虽然是一个比较特殊的物体(质量为负值),但仍然是一个均质的球体,命名为B&。既然A、B两物均为均质球体,他们各自和右边小物体之间的万有引力,就可以使用“拓展条件”中的定势来计算了。只是有一点需要说明,B物的质量既然负值,它和m之间的万有“引力”在方向上不再表现为吸引,而应为排斥——成了“万有斥力”了。具体过程如下FAm&= GFBm&= G&=&-G最后,两物之间的万有引力&F = FAm&+ FBm&= G-G需要指出的是,在一部分同学的心目中,可能还会存在另一种解题思路,那就是先通过力矩平衡求被挖除物体的重心(仍然要用到“填补法”、负质量物体的重力反向等),它将在O、O′的连线上距离O点左侧R/14处,然后“一步到位”地求被挖除物与m的万有引力F = G然而,这种求法违背了万有引力定律适用的条件,是一种错误的思路。六、天体运动的计算物理情形:地球和太阳的质量分别为m和M&,地球绕太阳作椭圆运动,轨道的半长轴为a&,半短轴为b&,如图11所示。试求地球在椭圆顶点A、B、C三点的运动速度,以及轨迹在A、C两点的曲率半径。模型分析:求解天体运动的本来模式,常常要用到开普勒定律(定量)、机械能守恒(万有引力势能)、椭圆的数学常识等等,相对高考要求有很大的不同。地球轨道的离心率很小(其值≈0.0167&,其中c为半焦距),这是我们常常能将它近似为圆的原因。为了方便说明问题,在图11中,我们将离心率夸大了。针对地球从A点运动到B点的过程,机械能守恒m+(-)=&m+(-)比较A、B两点,应用开普勒第二定律,有:vA(a-c)= vB(a + c)结合椭圆的基本关系:c =&&解以上三式可得:vA&=&&,& & &vB&=&再针对地球从A到C的过程,应用机械能守恒定律,有m+(-)=&m+(-)代入vA值可解得:vC&=&为求A、C两点的曲率半径,在A、C两点建自然坐标,然后应用动力学(法向)方程。在A点,F万&=&ΣFn&= m an&,设轨迹在A点的曲率半径为ρA&,即:G= m代入vA值可解得:ρA&=&在C点,方程复杂一些,须将万有引力在τ、n方向分解,如图12所示。然后,F万n&=ΣFn&= m an&,即:F万cosθ= m即:G·&= m代入vC值可解得:ρC&=&值得注意的是,如果针对A、C两点用开普勒第二定律,由于C点处的矢径r和瞬时速度vC不垂直,方程不能写作vA(a-c)= vC&a&。正确的做法是:将vC分解出垂直于矢径的分量(分解方式可参看图12,但分解的平行四边形未画出)vC&cosθ,再用vA(a-c)=(vC&cosθ)a&,化简之后的形式成为vA(a-c)= vC&b要理解这个关系,有一定的难度,所以建议最好不要对A、C两点用开普勒第二定律第三讲 典型例题解析教材范本:龚霞玲主编《奥林匹克物理思维训练教材》,知识出版社,2002年8月第一版。例题选讲针对“教材”第五、第六章的部分例题和习题。
第五部分 动量和能量第一讲 基本知识介绍一、冲量和动量1、冲力(F—t图象特征)→&冲量。冲量定义、物理意义冲量在F—t图象中的意义→从定义角度求变力冲量(F对t的平均作用力)2、动量的定义动量矢量性与运算二、动量定理1、定理的基本形式与表达2、分方向的表达式:ΣIx&=ΔPx&,ΣIy&=ΔPy&…3、定理推论:动量变化率等于物体所受的合外力。即=ΣF外&三、动量守恒定律1、定律、矢量性2、条件a、原始条件与等效b、近似条件c、某个方向上满足a或b,可在此方向应用动量守恒定律四、功和能1、功的定义、标量性,功在F—S图象中的意义2、功率,定义求法和推论求法3、能的概念、能的转化和守恒定律4、功的求法a、恒力的功:W = FScosα= FSF&= FS&Sb、变力的功:基本原则——过程分割与代数累积;利用F—S图象(或先寻求F对S的平均作用力)c、解决功的“疑难杂症”时,把握“功是能量转化的量度”这一要点五、动能、动能定理1、动能(平动动能)2、动能定理a、ΣW的两种理解b、动能定理的广泛适用性六、机械能守恒1、势能a、保守力与耗散力(非保守力)→&势能(定义:ΔEp&=&-W保)b、力学领域的三种势能(重力势能、引力势能、弹性势能)及定量表达2、机械能3、机械能守恒定律a、定律内容b、条件与拓展条件(注意系统划分)c、功能原理:系统机械能的增量等于外力与耗散内力做功的代数和。