基本不等式式问题

求高中不等式题目及答案_百度知道
求高中不等式题目及答案
[例1]证明不等式 (n∈N*) 命题意图:本题是一道考查数学归纳法、不等式证明的综合性题目,考查学生观察能力、构造能力以及逻辑分析能力,属★★★★★级题目. 知识依托:本题是一个与自然数n有关的命题,首先想到应用数学归纳法,另外还涉及不等式证明中的放缩法、构造法等. 错解分析:此题易出现下列放缩错误: 这样只注重形式的统一,而忽略大小关系的错误也是经常发生的. 技巧与方法:本题证法一采用数学归纳法从n=k到n=k+1的过渡采用了放缩法;证法二先放缩,后裂项,有的放矢,直达目标;而证法三运用函数思想,借助单调性,独具匠心,发人深省. 证法一:(1)当n等于1时,不等式左端等于1,右端等于2,所以不等式成立; (2)假设n=k(k≥1)时,不等式成立,即1+ <2 , ∴当n=k+1时,不等式成立. 综合(1)、(2)得:当n∈N*时,都有1+ <2 . 另从k到k+1时的证明还有下列证法: 证法二:对任意k∈N*,都有: 证法三:设f(n)=
那么对任意k∈N?* 都有: ∴f(k+1)>f(k) 因此,对任意n∈N* 都有f(n)>f(n-1)>…>f(1)=1>0, ∴ [例2]求使 ≤a (x>0,y>0)恒成立的a的最小值. 命题意图:本题考查不等式证明、求最值函数思想、以及学生逻辑分析能力,属于★★★★★级题目. 知识依托:该题实质是给定条件求最值的题目,所求a的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值. 错解分析:本题解法三利用三角换元后确定a的取值范围,此时我们习惯是将x、y与cosθ、sinθ来对应进行换元,即令 =cosθ, =sinθ(0<θ< ),这样也得a≥sinθ+cosθ,但是这种换元是错误的.其原因是:(1)缩小了x、y的范围;(2)这样换元相当于本题又增加了“x、y=1”这样一个条件,显然这是不对的. 技巧与方法:除了解法一经常用的重要不等式外,解法二的方法也很典型,即若参数a满足不等关系,a≥f(x),则amin=f(x)max;若 a≤f(x),则amax=f(x)min,利用这一基本事实,可以较轻松地解决这一类不等式中所含参数的值域问题.还有三角换元法求最值用的恰当好处,可以把原问题转化. 解法一:由于a的值为正数,将已知不等式两边平方,得: x+y+2 ≤a2(x+y),即2 ≤(a2-1)(x+y),
① ∴x,y>0,∴x+y≥2 ,
② 当且仅当x=y时,②中有等号成立. 比较①、②得a的最小值满足a2-1=1, ∴a2=2,a=
(因a>0),∴a的最小值是 . 解法二:设 . ∵x>0,y>0,∴x+y≥2
(当x=y时“=”成立), ∴ ≤1, 的最大值是1. 从而可知,u的最大值为 , 又由已知,得a≥u,∴a的最小值为 . 解法三:∵y>0, ∴原不等式可化为 +1≤a , 设 =tanθ,θ∈(0, ). ∴tanθ+1≤a ;即tanθ+1≤asecθ ∴a≥sinθ+cosθ= sin(θ+ ),
③ 又∵sin(θ+ )的最大值为1(此时θ= ). 由③式可知a的最小值为 . ●锦囊妙计 1.不等式证明常用的方法有:比较法、综合法和分析法,它们是证明不等式的最基本的方法. (1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述;如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证. (2)综合法是由因导果,而分析法是执果索因,两法相互转换,互相渗透,互为前提,充分运用这一辩证关系,可以增加解题思路,开扩视野. 2.不等式证明还有一些常用的方法:换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法等.换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性.放缩性是不等式证明中最重要的变形方法之一,放缩要有的放矢,目标可以从要证的结论中考查.有些不等式,从正面证如果不易说清楚,可以考虑反证法.凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法. 证明不等式时,要依据题设、题目的特点和内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤、技巧和语言特点.
