初一初一数学因式分解难题,求解答————————一道

当前位置:
>>>阅读与理解:(1)先阅读下面的解题过程:分解因式:解:方法(1)原式方..
阅读与理解:(1)先阅读下面的解题过程:分解因式:&&&&&&&&&&&&&&&&&&&&&&&&解:方法(1)原式&&&&&&&&&&&&&方法(2)原式&再请你参考上面一种解法,对多项式进行因式分解;(2)阅读下面的解题过程:已知:,试求与的值。解:由已知得:因此得到:所以只有当并且上式才能成立。因而得:&并且&&&&&&&&&请你参考上面的解题方法解答下面的问题:已知:,试求的值
题型:解答题难度:中档来源:不详
(1)& (x+1)(x+3)&&&&&(2)1试题分析:(1)(2)解得x=-1,y=2.所以点评:本题难度中等,主要考查学生对探究规律解决整式运算问题的能力。为中考常见题型,学生要牢固掌握解题技巧。
马上分享给同学
据魔方格专家权威分析,试题“阅读与理解:(1)先阅读下面的解题过程:分解因式:解:方法(1)原式方..”主要考查你对&&整式的定义,整式的加减,单项式,多项式
,同类项&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
整式的定义整式的加减单项式多项式
整式:是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中被除数不能含有字母。单项式和多项式统称为整式。代数式中的一种有理式。不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。整式的组成性质:1.单项式 (1)单项式的概念:数与字母的积这样的代数式叫做单项式,单独一个数或一个字母也是单项式。 注意:数与字母之间是乘积关系。 (2)单项式的系数:单项式中的字母因数叫做单项式的系数。 如果一个单项式,只含有字母因数,是正数的单项式系数为1,是负数的单项式系数为—1。 (3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。 2.多项式 (1)多项式的概念:几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。多项式中的符号,看作各项的性质符号。 (2)单项式的次数:单项式中,次数最高的项的次数,就是这个多项式的次数。 (3)多项式的排列: 1.把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。 2.把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。 由于多项式是几个单项式的和,所以可以用加法的运算定律,来交换各项的位置,而保持原多项式的值不变。 为了便于多项式的计算,通常总是把一个多项式,按照一定的顺序,整理成整洁简单的形式,这就是多项式的排列。 在做多项式的排列的题时注意: (1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。 (2)有两个或两个以上字母的多项式,排列时,要注意: a.先确认按照哪个字母的指数来排列。 b.确定按这个字母向里排列,还是生里排列。 (3)整式: 单项式和多项式统称为整式。 (4)同类项的概念: 所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。 掌握同类项的概念时注意: 1.判断几个单项式或项,是否是同类项,就要掌握两个条件: ①所含字母相同。 ②相同字母的次数也相同。 2.同类项与系数无关,与字母排列的顺序也无关。 3.几个常数项也是同类项。 (5)合并同类项: 1.合并同类项的概念: 把多项式中的同类项合并成一项叫做合并同类项。 2.合并同类项的法则: 同类项的系数相加,所得结果作为系数,字母和字母是指数不变。 3.合并同类项步骤: ⑴.准确的找出同类项。 ⑵.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。 ⑶.写出合并后的结果。 在掌握合并同类项时注意: 1.如果两个同类项的系数互为相反数,合并同类项后,结果为0. 2.不要漏掉不能合并的项。 3.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。 合并同类项的关键:正确判断同类项。 整式的计算:1. 单项式乘以单项式,系数与系数相乘的积作为积的系数,相同字母底数不变,指数相加,单独的字母不变,仍作为积的一个因式。2.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所有的项相加。3.先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。4.数字与数字相除,相同字母的进行相除,对于只在被除数中拥有的字母包括字母的指数一起作为商的一个因式。5.多项式除以单项式,先把这个多项式分别除以这个单项式,再把所得的商相加 。6.多项式除以多项式的一般步骤:多项式除以多项式,一般用竖式进行演算。 (1)把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐. (2)用除式的第一项去除被除式的第一项,得商式的第一项. (3)用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),从被除式中减去这个积. (4)把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止.被除式=除式×商式+余式 如果一个多项式除以另一个多项式,余式为零,就说这个多项式能被另一个多项式整除. (5)如果被除式能分解因式且有因式与除式中的因式相同的,可以把被除式、除式分解因式。最重要的是必注意各项系数的符号。