七、碰撞与恢复系数1、碰撞的概念、分类(按碰撞方向分类、按碰撞过程机械能损失分类)碰撞的基本特征:a、动量守恒;b、位置不超越;c、动能不膨胀。2、三种典型的碰撞a、弹性碰撞:碰撞全程完全没有机械能损失。满足——m1v10&+ m2v20&= m1v1&+ m2v2&m1&+&&m2&=&&m1&+&&m2解以上两式(注意技巧和“不合题意”解的舍弃)可得:v1&=&,& v2&=&对于结果的讨论:①当m1&= m2&时,v1&= v20&,v2&= v10&,称为“交换速度”;②当m1&<<&m2&,且v20&= 0时,v1&≈&-v10&,v2&≈&0&,小物碰大物,原速率返回;③当m1&>>&m2&,且v20&= 0时,v1&≈&v10&,v2&≈&2v10&,b、非(完全)弹性碰撞:机械能有损失(机械能损失的内部机制简介),只满足动量守恒定律c、完全非弹性碰撞:机械能的损失达到最大限度;外部特征:碰撞后两物体连为一个整体,故有v1&= v2&=&3、恢复系数:碰后分离速度(v2&-&v1)与碰前接近速度(v10&-&v20)的比值,即:e =&&。根据“碰撞的基本特征”,0&≤&e&≤&1&。当e = 0&,碰撞为完全非弹性;当0&<&e&<&1&,碰撞为非弹性;当e = 1&,碰撞为弹性。八、“广义碰撞”——物体的相互作用1、当物体之间的相互作用时间不是很短,作用不是很强烈,但系统动量仍然守恒时,碰撞的部分规律仍然适用,但已不符合“碰撞的基本特征”(如:位置可能超越、机械能可能膨胀)。此时,碰撞中“不合题意”的解可能已经有意义,如弹性碰撞中v1&= v10&,v2&= v20的解。2、物体之间有相对滑动时,机械能损失的重要定势:-ΔE =&ΔE内&= f滑·S相&,其中S相指相对路程。第二讲 重要模型与专题一、动量定理还是动能定理?物理情形:太空飞船在宇宙飞行时,和其它天体的万有引力可以忽略,但是,飞船会定时遇到太空垃圾的碰撞而受到阻碍作用。设单位体积的太空均匀分布垃圾n颗,每颗的平均质量为m ,垃圾的运行速度可以忽略。飞船维持恒定的速率v飞行,垂直速度方向的横截面积为S ,与太空垃圾的碰撞后,将垃圾完全粘附住。试求飞船引擎所应提供的平均推力F 。模型分析:太空垃圾的分布并不是连续的,对飞船的撞击也不连续,如何正确选取研究对象,是本题的前提。建议充分理解“平均”的含义,这样才能相对模糊地处理垃圾与飞船的作用过程、淡化“作用时间”和所考查的“物理过程时间”的差异。物理过程需要人为截取,对象是太空垃圾。先用动量定理推论解题。取一段时间Δt&,在这段时间内,飞船要穿过体积ΔV = S·vΔt的空间,遭遇nΔV颗太空垃圾,使它们获得动量ΔP&,其动量变化率即是飞船应给予那部分垃圾的推力,也即飞船引擎的推力。&=&&=&&=&&=&&= nmSv2如果用动能定理,能不能解题呢?同样针对上面的物理过程,由于飞船要前进x = vΔt的位移,引擎推力须做功W =&x ,它对应飞船和被粘附的垃圾的动能增量,而飞船的ΔEk为零,所以:W =&ΔMv2即:vΔt =&(n m S·vΔt)v2得到:&=&nmSv2两个结果不一致,不可能都是正确的。分析动能定理的解题,我们不能发现,垃圾与飞船的碰撞是完全非弹性的,需要消耗大量的机械能,因此,认为“引擎做功就等于垃圾动能增加”的观点是错误的。