tl494去保护做的高压条的4脚有8V的电压...

后使用快捷导航没有帐号?
查看: 2101|回复: 2
TI TL494管脚配置及其功能、占空比测试
在线时间2842 小时
芯币94396 枚
E金币105 枚
TA的帖子TA的资源
TL494管脚配置及其功能TL494的内部电路由基准电压产生电路、振荡电路、间歇期调整电路、两个误差放大器、脉宽调制比较器以及输出电路等组成。图1是它的管脚图,其中1、2脚是误差放大器I的同相和反相输入端;3脚是相位校正和增益控制;4脚为间歇期调理,其上加0~3.3V电压时可使截止时间从2%线怀变化到100%;5、6脚分别用于外接振荡电阻和振荡电容;7脚为接地端;8、9脚和11、10脚分别为TL494内部两个末级输出三极管集电极和发射极;12脚为电源供电端;13脚为输出控制端,该脚接地时为并联单端输出方式,接14脚时为推挽输出方式;14脚为5V基准电压输出端,最大输出电流10mA;15、16脚是误差放大器II的反相和同相输入端。
根据TL494的引脚功能,在设计电路前对TL494的特性要做一定的测试:
过对TL494芯片的占空比测试,可以进一步加深对TL494工作特点的理解,同时也发现占空比是在DTC=0~2.4v的范围内变化,不是一般中所说的在DTC=0~3.3v电压范围内变化。占空比随着DTC电压的升高而减小,正是利用TL494这种性质,我们实现了开机时的软启动功能,也是利用4脚电压的特点,将4脚作为过流保护的输入端。当发生过流保护的时候,滞环比较器的输出为高,远大于2.4V,可以很快的封锁占空比,实现过流保护的目的。1.控制芯片TL494介绍1)TL494框图:2)&&TL494管脚配置及其功能TL494的内部电路由基准电压产生电路、振荡电路、间歇期调整电路、两个误差放大器、脉宽调制比较器以及输出电路等组成。图1是它的管脚图,其中1、2脚是误差放大器I的同相和反相输入端;3脚是相位校正和增益控制;4脚为间歇期调理,其上加0~3.3V电压时可使截止时间从2%线怀变化到100%;5、6脚分别用于外接振荡电阻和振荡电容;7脚为接地端;8、9脚和11、10脚分别为TL494内部两个末级输出三极管集电极和发射极;12脚为电源供电端;13脚为输出控制端,该脚接地时为并联单端输出方式,接14脚时为推挽输出方式;14脚为5V基准电压输出端,最大输出电流10mA;15、16脚是误差放大器II的反相和同相输入端。2.振荡频率的选择TL494的振荡频率由决定,振荡频率的计算公式为:振荡频率的选取与有直接关系(此时3脚、4脚电压均为0),同时也对最大占空比有这直接影响,试验中测得在,最大占空比只能达到88%左右,试验波形为下图3所示图3实际的工作频率为22.04k,根据=18.03k,由于电阻电容本身的精度不够导致误差较大。TL494的最大占空比能够达到96%,选取,时,在四节蓄电池的调节过程中由于受最大占空比的限制,给定电压60v时,反馈电压不能达到60v,反馈电压可以跟踪给定的范围在70---88v,经过多次试验现调整为,,实际测得的频率为=19.6k左右,波形如下图4所示:图4此时的最大占空比能达到95%左右, 能跟踪的电压范围在58V----88V,可以满足我们实际的利用直流稳压电源模拟太阳电池的功能。四.试验结果1.TL494 测试波形为进一步了解TL494的工作特点,对于TL494的占空比变化进行了一系列试验,用TL494与TLP250组成的实验电路进行试验,在下述波形中波形1 为输出占空比即TLP250的6脚输出占空比波形,2为TL494的11脚波形。测得的波形如下:1)在4脚电压为0时,3脚电压变化对输出占空比的影响。图16 (3脚电压为0时)图17(3脚电压为1.8V时)图18(3脚电压为3.1V时)图19 (3脚电压为3.5V)2)3脚电压comp=1.5V时,占空比随4脚电压变化波形如下:图20 (4脚电压为0时)图21(4脚电压为1.5V)图22 (4脚电压为2.2V时)图23 (4脚电压为2.4V时)通过对TL494芯片的占空比测试,可以进一步加深对TL494工作特点的理解,同时也发现占空比是在DTC=0~2.4v的范围内变化,不是一般中所说的在DTC=0~3.3v电压范围内变化。占空比随着DTC电压的升高而减小,正是利用TL494这种性质,我们实现了开机时的软启动功能,也是利用4脚电压的特点,将4脚作为过流保护的输入端。当发生过流保护的时候,滞环比较器的输出为高,远大于2.4V,可以很快的封锁占空比,实现过流保护的目的。
在线时间0 小时
TA的帖子TA的资源
一粒金砂, 积分 0, 距离下一级还需 50 积分
图片都看不见了,楼主能重新上传一下吗?