整式的四则运算:整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除。 加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为幂的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂。
1. 整式的加减 合并同类项是重点,也是难点。合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,多项式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变。 2. 整式的乘除 重点是整式的乘除,尤其是其中的乘法公式。乘法公式的结构特征以及公式中的字母的广泛含义,学生不易掌握。因此,乘法公式的灵活运用是难点,添括号(或去括号)时,括号中符号的处理是另一个难点。添括号(或去括号)是对多项式的变形,要根据添括号(或去括号)的法则进行。在整式的乘除中,单项式的乘除是关键,这是因为,一般多项式的乘除都要“转化”为单项式的乘除。 整式四则运算的主要题型有: (1)单项式的四则运算 此类题目多以选择题和应用题的形式出现,其特点是考查单项式的四则运算。 (2)单项式与多项式的运算 此类题目多以解答题的形式出现,技巧性强,其特点为考查单项式与多项式的四则运算。 整式的加减:其实质是去括号和合并同类项,其一般步骤为:(1)如果有括号,那么先去括号;(2)如果有同类项,再合并同类项。注:整式加减的最后结果中不能含有同类项,即要合并到不能再合并为止。 整式加减:整式的加减即合并同类项。把同类项相加减,不能计算的就直接拉下来。合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准.字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变。整式的乘除法:单项式:表示数或字母的积的式子叫做单项式。单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。任何一个非零数的零次方等于1。单项式性质:1.分母含有字母的式子不属于单项式。因为单项式属于整式,而分母含有未知数的式子是分式。例如:1/x不是单项式。分母中不含字母(单项式是整式,而不是分式)a,-5,X,2XY,都是单项式,而0.5m+n,不是单项式。2.单独的一个数字或字母也是单项式。例如:1和x2y也是单项式。3.任意一个字母和数字的积的形式的代数式(除法中有:除以一个数等于乘这个数的倒数)。4.如果一个单项式,只含有字母因数,如果是正数的单项式系数为1,如果是负数的单项式系数为-1。5.如果一个单项式,只含有数字因数,那么它的次数为0。6.0也是数字,也属于单项式。7.有分数也属于单项式。单项式的次数与系数:1.单项式是字母与数的乘积。单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。单项式的系数:单项式中的数字因数。单项式是几次,就叫做几次单项式。如:2xy的系数是2;-5zy 的系数是-5字母t的指数是1,100t是一次单项式;在单项式vt中,字母v与t的指数的和是2,vt是二次单项式。如:xy ,3,a z,ab,b ...... 都是单项式。单项式书写规则:1.单项式表示数与字母相乘时,通常把数写在前面;2.乘号可以省略为点或不写;3.除法的式子可以写成分数式;4.带分数与字母相乘,带分数要化为假分数5.π是常数,因此也可以作为系数。(“π”是特指的数,不是字母,读pài。)6.当一个单项式的系数是1或-1时,“1”通常省略不写,如[(-1)ab ]写成[ -ab ]等。7.在单项式中字母不可以做分母,分子可以。字母不能在分母中(因为这样为分式,不为单项式)8.单独的数“0”的系数是零,次数也是零。9.常数的系数是它本身,次数为零。单项式的运算法则:加减法则单项式加减即合并同类项,也就是合并前各同类项系数的和,字母不变。例如:3a+4a=7a,9a-2a=7a等。同时还要运用到去括号法则和添括号法则。乘法法则单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式例如:3a·4a=12a^2除法法则同底数幂相除,底数不变,指数相减。例如:9a10÷3a5=3a5多项式:几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项,这些单项式中的最高次数,就是这个多项式的次数。多项式和单项式统称为整式。多项式性质:1、多项式的次数:多项式中次数最高的项的次数;2、多项式的排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来叫做把这个多项式按这个字母的降幂排列;3、把一个多项式按某一个字母的指数从小到大的顺序排列起来叫做把这个多项式按这个字母的升幂排列。 