但在动量定理的解题中,由于I =&t&,由此推出的&=&必然是飞船对垃圾的平均推力,再对飞船用平衡条件,的大小就是引擎推力大小了。这个解没有毛病可挑,是正确的。(学生活动)思考:如图1所示,全长L、总质量为M的柔软绳子,盘在一根光滑的直杆上,现用手握住绳子的一端,以恒定的水平速度v将绳子拉直。忽略地面阻力,试求手的拉力F 。解:解题思路和上面完全相同。答:二、动量定理的分方向应用物理情形:三个质点A、B和C ,质量分别为m1&、m2和m3&,用拉直且不可伸长的绳子AB和BC相连,静止在水平面上,如图2所示,AB和BC之间的夹角为(π-α)。现对质点C施加以冲量I ,方向沿BC ,试求质点A开始运动的速度。模型分析:首先,注意“开始运动”的理解,它指绳子恰被拉直,有作用力和冲量产生,但是绳子的方位尚未发生变化。其二,对三个质点均可用动量定理,但是,B质点受冲量不在一条直线上,故最为复杂,可采用分方向的形式表达。其三,由于两段绳子不可伸长,故三质点的瞬时速度可以寻求到两个约束关系。下面具体看解题过程——绳拉直瞬间,AB绳对A、B两质点的冲量大小相等(方向相反),设为I1&,BC绳对B、C两质点的冲量大小相等(方向相反),设为I2&;设A获得速度v1(由于A受合冲量只有I1&,方向沿AB ,故v1的反向沿AB),设B获得速度v2(由于B受合冲量为+,矢量和既不沿AB ,也不沿BC方向,可设v2与AB绳夹角为〈π-β〉,如图3所示),设C获得速度v3(合冲量+沿BC方向,故v3沿BC方向)。对A用动量定理,有:I1&= m1&v1& & & & & & & & & & & & & & & & &①B的动量定理是一个矢量方程:+= m2&,可化为两个分方向的标量式,即:I2cosα-I1&= m2&v2cosβ & & & & & & & & &②I2sinα= m2&v2sinβ & & & & & & & & & & & ③质点C的动量定理方程为:I - I2&= m3&v3& & & & & & & & & & & & & &④AB绳不可伸长,必有v1&= v2cosβ & & & & & ⑤BC绳不可伸长,必有v2cos(β-α) = v3& & &⑥六个方程解六个未知量(I1&、I2&、v1&、v2&、v3&、β)是可能的,但繁复程度非同一般。解方程要注意条理性,否则易造成混乱。建议采取如下步骤——1、先用⑤⑥式消掉v2&、v3&,使六个一级式变成四个二级式:I1&= m1&v1& & & & & & & & & & & & & & & & & & & & &⑴I2cosα-I1&= m2&v1& & & & & & & & & & & & & & & & ⑵I2sinα= m2&v1&tgβ & & & & & & & & & & & & & & & &⑶I - I2&= m3&v1(cosα+ sinαtgβ) & & & & & & & & &⑷2、解⑶⑷式消掉β,使四个二级式变成三个三级式:I1&= m1&v1& & & & & & & & & & & & & & & & & & & & & & & & &㈠I2cosα-I1&= m2&v1& & & & & & & & & & & & & & & & & & & & ㈡I = m3&v1&cosα+ I2& & & & & & & & & & && & & & & & &&&㈢3、最后对㈠㈡㈢式消I1&、I2&,解v1就方便多了。结果为:v1&=&(学生活动:训练解方程的条理和耐心)思考:v2的方位角β等于多少?解:解“二级式”的⑴⑵⑶即可。⑴代入⑵消I1&,得I2的表达式,将I2的表达式代入⑶就行了。答:β= arc tg()。三、动量守恒中的相对运动问题物理情形:在光滑的水平地面上,有一辆车,车内有一个人和N个铅球,系统原来处于静止状态。