Powered by
逛了这许久,何不进去瞧瞧?采用TL494的直流12V转交流220V逆变器电路图07
上亿文档资料,等你来发现
采用TL494的直流12V转交流220V逆变器电路图07
采用TL494的直流12V转交流220V逆变器电;采用TL494的400W直流12V转交流220V;目前所有的双端输出驱动IC中,可以说美国德克萨斯;A.内置RC定时电路设定频率的独立锯齿波振荡器,;B.内部设有比较器组成的死区时间控制电路,用外加;C.触发器的两路输出设有控制电路,使Q1、Q2既;D.内部两组完全相同的误差放大器,其同相输入端均;E.输出驱
采用TL494的直流12V转交流220V逆变器电路图 采用TL494的400W直流12V转交流220V逆变器电路图 目前所有的双端输出驱动IC中,可以说美国德克萨斯仪器公司开发的TL494功能最完善、驱动能力最强,其两路时序不同的输出总电流为SG3525的两 倍,达到400mA。仅此一点,使输出功率千瓦级及以上的开关电源、DC/DC变换器、逆变器,几乎无一例外地采用TL494。虽然TL494设计用于驱 动双极型开关管,然而目前绝大部分采用MOSFET开关管的设备,利用外设灌流电路,也广泛采用TL494。其内部电路功能、特点及应用方法如下:A.内置RC定时电路设定频率的独立锯齿波振荡器,其振荡频率fo(kHz)=1.2/R(kΩ)?C(μF),其最高振荡频率可达300kHz,既 能驱动双极性开关管,增设灌电流通路后,还能驱动MOSFET开关管。B.内部设有比较器组成的死区时间控制电路,用外加电压控制比较器的输出电平,通过其输出电平使触发器翻转,控制两路输出之间的死区时间。当第4脚电 平升高时,死区时间增大。C.触发器的两路输出设有控制电路,使Q1、Q2既可输出双端时序不同的驱动脉冲,驱动推挽开关电路和半桥开关电路,同时也可输出同相序的单端驱动脉 冲,驱动单端开关电路。D.内部两组完全相同的误差放大器,其同相输入端均被引出芯片外,因此可以自由设定其基准电压,以方便用于稳压取样,或利用其中一种作为过压、过流超 阈值保护。E.输出驱动电流单端达到400mA,能直接驱动峰值电流达5A的开关电路。双端输出脉冲峰值为2×200mA,加入驱动级即能驱动近千瓦的推挽式和 桥式电路。 详细内容请参考本站相关文章(TL494开关集成电路原理及应用介绍) 图 采用TL494的400W直流12V转交流220V逆变器电路
TL494的各脚功能及参数如下:第1、16脚为误差放大器A1、A2的同相输入端。最高输入电压不超过VCC+0.3V。第2、15脚为误差放大器 A1、A2的反相输入端。可接入误差检出的基准电压。第3脚为误差放大器A1、A2的输出端。集成电路内部用于控制PWM比较器的同相输入端,当A1、 A2任一输出电压升高时,控制PWM比较器的输出脉宽减小。同时,该输出端还引出端外,以便与第2、15脚间接入RC频率校正电路和直接负反馈电路,一则 稳定误差放大器的增益,二则防止其高频自激。另外,第3脚电压反比于输出脉宽,也可利用该端功能实现高电平保护。第4脚为死区时间控制端。当外加1V以下 的电压时,死区时间与外加电压成正比。如果电压超过1V,内部比较器将关断触发器的输出脉冲。第5脚为锯齿波振荡器外接定时电容端,第6脚为锯齿波振荡器 外接定时电阻端,一般用于驱动双极性三极管时需限制振荡频率小于40kHz。第7脚为接地端。第8、11脚为两路驱动放大器NPN管的集电极开路输出端。 当第8、11脚接Vcc,第9、10脚接入发射极负载电阻到地时,两路为正极***腾柱式输出,用以驱动各种推挽开关电路。当第8、11脚接地时,两路为 同相位驱动脉冲输出。第8、11脚和9、10脚可直接并联,双端输出时最大驱动电流为2×200mA,并联运用时最大驱动电流为400mA。第14脚为内 部基准电压精密稳压电路端。输出5V±0.25V的基准电压,最大负载电流为10mA。用于误差检出基准电压和控制模式的控制电压。