在梯形abcd中 ad,AD‖BC,对角线A...

如图,在梯形ABCD中,AB∥CD,AD=BC,对角线AC⊥BD,垂足为O.若CD=3,AB=5,则AC的长为______. 淡然的草Q970 过C作CE平行于BD交AB的延长线于E,则四边形BECD是平行四边形,∵AC⊥BD,即∠AOB=90°,又CE∥BD,∴∠ACE=∠AOB=90°,∴AC⊥CE,∵四边形BECD是平行四边形,∴AE=AB+BE=AB+CD=8.∵在梯形ABCD中,AB∥CD,AD=BC,∴梯形ABCD是等腰梯形,∴AC=BD,∵BD=CE,∴AC=CE,∴△ACE是等腰直角三角形,∴AC=BD=CE==4.故答案为:4. 为您推荐: 其他类似问题 过C作CE平行于BD交AB的延长线与E,然后根据勾股定理可得出答案. 本题考点: 等腰梯形的性质. 考点点评: 本题考查了等腰梯形及等腰直角三角形的性质,难度不大,注意掌握等腰梯形的对角线相等. 作BE垂直于DC交于E如图所示,因为AB//CD,AD=BC所以,梯形ABCD为等腰梯形;AC=BD又AO┴OB,所以0&时,方程有两个不相等的根;②&当&Δ=0&时,方程有两个相等的实数根;③&当&Δ<0&时,方程无实数根. 1.定义:就是它们的形状相同,但大小不一样,然而只要其形状相同,不论大小怎样改变他们都相似,所以就叫做相似。2.判定:&&(1)平行与三角形一边的(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似&&(2)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似&&(3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似&&(4)如果两个三角形的三组对应边的比相等,那么这两个三角形相似&直角三角形相似判定定理&&(1)斜边与一条直角边对应成比例的两直角三角形相似。直角三角形相似判定定理&&(2)直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。3.性质:&&(1)相似三角形的对应角相等.&&(2)相似三角形的对应边成比例.&&(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比.&&(4)相似三角形的周长比等于相似比.&&(5)相似三角形的面积比等于相似比的平方.&(6)相似三角形的传递性。 【一元二次根与系数的关系】如果&{{ax}^{2}}+bx+c=0(a≠0)的两个根是&{{x}_{1}},{{x}_{2}},那么&{{x}_{1}}{{+x}_{2}}=-{\frac{b}{a}},{{x}_{1}}o{{x}_{2}}={\frac{c}{a}}(隐含&a≠0).特别地,当一元二次方程的二次项系数为&1&时,设&{{x}_{1}},{{x}_{2}}&&是方程&{{x}^{2}}+px+q=0&&的两个根,则&{{x}_{1}}{{+x}_{2}}=-p,{{x}_{1}}o{{x}_{2}}=q.【一元二次方程根与系数关系得逆用】如果实数&{{x}_{1}},{{x}_{2}}&&满足&{{x}_{1}}{{+x}_{2}}=-{\frac{b}{a}},{{x}_{1}}o{{x}_{2}}={\frac{c}{a}}&,那么&{{x}_{1}},{{x}_{2}}&&是一元二次方程&{{ax}^{2}}+bx+c=0()的两个根.以两个实数&{{x}_{1}},{{x}_{2}}&&为根的一元二次方程(二次项系数为&1)是&{{x}^{2}}-\left({{{x}_{1}}{{+x}_{2}}}\right){{x+x}_{1}}o{{x}_{2}}=0&.【一元二次方程根与系数的应用】(1)不解方程,利用根与系数的关系求关于&{{x}_{1}},{{x}_{2}}&&的对称式的值,如&{{{{x}_{1}}}^{2}}+{{{{x}_{2}}}^{2}}=\left({{{x}_{1}}+{{x}_{2}}}\right){{}^{2}}{{-2x}_{1}}o{{x}_{2}}&,&\left({{{x}_{1}}-{{x}_{2}}}\right){{}^{2}}=\left({{{x}_{1}}+{{x}_{2}}}\right){{}^{2}}-4{{x}_{1}}o{{x}_{2}},&{{|x}_{1}}{{-x}_{2}}|=\sqrt[]{\left({{{x}_{1}}+{{x}_{2}}}\right){{}^{2}}-4{{x}_{1}}o{{x}_{2}}},&{\frac{1}{{{x}_{1}}}}+{\frac{1}{{{x}_{2}}}}={\frac{{{x}_{1}}{{+x}_{2}}}{{{x}_{1}}{{x}_{2}}}},&{\frac{1}{{{{{x}_{1}}}^{2}}}}+{\frac{1}{{{{{x}_{2}}}^{2}}}}={\frac{\left({{{x}_{1}}{{+x}_{2}}}\right){{}^{2}}-2{{x}_{1}}{{x}_{2}}}{\left({{{x}_{1}}{{x}_{2}}}\right){{}^{2}}}}.(2)根的符号的讨论.利用根与系数的关系可以讨论根的符号,设一元二次方程&{{ax}^{2}}+bx+c=0(a≠0)的两个根&{{x}_{1}},{{x}_{2}}&.i)Δ≥0,且&{{x}_{1}}{{x}_{2}}>0&时,两根同号.&\left\{{\begin{array}{l}{Δ≥0,}\\{{{x}_{1}}{{x}_{2}}>0,}\\{{{x}_{1}}{{+x}_{2}}>0.}\end{array}}\right&&&两根同正.&\left\{{\begin{array}{l}{Δ≥0,}\\{{{x}_{1}}{{x}_{2}}>0,}\\{{{x}_{1}}{{+x}_{2}}<0.}\end{array}}\right&&&两根同负.ii)Δ≥0,且&{{x}_{1}}{{x}_{2}}<0&时,两根异号.&\left\{{\begin{array}{l}{Δ≥0,}\\{{{x}_{1}}{{x}_{2}}0.}\end{array}}\right&&&两根异号且正根的较大.&\left\{{\begin{array}{l}{Δ≥0,}\\{{{x}_{1}}{{x}_{2}}<0,}\\{{{x}_{1}}{{+x}_{2}}<0.}\end{array}}\right&&&&两根异号且负根的绝对值较大.(3)其他结论.①&设一元二次方程&{{ax}^{2}}+bx+c=0(a≠0)的两个根&{{x}_{1}},{{x}_{2}}&(其中&{{x}_{1}}≥{{x}_{2}}&),若&m&为实数,当&Δ≥0&时,一般会有以下结论存在:i)\left({{{x}_{1}}-m}\right)\left({{{x}_{2}}-m}\right)<0 {{x}_{1}}>m,{{x}_{2}}0&且&\left({{{x}_{1}}-m}\right)+\left({{{x}_{2}}-m}\right)>0&& {{x}_{1}}>m,{{x}_{2}}>m&.iii)&\left({{{x}_{1}}-m}\right)\left({{{x}_{2}}-m}\right)>0&且&\left({{{x}_{1}}-m}\right)+\left({{{x}_{2}}-m}\right)<0&& {{x}_{1}}

我要回帖

更多关于 梯形abcd中 ad 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信