现车内的人以一定的水平速度将铅球一个一个地向车外抛出,车子和人将获得反冲速度。第一过程,保持每次相对地面抛球速率均为v ,直到将球抛完;第二过程,保持每次相对车子抛球速率均为v ,直到将球抛完。试问:哪一过程使车子获得的速度更大?模型分析:动量守恒定律必须选取研究对象之外的第三方(或第四、第五方)为参照物,这意味着,本问题不能选车子为参照。一般选地面为参照系,这样对“第二过程”的铅球动量表达,就形成了难点,必须引进相对速度与绝对速度的关系。至于“第一过程”,比较简单:N次抛球和将N个球一次性抛出是完全等效的。设车和人的质量为M ,每个铅球的质量为m 。由于矢量的方向落在一条直线上,可以假定一个正方向后,将矢量运算化为代数运算。设车速方向为正,且第一过程获得的速度大小为V1&第二过程获得的速度大小为V2&。第一过程,由于铅球每次的动量都相同,可将多次抛球看成一次抛出。车子、人和N个球动量守恒。0 = Nm(-v) + MV1&得:V1&=&v & & & & & & & & & & & & & & & & & &①第二过程,必须逐次考查铅球与车子(人)的作用。第一个球与(N–1)个球、人、车系统作用,完毕后,设“系统”速度为u1&。值得注意的是,根据运动合成法则,铅球对地的速度并不是(-v),而是(-v + u1)。它们动量守恒方程为:0 = m(-v + u1) +〔M +(N-1)m〕u1得:u1&=第二个球与(N -2)个球、人、车系统作用,完毕后,设“系统”速度为u2&。它们动量守恒方程为:〔M+(N-1)m〕u1&= m(-v + u2) +〔M+(N-2)m〕u2&得:u2&=&&+&第三个球与(N -2)个球、人、车系统作用,完毕后,设“系统”速度为u3&。铅球对地的速度是(-v + u3)。它们动量守恒方程为:〔M+(N-2)m〕u2&= m(-v + u3) +〔M+(N-3)m〕u3得:u3&=&+&&+&以此类推(过程注意:先找uN和uN-1关系,再看uN和v的关系,不要急于化简通分)……,uN的通式已经可以找出:V2&= uN&=&&+&&+&&+ … +&即:V2&=&& & & & & & & & & & & & & & & &②我们再将①式改写成:V1&=&& & & & & & & & & & & & & & & & & & & & ①′不难发现,①′式和②式都有N项,每项的分子都相同,但①′式中每项的分母都比②式中的分母小,所以有:V1&> V2&。结论:第一过程使车子获得的速度较大。(学生活动)思考:质量为M的车上,有n个质量均为m的人,它们静止在光滑的水平地面上。现在车上的人以相对车大小恒为v、方向水平向后的初速往车下跳。第一过程,N个人同时跳下;第二过程,N个人依次跳下。试问:哪一次车子获得的速度较大?解:第二过程结论和上面的模型完全相同,第一过程结论为V1&=&&。答:第二过程获得速度大。四、反冲运动中的一个重要定式物理情形:如图4所示,长度为L、质量为M的船停止在静水中(但未抛锚),船头上有一个质量为m的人,也是静止的。现在令人在船上开始向船尾走动,忽略水的阻力,试问:当人走到船尾时,船将会移动多远?(学生活动)思考:人可不可能匀速(或匀加速)走动?当人中途停下休息,船有速度吗?人的全程位移大小是L吗?本系统选船为参照,动量守恒吗?模型分析:动量守恒展示了已知质量情况下的速度关系,要过渡到位移关系,需要引进运动学的相关规律。根据实际情况(人必须停在船尾),人的运动不可能是匀速的,也不可能是匀加速的,运动学的规律应选择S =&t 。为寻求时间t ,则要抓人和船的位移约束关系。对人、船系统,针对“开始走动→中间任意时刻”过程,应用动量守恒(设末态人的速率为v ,船的速率为V),令指向船头方向为正向,则矢量关系可以化为代数运算,有:0 = MV + m(-v)&即:mv = MV&由于过程的末态是任意选取的,此式展示了人和船在任一时刻的瞬时速度大小关系。