TL494的极限参 数:最高瞬间工作电压(12脚)42V,最大输出电流250mA,最高误差输入电压Vcc+0.3V,测试/环境温度≤45℃,最大允许功耗1W,最高结 温150℃,使用温度范围0~70℃,保存温度-65~+150℃。 TL494的标准应用参数:Vcc(第12脚)为7~40V,Vcc1(第8脚)、Vcc2(第11脚)为40V,IC1、Ic2为200mA,RT 取值范围1.8~500kΩ,CT取值范围4700pF~10μF,最高振荡频率(fOSC)≤300kHz。它激式变换部分采用TL494,VT1、VT2、VD3、VD4构成灌电流驱动电路,驱动两路各两只60V/30A的MOSFET开关管。如需提高输 出功率,每路可采用3~4只开关管并联应用,电路不变。TL494在该逆变器中的应用方法如下:第1、2脚构成稳压取样、误差放大系统,正相输入端1脚输入逆变器次级取样绕组整流输出的15V直流电压,经R1、R2分压,使第1脚在逆变器正常工 作时有近4.7~5.6V取样电压。反相输入端2脚输入5V基准电压(由14脚输出)。当输出电压降低时,1脚电压降低,误差放大器输出低电平,通过 PWM电路使输出电压升高。正常时1脚电压值为5.4V,2脚电压值为5V,3脚电压值为0.06V。此时输出AC电压为235V(方波电压)。第4脚外 接R6、R4、C2设定死区时间。正常电压值为0.01V。第5、6脚外接CT、RT设定振荡器三角波频率为100Hz。正常时5脚电压值为 1.75V,6脚电压值为3.73V。第7脚为共地。第8、11脚为内部驱动输出三极管集电极,第12脚为TL494前级供电端,此三端通过开关S控制 TL494的启动/停止,作为逆变器的控制开关。当S1关断时,TL494无输出脉冲,因此开关管VT4~VT6无任何电流。S1接通时,此三脚电压值为 蓄电池的正极电压。第9、10脚为内部驱动级三极管发射极,输出两路时序不同的正脉冲。正常时电压值为1.8V。第13、14、15脚其中14脚输出5V 基准电压,使13脚有5V高电平,控制门电路,触发器输出两路驱动脉冲,用于推挽开关电路。第15脚外接5V电压,构成误差放大器反相输入基准电压,以使 同相输入端16脚构成高电平保护输入端。此接法中,当第16脚输入大于5V的高电平时,可通过稳压作用降低输出电压,或关断驱动脉冲而实现保护。在它激逆 变器中输出超压的可能性几乎没有,故该电路中第16脚未用,由电阻R8接地。该逆变器采用容量为400VA的工频变压器,铁芯采用45×60mm2的硅钢片。初级绕组采用直径1.2mm的漆包线,两根并绕2×20匝。次级取样 绕组采用0.41mm漆包线绕36匝,中心抽头。次级绕组按230V计算,采用0.8mm漆包线绕400匝。开关管VT4~VT6可用60V/30A任何 型号的N沟道MOS FET管代替。VD7可用1N400X系列普通二极管。该电路几乎不经调试即可正常工作。当C9正极端电压为12V时,R1可在3.6~4.7kΩ之间选 择,或用10kΩ电位器调整,使输出电压为额定值。如将此逆变器输出功率增大为近600W,为了避免初级电流过大,增大电阻性损耗,宜将蓄电池改用 24V,开关管可选用VDS为100V的大电流MOS FET管。需注意的是,宁可选用多管并联,而不选用单只IDS大于50A的开关管,其原因是:一则价格较高,二则驱动太困难。建议选用100V/32A的 2SK564,或选用三只2SK906并联应用。同时,变压器铁芯截面需达到50cm2,按普通电源变压器计算方式算出匝数和线径,或者采用废UPS- 600中变压器代用。如为电冰箱、电风扇供电,请勿忘记加入LC低通滤波器。 来自: 利用TL494组成的400W大功率稳压逆变器电路 TL494组成的400W大功率稳压逆变器电路 TL494组成的400W大功率稳压逆变器电路它激式变换部分采用TL494,VT1、VT2、VD3、VD4构成灌电流驱动电路,驱动两路各两只60V/30A的MOS FET开关管。如需提高输出功率,每路可采用3~4只开关管并联应用,电路不变。