一、填空题 1.(★★★★★)已知x、y是正变数,a、b是正常数,且 =1,x+y的最小值为__________. 2.(★★★★)设正数a、b、c、d满足a+d=b+c,且|a-d|<|b-c|,则ad与bc的大小关系是__________. 3.(★★★★)若m<n,p<q,且(p-m)(p-n)<0,(q-m)(q-n)<0,则m、n、p、q的大小顺序是__________. 二、解答题 4.(★★★★★)已知a,b,c为正实数,a+b+c=1. 求证:(1)a2+b2+c2≥
(2) ≤6 5.(★★★★★)已知x,y,z∈R,且x+y+z=1,x2+y2+z2= ,证明:x,y,z∈[0, ] 6.(★★★★★)证明下列不等式: (1)若x,y,z∈R,a,b,c∈R+,则 z2≥2(xy+yz+zx) (2)若x,y,z∈R+,且x+y+z=xyz, 则 ≥2( ) 7.(★★★★★)已知i,m、n是正整数,且1<i≤m<n. (1)证明:niA <miA ;(2)证明:(1+m)n>(1+n)m8.(★★★★★)若a>0,b>0,a3+b3=2,求证:a+b≤2,ab≤1. 参考答案 证法一:(分析综合法)欲证原式,即证4(ab)2+4(a2+b2)-25ab+4≥0,即证4(ab)2-33(ab)+8≥0,即证ab≤ 或ab≥8.∵a>0,b>0,a+b=1,∴ab≥8不可能成立∵1=a+b≥2 ,∴ab≤ ,从而得证.证法二:(均值代换法)设a= +t1,b= +t2.∵a+b=1,a>0,b>0,∴t1+t2=0,|t1|< ,|t2|< 显然当且仅当t=0,即a=b= 时,等号成立.证法三:(比较法)∵a+b=1,a>0,b>0,∴a+b≥2 ,∴ab≤ 证法四:(综合法)∵a+b=1, a>0,b>0,∴a+b≥2 ,∴ab≤ .证法五:(三角代换法)∵ a>0,b>0,a+b=1,故令a=sin2α,b=cos2α,α∈(0, )2 一、1.解析:令 =cos2θ, =sin2θ,则x=asec2θ,y=bcsc2θ,∴x+y=asec2θ+bcsc2θ=a+b+atan2θ+bcot2θ≥a+b+2 .答案:a+b+2 2.解析:由0≤|a-d|<|b-c| (a-d)2<(b-c)2 (a+b)2-4ad<(b+c)2-4bc?∵a+d=b+c,∴-4ad<-4bc,故ad>bc.答案:ad>bc3.解析:把p、q看成变量,则m<p<n,m<q<n.答案:m<p<q<n二、4.(1)证法一:a2+b2+c2- = (3a2+3b2+3c2-1)= [3a2+3b2+3c2-(a+b+c)2]= [3a2+3b2+3c2-a2-b2-c2-2ab-2ac-2bc]= [(a-b)2+(b-c)2+(c-a)2]≥0
∴a2+b2+c2≥ 证法二:∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc≤a2+b2+c2+a2+b2+a2+c2+b2+c2∴3(a2+b2+c2)≥(a+b+c)2=1
∴a2+b2+c2≥ 证法三:∵ ∴a2+b2+c2≥ ∴a2+b2+c2≥ 证法四:设a= +α,b= +β,c= +γ.∵a+b+c=1,∴α+β+γ=0∴a2+b2+c2=( +α)2+( +β)2+( +γ)2= +
(α+β+γ)+α2+β2+γ2= +α2+β2+γ2≥ ∴a2+b2+c2≥ ∴原不等式成立.证法二: ∴ ≤ <6∴原不等式成立.5.证法一:由x+y+z=1,x2+y2+z2= ,得x2+y2+(1-x-y)2= ,整理成关于y的一元二次方程得:2y2-2(1-x)y+2x2-2x+ =0,∵y∈R,故Δ≥0∴4(1-x)2-4×2(2x2-2x+ )≥0,得0≤x≤ ,∴x∈[0, ]同理可得y,z∈[0, ]证法二:设x= +x′,y= +y′,z= +z′,则x′+y′+z′=0,于是 =( +x′)2+( +y′)2+( +z′)2= +x′2+y′2+z′2+
(x′+y′+z′)= +x′2+y′2+z′2≥ +x′2+ = + x′2故x′2≤ ,x′∈[- , ],x∈[0, ],同理y,z∈[0, ]证法三:设x、y、z三数中若有负数,不妨设x<0,则x2>0, =x2+y2+z2≥x2+ > ,矛盾.x、y、z三数中若有最大者大于 ,不妨设x> ,则 =x2+y2+z2≥x2+ =x2+ = x2-x+ = x(x- )+ > ;矛盾.故x、y、z∈[0, ]∵上式显然成立,∴原不等式得证.7.证明:(1)对于1<i≤m,且A