而且不难推知,对中间的任一过程,两者的平均速度也有这种关系。即:m&= M& & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & ①设全程的时间为t ,乘入①式两边,得:mt = Mt设s和S分别为人和船的全程位移大小,根据平均速度公式,得:m s = M S & & & & ②受船长L的约束,s和S具有关系:s + S = L & & & & & & & & & & & & & & & & & ③解②、③可得:船的移动距离 S =L(应用动量守恒解题时,也可以全部都用矢量关系,但这时“位移关系”表达起来难度大一些——必须用到运动合成与分解的定式。时间允许的话,可以做一个对比介绍。)另解:质心运动定律人、船系统水平方向没有外力,故系统质心无加速度→系统质心无位移。先求出初态系统质心(用它到船的质心的水平距离x表达。根据力矩平衡知识,得:x =&),又根据,末态的质量分布与初态比较,相对整体质心是左右对称的。弄清了这一点后,求解船的质心位移易如反掌。(学生活动)思考:如图5所示,在无风的天空,人抓住气球下面的绳索,和气球恰能静止平衡,人和气球地质量分别为m和M ,此时人离地面高h 。现在人欲沿悬索下降到地面,试问:要人充分安全地着地,绳索至少要多长?解:和模型几乎完全相同,此处的绳长对应模型中的“船的长度”(“充分安全着地”的含义是不允许人脱离绳索跳跃着地)。答:h 。(学生活动)思考:如图6所示,两个倾角相同的斜面,互相倒扣着放在光滑的水平地面上,小斜面在大斜面的顶端。将它们无初速释放后,小斜面下滑,大斜面后退。已知大、小斜面的质量分别为M和m ,底边长分别为a和b ,试求:小斜面滑到底端时,大斜面后退的距离。解:水平方向动量守恒。解题过程从略。答:(a-b)。进阶应用:如图7所示,一个质量为M ,半径为R的光滑均质半球,静置于光滑水平桌面上,在球顶有一个质量为m的质点,由静止开始沿球面下滑。试求:质点离开球面以前的轨迹。解说:质点下滑,半球后退,这个物理情形和上面的双斜面问题十分相似,仔细分析,由于同样满足水平方向动量守恒,故我们介绍的“定式”是适用的。定式解决了水平位移(位置)的问题,竖直坐标则需要从数学的角度想一些办法。为寻求轨迹方程,我们需要建立一个坐标:以半球球心O为原点,沿质点滑下一侧的水平轴为x坐标、竖直轴为y坐标。由于质点相对半球总是做圆周运动的(离开球面前),有必要引入相对运动中半球球心O′的方位角θ来表达质点的瞬时位置,如图8所示。由“定式”,易得:x =&Rsinθ & & & & & & & & & ①而由图知:y = Rcosθ & & & & & & & &②不难看出,①、②两式实际上已经是一个轨迹的参数方程。为了明确轨迹的性质,我们可以将参数θ消掉,使它们成为:&+&&= 1这样,特征就明显了:质点的轨迹是一个长、短半轴分别为R和R的椭圆。五、功的定义式中S怎么取值?在求解功的问题时,有时遇到力的作用点位移与受力物体的(质心)位移不等,S是取力的作用点的位移,还是取物体(质心)的位移呢?我们先看下面一些事例。1、如图9所示,人用双手压在台面上推讲台,结果双手前进了一段位移而讲台未移动。试问:人是否做了功?2、在本“部分”第3页图1的模型中,求拉力做功时,S是否可以取绳子质心的位移?3、人登静止的楼梯,从一楼到二楼。楼梯是否做功?4、如图10所示,双手用等大反向的力F压固定汽缸两边的活塞,活塞移动相同距离S,汽缸中封闭气体被压缩。施力者(人)是否做功?在以上四个事例中,S若取作用点位移,只有第1、2、4例是做功的(注意第3例,楼梯支持力的作用点并未移动,而只是在不停地交换作用点),S若取物体(受力者)质心位移,只有第2、3例是做功的,而且,尽管第2例都做了功,数字并不相同。