TL494在该逆变器中的应用方法如下:第1、2脚构成稳压取样、误差放大系统,正相输入端1脚输入逆变器次级取样绕组整流输出的15V直流电压,经R1、R2分压,使第1脚在逆变器正常工作时有近4.7~5.6V取样电压。反相输入端2脚输入5V基准电压(由14脚输出)。当输出电压降低时,1脚电压降低,误差放大器输出低电平,通过PWM电路使输出电压升高。正常时1脚电压值为5.4V,2脚电压值为5V,3脚电压值为0.06V。此时输出AC电压为235V(方波电压)。第4脚外接R6、R4、C2设定死区时间。正常电压值为0.01V。第5、6脚外接CT、RT设定振荡器三角波频率为100Hz。正常时5脚电压值为1.75V,6脚电压值为3.73V。第7脚为共地。第8、11脚为内部驱动输出三极管集电极,第12脚为TL494前级供电端,此三端通过开关S控制TL494的启动/停止,作为逆变器的控制开关。当S1关断时,TL494无输出脉冲,因此开关管VT4~VT6无任何电流。S1接通时,此三脚电压值为蓄电池的正极电压。第9、10脚为内部驱动级三极管发射极,输出两路时序不同的正脉冲。正常时电压值为1.8V。第13、14、15脚其中14脚输出5V基准电压,使13脚有5V高电平,控制门电路,触发器输出两路驱动脉冲,用于推挽开关电路。第15脚外接5V电压,构成误差放大器反相输入基准电压,以使同相输入端16脚构成高电平保护输入端。此接法中,当第16脚输入大于5V的高电平时,可通过稳压作用降低输出电压,或关断驱动脉冲而实现保护。在它激逆变器中输出超压的可能性几乎没有,故该电路中第16脚未用,由电阻R8接地。该逆变器采用容量为400VA的工频变压器,铁芯采用45×60mm2的硅钢片。初级绕组采用直径1.2mm的漆包线,两根并绕2×20匝。次级取样绕组采用0.41mm漆包线绕36匝,中心抽头。次级绕组按230V计算,采用0.8mm漆包线绕400匝。开关管VT4~VT6可用60V/30A任何型号的N沟道MOS FET管代替。VD7可用1N400X系列普通二极管。该电路几乎不经调试即可正常工作。当C9正极端电压为12V时,R1可在3.6~4.7kΩ之间选择,或用10kΩ电位器调整,使输出电压为额定值。如将此逆变器输出功率增大为近600W,为了避免初级电流过大,增大电阻性损耗,宜将蓄电池改用24V,开关管可选用VDS为100V的大电流MOS FET管。需注意的是,宁可选用多管并联,而不选用单只IDS大于50A的开关管,其原因是:一则价格较高,二则驱动太困难。建议选用100V/32A的2SK564,或选用三只2SK906并联应用。同时,变压器铁芯截面需达到50cm2,按普通电源变压器计算方式算出匝数和线径,或者采用废UPS-600中变压器代用。如为电冰箱、电风扇供电,请勿忘记加入LC低通滤波器。包含各类专业文献、各类资格考试、文学作品欣赏、专业论文、外语学习资料、中学教育、高等教育、幼儿教育、小学教育、应用写作文书、采用TL494的直流12V转交流220V逆变器电路图07等内容。
  高效直流12V转交流220V逆变电源设计_电子/电路_工程科技_专业资料。苏州大学...从 控制芯片 TL494 的内部实现对脉宽的调制,使得直流输出电压幅值保持稳定;另一...  12V 逆变器电路图 逆变器电路图如下图所示: 12V 逆变器原理 这里我们将详细... 12V逆变器(直流12V转交流... 8页 2下载券 采用TL494的直流12V转交... 5...   12V转交流220V逆变器工作原理_电子/电路_工程科技_专业资料。今天我们来介绍... 采用TL494的直流12V转交... 5页 1下载券 高效直流12V转交流220V逆... 41...   12V转220V正弦波逆变器的用途_电子/电路_工程科技_专业资料。12V 转220V ... 自制12V转交流220V逆变器... 6页 免费 采用TL494的直流12V转交... 5页 ...  12V 变 220V 逆变器