4、多项式项数:若多项式以最少的单项式之和呈现,则每一个单项式都被称为此多项式的项,而项的数目称为项数。例如:多项式& 的项数是四,故称为四项式。当中的都是此多项式的项。5、多项式的“元”:多项式中的变量种类称为元,各种变量以各字母表达(注:通常是x、y、z),一个多项式有n种变量就称为n元多项式。例如:中有x、y二元,是二元多项式。因有四项,可称二元四项式。多项式的运算:1.加法与乘法:&&&&&&&& 多项式的加法:是指多项式中同类项的系数相加,字母保持不变(即合并同类项)。多项式的乘法,是指把一个多项式中的每个单项式与另一个多项式中的每个单项式相乘之后合并同类项。例如:也可以用矩阵乘法来进行:2.多项式除法:多项式的除法与整数的除法类似。(1)把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐.(2)用被除式的第一项去除除式的第一项,得商式的第一项.(3)用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项,把不相等的项结合起来.(4)把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止.被除式=除式×商式+余式如果一个多项式除以另一个多项式,余式为零,就说这个多项式能被另一个多项式整除同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。像4y与5y,100ab与14ab这样,所含字母相同,并且相同字母的次项的指数也相同的项叫做同类项,所有常数项都是同类项。(常数项也叫数字因数)同类项性质:(1)两个单项式是同类项的条件有两个:一是含有相同的字母;而是相同字母的指数分别相等;(2)同类项与系数无关,与字母的排列顺序无关,只与字母及字母的指数有关;(3)所有的常数项都是同类项。 例如:1. 多项式3a-24ab-5a-7—a+152ab+29+a中3a与-5a是同类项-24ab与152ab是同类项 【同类项与字母前的系数大小无关】2. -7和29也是同类项【所有常数项都是同类项。】3. -a和a也是同类项【-a的系数是-1 a的系数是1 】4. 2ab和2ba也是同类项【同类项与系数和字母的顺序无关】5.(3+k)与(3—k)是同类项。合并同类项:多项式中的同类项可以合并,叫做合并同类项。合并同类项步骤:(1)准确的找出同类项。(2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。(3)写出合并后的结果。在掌握合并同类项时注意:1.如果两个同类项的系数互为相反数,合并同类项后,结果为0.2.不要漏掉不能合并的项。3.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。合并同类项的关键:正确判断同类项。合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。合并同类项的理论依据:其实,合并同类项法则是有其理论依据的。它所依据的就是乘法分配律,a(b+c)=ab+ac。合并同类项实际上就是乘法分配律的逆向运用。即将同类项中的每一项都看成两个因数的积,由于各项中都含有相同的字母并且它们的指数也分别相同,故同类项中的每项都含有相同的因数。合并时将分配律逆向运用,用相同的那个因数去乘以各项中另一个因数的代数和。例1.合并同类项-8ab+6ab-3ab分析:同类项合并时,把同类项的系数加减,字母和各字母的指数都不改变。解答:原式=(-8+6-3)ab=-5 ab。例2.合并同类项-xy+3-2xy+5xy-4xy-7分析:在一个多项式中,往往含有几个不同的单项式,可运用加法交换律及合并同类项法则进行合并。注意不要把某些项漏合或漏写。解答:原式=(-xy+5xy)+(-2xy-4xy)+(3-7)=-2xy-4例3.合并同类项并解答:2y-5y+y+4y-3y-2,其中y=1/2=(2+1-3)y+(-5+4)y-2=0+(-y)-2当y=1/2时,原式=(-1/2)-2=-5/2在合并同类项时,要注意是常数项也是同类项。
发现相似题
与“阅读与理解:(1)先阅读下面的解题过程:分解因式:解:方法(1)原式方..”考查相似的试题有:
706433737768720591688927695962720055求第四小题的四道因式分解的答案_百度知道
求第四小题的四道因式分解的答案
提问者采纳
提问者评价
太给力了,你的回答完美地解决了我的问题,非常感谢!
来自团队:
其他类似问题
为您推荐:
因式分解的相关知识
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁Q_Q初一数学 因式分解求解答_百度知道
Q_Q初一数学 因式分解求解答
提问者采纳
提问者评价
你的回答完美的解决了我的问题,谢谢!
小袁老师帮你答
来自:作业帮
其他类似问题
为您推荐:
因式分解的相关知识
其他2条回答
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁我的数学太差了,老师上课的节奏也太快,对于因式分解(初一上学期)尚不了解,请求能人用语言教授!_百度作业帮
我的数学太差了,老师上课的节奏也太快,对于因式分解(初一上学期)尚不了解,请求能人用语言教授!