=m·…·(m-i+1),,由于m<n,对于整数k=1,2,…,i-1,有 ,所以 (2)由二项式定理有:(1+m)n=1+C m+C m2+…+C mn,(1+n)m=1+C n+C n2+…+C nm,由(1)知miA >niA
(1<i≤m ,而C = ∴miCin>niCim(1<m<n ∴m0C =n0C =1,mC =nC =m·n,m2C >n2C ,…,mmC >nmC ,mm+1C >0,…,mnC >0,∴1+C m+C m2+…+C mn>1+C n+C2mn2+…+C nm,即(1+m)n>(1+n)m成立.8.证法一:因a>0,b>0,a3+b3=2,所以(a+b)3-23=a3+b3+3a2b+3ab2-8=3a2b+3ab2-6=3[ab(a+b)-2]=3[ab(a+b)-(a3+b3)]=-3(a+b)(a-b)2≤0.即(a+b)3≤23,又a+b>0,所以a+b≤2,因为2 ≤a+b≤2,所以ab≤1.证法二:设a、b为方程x2-mx+n=0的两根,则 ,因为a>0,b>0,所以m>0,n>0,且Δ=m2-4n≥0
①因为2=a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]=m(m2-3n)所以n=
②将②代入①得m2-4( )≥0,即 ≥0,所以-m3+8≥0,即m≤2,所以a+b≤2,由2≥m 得4≥m2,又m2≥4n,所以4≥4n,即n≤1,所以ab≤1.证法三:因a>0,b>0,a3+b3=2,所以2=a3+b3=(a+b)(a2+b2-ab)≥(a+b)(2ab-ab)=ab(a+b)于是有6≥3ab(a+b),从而8≥3ab(a+b)+2=3a2b+3ab2+a3+b3=?(a+b)3,所以a+b≤2,(下略)证法四:因为 ≥0,所以对任意非负实数a、b,有 ≥ 因为a>0,b>0,a3+b3=2,所以1= ≥ ,∴ ≤1,即a+b≤2,(以下略)证法五:假设a+b>2,则a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]>(a+b)ab>2ab,所以ab<1,又a3+b3=(a+b)[a2-ab+b2]=(a+b)[(a+b)2-3ab]>2(22-3ab)因为a3+b3=2,所以2>2(4-3ab),因此ab>1,前后矛盾,故a+b≤2(以下略)
其他类似问题
不等式的相关知识
等待您来回答
您可能关注的推广回答者:回答者:
下载知道APP
随时随地咨询
出门在外也不愁不等式约束问题,Inequality-Constrained Problems,音标,读音,翻译,英文例句,英语词典
说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置: ->
-> 不等式约束问题
1)&&Inequality-Constrained Problems
不等式约束问题
We use this NCP function to take the KKT system of Inequality-Constrained Problems into smooth equations ,because these equations are smooth,so it is convenient when we are solving these equations.
利用这个NCP函数将不等式约束问题的KKT系统转化为光滑方程组,因为转化后的方程组是光滑的,所以在求解的时候就很方便,再结合文中所列方法的优点,我们选用Newton-SVD法来求解中小型光滑非线性方程组F ( z ) = 0,用非精确一维搜索Newton-CG法来求解大型光滑非线性方程组F ( z ) = 0。
2)&&inequality constrained optimization
不等式约束优化问题
In this paper, the K-T conditions of inequality constrained optimization is transformed to a equi-valent nonlinear system by adding slack variables and using Fischer function, and a new smoothing Newton method is proposed, where a parameter μ is introduced.