22:44 自制 12V 转交流 220V 逆变器 ... 采用TL494的直流12V转交... 5页 1下载券喜欢此文档的还喜欢...   直流12V转交流100V逆变器_信息与通信_工程科技_专业资料。直流 12V 转交流 100V 逆变器电源电路 图文章出处: 发布时间: | 385 次阅读 | 2 次推荐...   SG3524组成的500W,12V转220V逆变器电路图_电子/电路_工程科技_专业资料。SG...SG3524 组成的 500W,12V 转 220V 逆变器电路图 此电路的特点是体积小,效率...   220V AC转12V DC_电子/电路_工程科技_专业资料。220V AC 转 12V DC ... 自制12V转交流220V逆变器... 6页 免费 采用TL494的直流12V转交... 5页 ...基于 TL494 的 400W 逆变器解决方案
> 基于 TL494 的 400W 逆变器解决方案
基于 TL494 的 400W 逆变器解决方案
(Inverter,逆向变压器件)是一种直流到交流(DC to AC)的变压器,可将可变直流输出转换成清洁220V正弦 50Hz 或 其他类型交流电,可用于各类设备,最大限度地满足移动供电场所或无电地区用户对交流电源的需要。广泛用在通讯、工业设备、卫星通信设备、军用车载、医疗救护车、警车、船舶、太阳能及风能发电领域。它由逆变桥、控制逻辑和滤波电路组成。本文引用地址:逆变主电路一般输入的是直流电压,因为光伏发电系统是山太阳电池方阵产生的直流电,所以在输入电路中应当包含相关的滤波电路和EMI电路等。输出电路一般也包含物出滤波和EMI电路,以减小逆变电路产生的波纹对负载产生的影响。控制电路的作用是产生一系统控制脉冲来控制功率开关管的导通和关断,和逆变电路一起来完成逆变功能。本文提供了一种的大功率稳压。是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。TL494主要特征集成了全部的脉宽调制电路。片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。内置误差放大器。内止5V参考基准电压源。可调整死区时间。内置功率晶体管可提供500mA的驱动能力。推或拉两种输出方式。TL494工作原理简述TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下:输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。功率输出管Q1和Q2受控于或非门。当双稳触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号期间才会被选通。当控制信号增大,输出脉冲的宽度将减小。利用TL494组成的大功率稳压电路它激式变换部分采用TL494,VT1、VT2、VD3、VD4构成灌电流驱动电路,驱动两路各两只60V/30A的MOS FET开关管。如需提高输出功率,每路可采用3~4只开关管并联应用,电路不变。TL494在该逆变器中的应用方法如下图所示:第1、2脚构成稳压取样、误差放大系统,正相输入端1脚输入逆变器次级取样绕组整流输出的15V直流电压,经R1、R2分压,使第1脚在逆变器正常工作时有近4.7~5.6V取样电压。反相输入端2脚输入5V基准电压(由14脚输出)。当输出电压降低时,1脚电压降低,误差放大器输出低电平,通过PWM电路使输出电压升高。正常时1脚电压值为5.4V,2脚电压值为5V,3脚电压值为0.06V。此时输出AC电压为235V(方波电压)。第4脚外接R6、R4、C2设定死区时间。正常电压值为0.01V。第5、6脚外接CT、RT设定振荡器三角波频率为100Hz。正常时5脚电压值为1.75V,6脚电压值为3.73V。第7脚为共地。