专爆滚滚0037
a^2+4ab+4b^2的分解因式分解(分解因式)Factorization,把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.在数学求根作图方面有很广泛的应用.
定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式).
意义:它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.学习它,既可以复习的整式四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高学生综合分析和解决问题的能力.
分解因式与整式乘法为相反变形.编辑本段方法
因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法.而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等.(实际上经典例题:
1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2
原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)
=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)
=[(1+y)+x^2(1-y)]^2-(2x)^2
=[(1+y)+x^2(1-y)+2x]·[(1+y)+x^2(1-y)-2x]
=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)
=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]
=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y)
2.证明:对于任何数x,y,下式的值都不会为33
x^5+3x^4y-5x^3y^2+4xy^4+12y^5
原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)
=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)
=(x+3y)(x^4-5x^2y^2+4y^4)
=(x+3y)(x^2-4y^2)(x^2-y^2)
=(x+3y)(x+y)(x-y)(x+2y)(x-2y)
就是把简单的问题复杂化)
注意三原则
1 分解要彻底
2 最后结果只有小括号
3 最后结果中多项式首项系数为正(例如:-3x^2+x=x(-3x+1))
归纳方法:沪科版七下课本上有的
1、提公因式法.
2、公式法.
3、分组分解法.
4、凑数法.[x^2+(a+b)x+ab=(x+a)(x+b)]
5、组合分解法.
6、十字相乘法.
7、双十字相乘法.
8、配方法.
9、拆项法.
10、换元法.
11、长除法.
12、加减项法.
13、求根法.
14、图象法.
15、主元法.
16、待定系数法.
17、特殊值法.
18、因式定理法.编辑本段基本方法提公因式法
各项都含有的公共的因式叫做这个多项式各项的公因式.
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.
具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.
如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数.提出“-”号时,多项式的各项都要变号.
口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.
例如:-am+bm+cm=-(a-b-c)m;
a(x-y)+b(y-x)=a(x-y)-b(x-y)=(a-b)(x-y).
注意:把2a+1/2变成2(a+1/4)不叫提公因式公式法
如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.
平方差公式: (a+b)(a-b)=a^2-b^2 反过来为a^2-b^2=(a+b)(a-b)
完全平方公式:(a+b)^2=a^2+2ab+b^2 反过来为a^2+2ab+b^2=(a+b)^2
(a-b)^2=a^2-2ab+b^2 a^2-2ab+b^2=(a-b)^2
注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.
两根式:ax2+bx+c=a(x-(-b+√(b2-4ac))/2a)(x-(-b-√(b2-4ac))/2a)
立方和公式:a^3+b^3=(a+b)(a2-ab+b2);
立方差公式:a^3-b^3=(a-b)(a2+ab+b2);
完全立方公式:a3±3a2b+3ab2±b3=(a±b)3.
公式:a^3+b^3+c^3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)
例如:a^2+4ab+4b^2 =(a+2b)^2.
(3)分解因式技巧
1.分解因式与整式乘法是互为逆变形.
2.分解因式技巧掌握:
①等式左边必须是多项式;
②分解因式的结果必须是以乘积的形式表示;
③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数; ④分解因式必须分解到每个多项式因式都不能再分解为止.
注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑.
3.提公因式法基本步骤:
(1)找出公因式;
(2)提公因式并确定另一个因式:
①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;
②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;
③提完公因式后,另一因式的项数与原多项式的项数相同.编辑本段竞赛用到的方法分组分解法
分组分解是解方程的一种简洁的方法,我们来学习这个知识.
能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法.
ax+ay+bx+by
=a(x+y)+b(x+y)
=(a+b)(x+y)
我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难.
同样,这道题也可以这样做.
ax+ay+bx+by
=x(a+b)+y(a+b)
=(a+b)(x+y)
几道例题:
1. 5ax+5bx+3ay+3by
解法:=5x(a+b)+3y(a+b)
=(5x+3y)(a+b)
说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出.
2. x^3-x^2+x-1
解法:=(x^3-x^2)+(x-1)
=x^2(x-1)+ (x-1)
=(x-1)(x^2+1)
利用二二分法,提公因式法提出 x2,然后相合轻松解决.
3. x^2-x-y^2-y
解法:=(x^2-y^2)-(x+y)
=(x+y)(x-y)-(x+y)
=(x+y)(x-y-1)
利用二二分法,再利用公式法a^2-b^2=(a+b)(a-b),然后相合解决.十字相乘法
这种方法有两种情况.