本文通过引入松弛变量和Fischer函数把带有不等式约束优化问题的K-T条件转化为一个等价的非线性系统,并引入一参数μ,从而提出了一种新的光滑牛顿法。
3)&&equality constraints
等式约束问题
In this paper,based on reference a method to solve the problem with equality constraints is given.
文献[1] 给出了解等式约束问题的一个方法,它比经典的 Lagrange 乘子算法所解方程组有更低的维数。
4)&&equality constrained problem
等式约束问题
Boggs,Tolle and Wang extended the analogous result from solving unconstrained optimization problems to the equality constrained problems and obtained a characterized result,which is an important equivalent condition to SQP algorithm s super-linear convergence.
对于等式约束问题,Boggs,Tolle和Wang三人将Dennis,Moré的求解无约束优化问题的类似结果加以推广,得到了SQP算法超线性收敛的一个极为重要的充要条件。
5)&&equality constrained indefinite least squares problem
等式约束不定最小二乘问题
6)&&the equality constrained quadratic programming problem
等式约束二次规划问题
In this paper,we give iterative methods for solving the equality constrained quadratic programming problem.
给出了等式约束二次规划问题和等式约束加权最小二乘问题的迭代解
补充资料:Harnack不等式(对偶Harnack不等式)
Harnack不等式(对偶Harnack不等式)
quality (dual Hatnack inequality) Harnack in-
【补注】一直到G的边界的H助nack不等式,见【AZI.l翻..‘不等式(对停H山丸朗k不等不)[ Har.改沁-勺函勺(d切红Hat’I犯‘k如为uaJ卿);rap.姗二p魄HcT助(月加湘oe)]
给出正调和函数的两个值之比u(x)/“(y)的上界和下界估计的一个不等式,由A.Hai,剐火(汇IJ)得到.令u)0是n维E议当d空间的区域G中的一个调和函数;令E。(y)是中心在点y处半径为;的球{x:}x一y!<;}.若闭包万了刃.CG,则对于所有的、“凡(,),o<p0是常数,亡“(省:,…,氛)是任一。维实向量,叉‘G.不等式(2)中的常数M仅依赖于又,A,算子L的低阶项系数的某些范数以及G的边界与g的边界之间的距离.
对于形如u:+Lu“0的一致抛物型方程(算子L的系数可以依赖于t)的非负解:(x,t),类似于1压ar-恤比不等式的不等式也成立.在此情形下,对于顶点在点(y,动处开口向下的抛物面(图a)
{(x,t川x一,I’0),而d充分小,那么在gx(a一矛,bJ中不等式
。(、.t、___/,、一。1,.:一:.八
1。,二之二止,二止匕成几11止二一一丈‘.+一+11
u气y,T)\下一I“/成立(协J).特别地,如果在Q中u)0(图b),且如果对于位于Q中的紧集Q,和QZ有
占“们山n(t一:)>0,
(义,t)‘Q-
(y.下)〔QZ那么有
n知Lxu(x,t)簇M nunu(x,t),
(x,‘)‘QZ(x,‘)‘Q-其中M“M(占,Q,QI,QZ,L).函数
·、·,‘卜exn(‘睿,、‘一暮“:)—对于任意的k,,…,气,它是热方程u,一△拟“0的解—表明在抛物型情形下双边估计的不可能性,
说明:补充资料仅用于学习参考,请勿用于其它任何用途。浅谈高中数学不等式的恒成立问题
当前位置:>>>>>>
摘 要:近年来全国各地高考数学试题,考查不等式恒成立的有关试题非常普遍,这类问题既含参数又含变量,往往与函数、数列、方程、几何有机结合起来,具有形式灵活、思维性强、不同知识交汇等特点..
关键词:不等式;恒成立;参数范围
不等式恒成立的问题既含参数又含变量,往往与函数、数列、方程、几何有机结合起来,具有形式灵活、思维性强、不同知识交汇等特点. 考题通常有两种设计方式:一是证明某个不等式恒成立,二是已知某个不等式恒成立,求其中的参数的取值范围.解决这类问题的方法关键是转化化归,通过等价转化可以把问题顺利解决,下面我就结合自己记得教学经验谈谈不等式的恒成立问题的处理方法。
一、构造函数法
在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,即构造函数法,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更加面目更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数.例如;
例1 已知不等式对任意的都成立,求的取值范围.