所以,用不同的判据得出的结论出现了本质的分歧。面对这些似是而非的“疑难杂症”,我们先回到“做功是物体能量转化的量度”这一根本点。第1例,手和讲台面摩擦生了热,内能的生成必然是由人的生物能转化而来,人肯定做了功。S宜取作用点的位移;第2例,求拉力的功,在前面已经阐述,S取作用点位移为佳;第3例,楼梯不需要输出任何能量,不做功,S取作用点位移;第4例,气体内能的增加必然是由人输出的,压力做功,S取作用点位移。但是,如果分别以上四例中的受力者用动能定理,第1例,人对讲台不做功,S取物体质心位移;第2例,动能增量对应S取L/2时的值——物体质心位移;第4例,气体宏观动能无增量,S取质心位移。(第3例的分析暂时延后。)以上分析在援引理论知识方面都没有错,如何使它们统一?原来,功的概念有广义和狭义之分。在力学中,功的狭义概念仅指机械能转换的量度;而在物理学中功的广义概念指除热传递外的一切能量转换的量度。所以功也可定义为能量转换的量度。一个系统总能量的变化,常以系统对外做功的多少来量度。能量可以是机械能、电能、热能、化学能等各种形式,也可以多种形式的能量同时发生转化。由此可见,上面分析中,第一个理论对应的广义的功,第二个理论对应的则是狭义的功,它们都没有错误,只是在现阶段的教材中还没有将它们及时地区分开来而已。而且,我们不难归纳:求广义的功,S取作用点的位移;求狭义的功,S取物体(质心)位移。那么我们在解题中如何处理呢?这里给大家几点建议:&1、抽象地讲“某某力做的功”一般指广义的功;2、讲“力对某物体做的功”常常指狭义的功;3、动能定理中的功肯定是指狭义的功。当然,求解功地问题时,还要注意具体问题具体分析。如上面的第3例,就相对复杂一些。如果认为所求为狭义的功,S取质心位移,是做了功,但结论仍然是难以令人接受的。下面我们来这样一个处理:将复杂的形变物体(人)看成这样一个相对理想的组合:刚性物体下面连接一压缩的弹簧(如图11所示),人每一次蹬梯,腿伸直将躯体重心上举,等效为弹簧将刚性物体举起。这样,我们就不难发现,做功的是人的双腿而非地面,人既是输出能量(生物能)的机构,也是得到能量(机械能)的机构——这里的物理情形更象是一种生物情形。本题所求的功应理解为广义功为宜。以上四例有一些共同的特点:要么,受力物体情形比较复杂(形变,不能简单地看成一个质点。如第2、第3、第4例),要么,施力者和受力者之间的能量转化不是封闭的(涉及到第三方,或机械能以外的形式。如第1例)。以后,当遇到这样的问题时,需要我们慎重对待。(学生活动)思考:足够长的水平传送带维持匀速v运转。将一袋货物无初速地放上去,在货物达到速度v之前,与传送带的摩擦力大小为f ,对地的位移为S 。试问:求摩擦力的功时,是否可以用W = fS ?解:按一般的理解,这里应指广义的功(对应传送带引擎输出的能量),所以“位移”取作用点的位移。注意,在此处有一个隐含的“交换作用点”的问题,仔细分析,不难发现,每一个(相对皮带不动的)作用点的位移为2S&。(另解:求货物动能的增加和与皮带摩擦生热的总和。)答:否。(学生活动)思考:如图12所示,人站在船上,通过拉一根固定在铁桩的缆绳使船靠岸。试问:缆绳是否对船和人的系统做功?解:分析同上面的“第3例”。答:否。六、机械能守恒与运动合成(分解)的综合物理情形:如图13所示,直角形的刚性杆被固定,水平和竖直部分均足够长。质量分别为m1和m2的A、B两个有孔小球,串在杆上,且被长为L的轻绳相连。忽略两球的大小,初态时,认为它们的位置在同一高度,且绳处于拉直状态。现无初速地将系统释放,忽略一切摩擦,试求B球运动L/2时的速度v2&。模型分析:A、B系统机械能守恒。A、B两球的瞬时速度不等,其关系可据“第三部分”知识介绍的定式(滑轮小船)去寻求。(学生活动)A球的机械能是否守恒?B球的机械能是否守恒?