①x^2+(p+q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分x^2+(p+q)x+pq=(x+p)(x+q) .
②kx^2+mx+n型的式子的因式分解
如果有k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d).
图示如下:
例如:因为
-3×7=-21,1×2=2,且2-21=-19,
所以7x2-19x-6=(7x+2)(x-3).
十字相乘法口诀:首尾分解,交叉相乘,求和凑中拆项、添项法
这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解.要注意,必须在与原多项式相等的原则下进行变形.
例如:bc(b+c)+ca(c-a)-ab(a+b)
=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=(bc+ca)(c-a)+(bc-ab)(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b).配方法
对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法.属于拆项、补项法的一种特殊情况.也要注意必须在与原多项式相等的原则下进行变形.
例如:x^2+3x-40
=x^2+3x+2.25-42.25
=(x+1.5)^2-(6.5)^2
=(x+8)(x-5).应用因式定理
对于多项式f(x)=0,如果f(a)=0,那么f(x)必含有因式x-a.
例如:f(x)=x2+5x+6,f(-2)=0,则可确定x+2是x2+5x+6的一个因式.(事实上,x2+5x+6=(x+2)(x+3).)
注意:1、对于系数全部是整数的多项式,若X=q/p(p,q为互质整数时)该多项式值为零,则q为常数项约数,p最高次项系数约数;
2、对于多项式f(a)=0,b为最高次项系数,c为常数项,则有a为c/b约数换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法.
相关公式注意:换元后勿忘还元.
例如在分解(x2+x+1)(x2+x+2)-12时,可以令y=x^2+x,则
原式=(y+1)(y+2)-12
=y^2+3y+2-12=y^2+3y-10
=(y+5)(y-2)
=(x^2+x+5)(x2+x-2)
=(x^2+x+5)(x+2)(x-1).
也可以参看右图.求根法
令多项式f(x)=0,求出其根为x1,x2,x3,……xn,则该多项式可分解为f(x)=(x-x1)(x-x2)(x-x3)……(x-xn) .
例如在分解2x^4+7x^3-2x^2-13x+6时,令2x^4 +7x^3-2x^2-13x+6=0,
则通过综合除法可知,该方程的根为0.5 ,-3,-2,1.
所以2x^4+7x^3-2x^2-13x+6=(2x-1)(x+3)(x+2)(x-1).图象法
令y=f(x),做出函数y=f(x)的图象,找到函数图像与X轴的交点x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)= f(x)=(x-x1)(x-x2)(x-x3)……(x-xn).
与方法⑼相比,能避开解方程的繁琐,但是不够准确.
例如在分解x^3 +2x^2-5x-6时,可以令y=x^3; +2x^2 -5x-6.
作出其图像,与x轴交点为-3,-1,2
则x^3+2x^2-5x-6=(x+1)(x+3)(x-2).主元法
先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解.特殊值法
将2或10代入x,求出数p,将数p分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式.
例如在分解x^3+9x^2+23x+15时,令x=2,则
x^3 +9x^2+23x+15=8+36+46+15=105,
将105分解成3个质因数的积,即105=3×5×7 .
注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值,
则x^3+9x^2+23x+15可能等于(x+1)(x+3)(x+5),验证后的确如此.待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解.
例如在分解x^4-x^3-5x^2-6x-4时,由分析可知:这个多项式没有一次因式,因而只能分解为两个二次因式.
于是设x^4-x^3-5x^2-6x-4=(x^2+ax+b)(x^2+cx+d)
相关公式=x^4+(a+c)x^3+(ac+b+d)x^2+(ad+bc)x+bd
由此可得a+c=-1,
ac+b+d=-5,
解得a=1,b=1,c=-2,d=-4.
则x^4-x^3-5x^2-6x-4=(x^2+x+1)(x^2-2x-4).
也可以参看右图.双十字相乘法
双十字相乘法属于因式分解的一类,类似于十字相乘法.
双十字相乘法就是二元二次六项式,启始的式子如下:
ax^2+bxy+cy^2+dx+ey+f
x、y为未知数,其余都是常数
用一道例题来说明如何使用.
例:分解因式:x^2+5xy+6y^2+8x+18y+12.
分析:这是一个二次六项式,可考虑使用双十字相乘法进行因式分解.