解:由移项得:.不等式左侧与二次函数非常相似,于是我们可以设则不等式对满足的一切实数恒成立对恒成立.当时,即
解得故的取值范围是.
评注:此类问题常因思维定势,学生易把它看成关于的不等式讨论,从而因计算繁琐出错或者中途夭折;若转换一下思路,把待求的x为参数,以为变量,令则问题转化为求一次函数(或常数函数)的值在内恒为负的问题,再来求解参数应满足的条件这样问题就轻而易举的得到解决了。
二、分离参数法
在不等式中求含参数范围过程中,当不等式中的参数(或关于参数的代数式)能够与其它变量完全分离出来并,且分离后不等式其中一边的函数(或代数式)的最值或范围可求时,常用分离参数法.
例2 已知函数(为常数)是实数集上的奇函数,函数在区间上是减函数.
(Ⅰ)若对(Ⅰ)中的任意实数都有在上恒成立,求实数的取值范围.
解析:由题意知,函数在区间上是减函数.
在上恒成立
注:此类问题可把要求的参变量分离出来,单独放在不等式的一侧,将另一侧看成新函数,于是将问题转化成新函数的最值问题:若对于取值范围内的任一个数都有恒成立,则;若对于取值范围内的任一个数都有恒成立,则.
三、数形结合法
如果不等式中涉及的函数、代数式对应的图象、图形较易画出时,可通过图象、图形的位置关系建立不等式求得参数范围.
例3 已知函数若不等式恒成立,则实数的取值范围是&&&&&&& .
解:在同一个平面直角坐标系中分别作出函数及的图象,由于不等式恒成立,所以函数的图象应总在函数的图象下方,因此,当时,所以故的取值范围是
注:解决不等式问题经常要结合函数的图象,根据不等式中量的特点,选择适当的两个函数,利用函数图像的上、下位置关系来确定参数的范围.利用数形结合解决不等式问题关键是构造函数,准确做出函数的图象.如:不等式,在时恒成立,求的取值范围.此不等式为超越不等式,求解时一般使用数形结合法,设然后在同一坐标系下准确做出这两个函数的图象,借助图象观察便可求解.
四、最值法
当不等式一边的函数(或代数式)的最值较易求出时,可直接求出这个最值(最值可能含有参数),然后建立关于参数的不等式求解.
例4 已知函数
(Ⅰ)当时,求的单调区间;
(Ⅱ)若时,不等式恒成立,求实数的取值范围.
解(Ⅱ)当时,不等式即恒成立.由于,,亦即,所以.令,则,由得.且当时,;当时,,即在上单调递增,在上单调递减,所以在处取得极大值,也就是函数在定义域上的最大值.因此要使恒成立,需要,所以的取值范围为.
例5 对于任意实数x,不等式│x+1│+│x-2│>a恒成立,求实数a的取值范围分析①:把左边看作x的函数关系,就可利用函数最值求解.
  解法1:设f(x)=│x+1│+│x-2│=-2x+1,(x≤1)3,(-1<x≤2)2x-1,(x>2)∴f(x)min=3.∴a<3.
  分析②:利用绝对值不等式│a│-│b│<│a±b│<│a│+│b│求解f(x)=│x+1│+│x-2│的最小值.
  解法2:设f(x)=│x+1│+│x-2│,∵│x+1│+│x-2│≥│(x+1)-(x-2)│=3,∴f(x)min=3. ∴a<3.
  分析③:利用绝对值的几何意义求解.
  解法3:设x、-1、2在数轴上的对应点分别是P、A、B,则│x+1│+│x-2│=│PA│+│PB│,当点P在线段AB上时,│PA│+│PB│=│AB│=3,当点P不在线段AB上时,│PA│+│PB│>3,因此不论点P在何处,总有│PA│+│PB│≥3,而当a<3时,│PA│+│PB│>a恒成立,即对任意实数x,不等式│x+1│+│x-2│>a恒成立.∴实数a的取值范围为(-∞,3).
  点评:求“恒成立问题”中参数范围,利用函数最值方便自然,利用二次不等式恒为正(负)的充要条件要分情况讨论,利用图象法直观形象.