系统机械能守恒的理由是什么(两法分析:a、“微元法”判断两个WT的代数和为零;b、无非弹性碰撞,无摩擦,没有其它形式能的生成)?由“拓展条件”可以判断,A、B系统机械能守恒,(设末态A球的瞬时速率为v1&)过程的方程为:m2g&=&&+&& & & & & & ①在末态,绳与水平杆的瞬时夹角为30°,设绳子的瞬时迁移速率为v ,根据“第三部分”知识介绍的定式,有:v1&= v/cos30°, v2&= v/sin30°两式合并成:v1&= v2&tg30°= v2/& & &②解①、②两式,得:v2&=&七、动量和能量的综合(一)物理情形:如图14所示,两根长度均为L的刚性轻杆,一端通过质量为m的球形铰链连接,另一端分别与质量为m和2m的小球相连。将此装置的两杆合拢,铰链在上、竖直地放在水平桌面上,然后轻敲一下,使两小球向两边滑动,但两杆始终保持在竖直平面内。忽略一切摩擦,试求:两杆夹角为90°时,质量为2m的小球的速度v2&。模型分析:三球系统机械能守恒、水平方向动量守恒,并注意约束关系——两杆不可伸长。(学生活动)初步判断:左边小球和球形铰链的速度方向会怎样?设末态(杆夹角90°)左边小球的速度为v1(方向:水平向左),球形铰链的速度为v(方向:和竖直方向夹θ角斜向左),对题设过程,三球系统机械能守恒,有:mg( L-L) =&m&+&mv2&+&2m& & &①三球系统水平方向动量守恒,有:mv1&+ mvsinθ= 2mv2& & & & & & & & ②左边杆子不形变,有:v1cos45°= vcos(45°-θ) & & & & &③右边杆子不形变,有:vcos(45°+θ) = v2cos45° & & & & ④四个方程,解四个未知量(v1&、v2&、v和θ),是可行的。推荐解方程的步骤如下——1、③、④两式用v2替代v1和v ,代入②式,解θ值,得:tgθ= 1/4&2、在回到③、④两式,得:v1&=&v2&, & v =&v2&3、将v1&、v的替代式代入①式解v2即可。结果:v2&=&(学生活动)思考:球形铰链触地前一瞬,左球、铰链和右球的速度分别是多少?解:由两杆不可形变,知三球的水平速度均为零,θ为零。一个能量方程足以解题。答:0 、&、0 。(学生活动)思考:当两杆夹角为90°时,右边小球的位移是多少?解:水平方向用“反冲位移定式”,或水平方向用质心运动定律。答:&。进阶应用:在本讲模型“四、反冲……”的“进阶应用”(见图8)中,当质点m滑到方位角θ时(未脱离半球),质点的速度v的大小、方向怎样?解说:此例综合应用运动合成、动量守恒、机械能守恒知识,数学运算比较繁复,是一道考查学生各种能力和素质的难题。据运动的合成,有:&=&&+&&=&&-&其中必然是沿地面向左的,为了书写方便,我们设其大小为v2&;必然是沿半球瞬时位置切线方向(垂直瞬时半径)的,设大小为v相&。根据矢量减法的三角形法则,可以得到(设大小为v1)的示意图,如图16所示。同时,我们将v1的x、y分量v1x和v1y也描绘在图中。由图可得:v1y&=(v2&+ v1x)tgθ & & & & & & & & & & & & & & & & ①质点和半球系统水平方向动量守恒,有:Mv2&= mv1x& & & & & & & & &②对题设过程,质点和半球系统机械能守恒,有:mgR(1-cosθ) =&M&+&m&,即:mgR(1-cosθ) =&M&+&m(&+&) & & & & & & & & & & ③三个方程,解三个未知量(v2&、v1x&、v1y)是可行的,但数学运算繁复,推荐步骤如下——1、由①、②式得:v1x&=&v2&, & & & &v1y&= (tgθ) v2&&2、代入③式解v2&,得:v2&=3、由&=&&+&解v1&,得:v1&=v1的方向:和水平方向成α角,α= arctg&= arctg()这就是最后的解。