图如下,把所有的数字交叉相连即可
∴原式=(x+2y+2)(x+3y+6).
双十字相乘法其步骤为:
①先用十字相乘法分解2次项,如十字相乘图①中x^2+5xy+6y^2=(x+2y)(x+3y);
②先依一个字母(如y)的一次系数分数常数项.如十字相乘图②中6y²+18y+12=(2y+2)(3y+6);
③再按另一个字母(如x)的一次系数进行检验,如十字相乘图③,这一步不能省,否则容易出错.
利用根与系数的关系对二次多项式进行因式分解
例:对于二次多项式 aX^2+bX+c(a≠0)
aX^2+bX+c=a[X^2+(b/a)X+(c/a)X].
当△=b^2-4ac≥0时,
=a(X^2-X1-X2+X1X2)
=a(X-X1)(X-X2).编辑本段多项式因式分解的一般步骤
①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;
④分解因式,必须进行到每一个多项式因式都不能再分解为止.
也可以用一句话来概括:“先看有无公因式,再看能否套公式.十字相乘试一试,分组分解要合适.”
1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2.
原式=(1+y)^2+2(1+y)x^2(1-y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(补项)
=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(完全平方)
=[(1+y)+x^2(1-y)]^2-(2x)^2
=[(1+y)+x^2(1-y)+2x][(1+y)+x^2(1-y)-2x]
=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)
=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]
=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y).
2.求证:对于任何实数x,y,下式的值都不会为33:
x^5+3x^4y-5x^3y^2-15x^2y^3+4xy^4+12y^5.
原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)
=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)
=(x+3y)(x^4-5x^2y^2+4y^4)
=(x+3y)(x^2-4y^2)(x^2-y^2)
=(x+3y)(x+y)(x-y)(x+2y)(x-2y).
(分解因式的过程也可以参看右图.)
当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立.
3..△ABC的三边a、b、c有如下关系式:-c^2+a^2+2ab-2bc=0,求证:这个三角形是等腰三角形.
分析:此题实质上是对关系式的等号左边的多项式进行因式分解.
证明:∵-c^2+a^2+2ab-2bc=0,
∴(a+c)(a-c)+2b(a-c)=0.
∴(a-c)(a+2b+c)=0.
∵a、b、c是△ABC的三条边,
∴a+2b+c>0.
∴a-c=0,
即a=c,△ABC为等腰三角形.
4.把-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)分解因式.
-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)
=-6x^n×y^(n-1)(2x^n×y-3x^2y^2+1).编辑本段四个注意
因式分解中的四个注意,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”. 现举下例 可供参考
例1 把-a2-b2+2ab+4分解因式.
-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2)
这里的“负”,指“负号”.如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的.防止学生出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误
例2把-12x2nyn+18xn+2yn+1-6xnyn-1分解因式.-12x2nyn+18xn+2yn+1-6xnyn-1=-6xnyn-1(2xny-3x2y2+1)
这里的“公”指“公因式”.如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1.
分解因式,必须进行到每一个多项式因式都不能再分解为止.即分解到底,不能半途而废的意思.其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解.防止学生出现诸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y2(x2+1)(4x2-9)的错误.
考试时应注意:
在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到整数!
由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”等是一脉相承的.编辑本段应用
1、 应用于多项式除法.
2、 应用于高次方程的求根.
3、 应用于分式的通分与约分
顺带一提,梅森合数分解已经取得一些微不足道的进展:
1,p=4r+3,如果8r+7也是素数,则:(8r+7)|(2^P-1).即(2p+1)|(2^P-1);
23|(2^11-1);;11=4×2+3;
47|(2^23-1);;23=4×5+3;
167|(2^83-1);,.83=4×20+3;
2,p=2^n×3^2+1,则(6p+1)|(2^P-1),
例如:223|(2^37-1);;37=2×2×3×3+1;
439|(2^73-1);73=2×2×2×3×3+1;
-1);;577=2×2×2×2×2×2×3×3+1;
3,p=2^n×3^m×5^s-1,则(8p+1)|(2^P-1);
.例如;233|(2^29-1);29=2×3×5-1;-1);179=2×2×3×3×5-1;
1913|(2^239-1);239=2×2×2×2×3×5-1.
为您推荐:
其他类似问题
扫描下载二维码}

我要回帖

更多关于 因式分解 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信