从图象上直观得到0<m<1后,还需考查区间(0,)右端点x=处的函数值的大小,这一点往往被忽视.综上,恒成立问题多与参数的取值范围问题联系在一起,是近几年高考的一个热门题型,它以“参数处理”为主要特征,以“导数”为主要解题工具.往往与函数的单调性、极值、最值等有关,所以解题时要善于将这类问题与函数最值联系起来,通过函数最值求解相关问题.不等式恒成立问题,因题目涉及知识面广,解题方法灵活多样,技巧性强,难度大等特点,要求有较强的思维灵活性和创造性、较高的解题能力,上述方法是比较常用的,但因为问题形式千变万化,考题亦常考常新,因此在备考的各个阶段都应渗透恒成立问题的教与学,在平时的训练中不断领悟和总结,教师也要介入心理辅导和思想方法指导,从而促使学生在解决此类问题的能力上得到改善和提高.
参考文献:
①孟凡栋.恒成立型不等式中参数范围的几种求法》.《数学教学通讯》2004年第01期
②三维设计高三总复习
【上一篇】
【下一篇】高中数学不等式问题_百度知道
高中数学不等式问题
y时取得最小值,,x+1&#47,应该是让1&#47,求解,,,y的最小值我的想法是求最小值根据a+b≥2√ab基本不等式,,过程我也知道,,,只想知道我的做法为什么不对,如果用两次不等式而成立的条件一样是不是就可以用了,,2x+5y=20求,, 刚学不太懂,,联立2x+5y=20就可以求出来了,是不是一次计算中不能用两次不等式求范围,,1&#47,,,,,某题,正确答案我知道,可是答案不对,x,x=1&#47,,,y为正实数,,
提问者采纳
4=11&#47,(10y)+y&#47,联立2x+5y=20就可以求出来了”这个就是不妥的地方,y的最小值为7&#47,(4x)因为x&#47,1&#47,20+√10&#47,(10x)+x&#47,4)(1&#47,y≥2√[1&#47,4=7&#47,y)=(x&#47,如果无解,(4x)]}=√10&#47,(10y)+y&#47,(10y)+y&#47,x=1&#47,x+1&#47,y=1*(1&#47,(4x)+1&#47,x+1&#47,x+1&#47,由2x+5y=20变形可得x&#47,“让1&#47,(10y)+y&#47,毕竟不是单独只求1&#47,(10y)]*[y&#47,(xy)],10+y&#47,x+1&#47,当1&#47,x+1&#47,(4y)=1&#47,(4x)+y&#47,y的最小值,y时取得最小值,所以不能使用联立方程来解,10,这个方程2x+5y=20有解吗,10+x&#47,x=1&#47,应该这样解,10+y&#47,y时,(4x)≥2√{[x&#47,y)=x&#47,那还能那样求吗,10所以,x+1&#47,20+x&#47,你的想法有点不妥,还有2x+5y=20这个限制条件。你能保证1&#47,
提问者评价
其他类似问题
按默认排序
其他2条回答
x=1&#47,联立2x+5y=20,y为正实数从你思路由头演变一次,y的值不可以取20&#47,你就知道问题所在1,不可以是小数,应用到1&#47,当且仅当a=b时等号成立。2,y为正实数,x=y=20&#47,a+b≥2√ab基本不等式,7。4,y为正实数 ”判断是否可行,x+1&#47,y时,但是x,只要1&#47,y时便可最小值(x=y)3,要结合条件 “ x,故,7。总结,但是由于x,y为正实数 ”
你的想法是正确,如果没有条件 “ x,
要养成一种思维模式,这就是线性规划问题。至于你说的那种思维,你想,目标函数和已知函数都没有a乘b什么事,也不知道二者乘积是多少,自然不能用,对吧
高中数学的相关知识
等待您来回答
您可能关注的推广回答者:回答者:
下载知道APP
随时随地咨询
出门在外也不愁您还未登陆,请登录后操作!
悬赏20爱心点
分享到微博
关于不等式的问题
已知不等式|2x-a|+|x+3|≥2x+4,若不等式的解集为全体实数,求a的取值范围
你的答案是对的,做起来蛮麻烦的……
回答数:9185
您的举报已经提交成功,我们将尽快处理,谢谢!}

我要回帖

更多关于 基本不等式 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信