〔一个附属结果:质点相对半球的瞬时角速度 ω =&&=&&。〕八、动量和能量的综合(二)物理情形:如图17所示,在光滑的水平面上,质量为M = 1 kg的平板车左端放有质量为m = 2 kg的铁块,铁块与车之间的摩擦因素μ= 0.5 。开始时,车和铁块以共同速度v = 6 m/s向右运动,车与右边的墙壁发生正碰,且碰撞是弹性的。车身足够长,使铁块不能和墙相碰。重力加速度g = 10 m/s2&,试求:1、铁块相对车运动的总路程;2、平板车第一次碰墙后所走的总路程。模型分析:本模型介绍有两对相互作用时的处理常规。能量关系介绍摩擦生热定式的应用。由于过程比较复杂,动量分析还要辅助以动力学分析,综合程度较高。由于车与墙壁的作用时短促而激烈的,而铁块和车的作用是舒缓而柔和的,当两对作用同时发生时,通常处理成“让短时作用完毕后,长时作用才开始”(这样可以使问题简化)。在此处,车与墙壁碰撞时,可以认为铁块与车的作用尚未发生,而是在车与墙作用完了之后,才开始与铁块作用。规定向右为正向,将矢量运算化为代数运算。车第一次碰墙后,车速变为-v ,然后与速度仍为v的铁块作用,动量守恒,作用完毕后,共同速度v1&=&&=&&,因方向为正,必朝墙运动。(学生活动)车会不会达共同速度之前碰墙?动力学分析:车离墙的最大位移S =&,反向加速的位移S′=&,其中a = a1&=&,故S′< S ,所以,车碰墙之前,必然已和铁块达到共同速度v1&。车第二次碰墙后,车速变为-v1&,然后与速度仍为v1的铁块作用,动量守恒,作用完毕后,共同速度v2&=&&=&&=&,因方向为正,必朝墙运动。车第三次碰墙,……共同速度v3&=&&=&,朝墙运动。……以此类推,我们可以概括铁块和车的运动情况——铁块:匀减速向右→匀速向右→匀减速向右→匀速向右……平板车:匀减速向左→匀加速向右→匀速向右→匀减速向左→匀加速向右→匀速向右……显然,只要车和铁块还有共同速度,它们总是要碰墙,所以最后的稳定状态是:它们一起停在墙角(总的末动能为零)。1、全程能量关系:对铁块和车系统,-ΔEk&=ΔE内&,且,ΔE内&= f滑&S相&,即:(m + M)v2&= μmg·S相&代入数字得:S相&= 5.4 m2、平板车向右运动时比较复杂,只要去每次向左运动的路程的两倍即可。而向左是匀减速的,故第一次:S1&=&第二次:S2&=&&=&第三次:S3&=&&=&……n次碰墙的总路程是:ΣS = 2( S1&+ S2&+ S3&+ … + Sn&)=&( 1 +&&+&&+ … +&&)& =&( 1 +&&+&&+ … +&&)碰墙次数n→∞,代入其它数字,得:ΣS = 4.05 m(学生活动)质量为M 、程度为L的木板固定在光滑水平面上,另一个质量为m的滑块以水平初速v0冲上木板,恰好能从木板的另一端滑下。现解除木板的固定(但无初速),让相同的滑块再次冲上木板,要求它仍能从另一端滑下,其初速度应为多少?解:由第一过程,得滑动摩擦力f =&&。第二过程应综合动量和能量关系(“恰滑下”的临界是:滑块达木板的另一端,和木板具有共同速度,设为v ),设新的初速度为m&=( m + M )vm&-&( m + M )v2&= fL解以上三式即可。答:=&v0&。第三讲 典型例题解析教材范本:龚霞玲主编《奥林匹克物理思维训练教材》,知识出版社,2002年8月第一版。例题选讲针对“教材”第七、第八章的部分例题和习题。
精英家教网新版app上线啦!用app只需扫描书本条形码就能找到作业,家长给孩子检查作业更省心,同学们作业对答案更方便,扫描上方二维码立刻安装!
请输入姓名
请输入手机号}

我要回帖

更多关于 在平行四边形abcd中 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信