第8、11脚为内部驱动输出三极管集电极,第12脚为TL494前级供电端,此三端通过开关S控制TL494的启动/停止,作为逆变器的控制开关。当S1关断时,TL494无输出脉冲,因此开关管VT4~VT6无任何电流。S1接通时,此三脚电压值为蓄电池的正极电压。第9、10脚为内部驱动级三极管发射极,输出两路时序不同的正脉冲。正常时电压值为1.8V。第13、14、15脚其中14脚输出5V基准电压,使13脚有5V高电平,控制门电路,触发器输出两路驱动脉冲,用于推挽开关电路。第15脚外接5V电压,构成误差放大器反相输入基准电压,以使同相输入端16脚构成高电平保护输入端。此接法中,当第16脚输入大于5V的高电平时,可通过稳压作用降低输出电压,或关断驱动脉冲而实现保护。在它激逆变器中输出超压的可能性几乎没有,故该电路中第16脚未用,由电阻R8接地。该逆变器采用容量为400VA的工频变压器,铁芯采用45&60mm2的硅钢片。初级绕组采用直径1.2mm的漆包线,两根并绕2&20匝。次级取样绕组采用0.41mm漆包线绕36匝,中心抽头。次级绕组按230V计算,采用0.8mm漆包线绕400匝。开关管VT4~VT6可用60V/30A任何型号的N沟道MOS FET管代替。VD7可用1N400X系列普通二极管。该电路几乎不经调试即可正常工作。当C9正极端电压为12V时,R1可在3.6~4.7k&O之间选择,或用10k&O电位器调整,使输出电压为额定值。如将此逆变器输出功率增大为近600W,为了避免初级电流过大,增大电阻性损耗,宜将蓄电池改用24V,开关管可选用VDS为100V的大电流MOS FET管。需注意的是,宁可选用多管并联,而不选用单只IDS大于50A的开关管,其原因是:一则价格较高,二则驱动太困难。建议选用100V/32A的2SK564,或选用三只2SK906并联应用。同时,变压器铁芯截面需达到50cm2,按普通电源变压器计算方式算出匝数和线径,或者采用废UPS-600中变压器代用。如为电冰箱、电风扇供电,请勿忘记加入LC低通滤波器。
分享给小伙伴们:
我来说两句……
微信公众账号tl494频率限流问题,15脚16脚功能 - 叫阿莫西中心 - 中国网络使得骄傲马戏中心!
tl494频率限流问题,15脚16脚功能
您的位置: &
tl494各引脚功能电压
无论《PS—ON》是高电平还是低电平,
1脚-00V ;2脚-4.8V ; 3脚-00V ;4脚-3.3V《有变00V; 5脚-1.3V;6脚-3.6V
7脚-00V ;8脚-2.2V& 9脚-00V ; 10脚-00V ; 11脚-2.2V&
&12脚-14.2V&br/&13脚-5V ; &14脚-5V;15脚-5V 16脚-0.4V
TL494详细功能介绍如下:第(1)脚为第一组误差放大器的同相输入端。由+5V输出电压经R35、VR、R13取样送入第(1)脚。第(2)脚为第一组误差放大器的反相输入端。从第(14)脚输出的5V基准电压经R14、R20分压得到约4V的电压,与第(1)脚电压进行比较。由于输+5V电压升高时第(1)脚取样电压成比例升高,当此电压超过4V时,误差放大器输出高电平,通过IC内部比较器控制输出脉宽减小,以使5V电压下降,达到稳压的目的。第(3)脚为第一误差放大器输出的引出端。外接C19、C20、C21、R11组成的频率校正网路,以防止放大器发生自激。第(4)脚为死区控制端。当IC工作在推挽状态时,其两组输出脉冲使两只推挽开关管依次导通和关断。为了避免开关管的滞事效应造成瞬间导通而击穿开关管,在脉冲的序列之间留有一定的空隙,称为死区。改变第(4)脚的电压,可改变死区时间。当第(4)脚电压大于5V基准电压时,输出脉冲关断。在0-5V,死区时间成比例增大。利用此功能,第(4)脚在维亚开关电源中作为输出过压保护。次级输出的12V电压,经R26、D7和R10分压后加到第(4)脚上,与TR3、TR4共同构成+-5V和+12V的过压保护电路。正常情况下,TR4的基极由R28接在+5V输出端,R29接在输出端,R28和R29的分压使TR4偏置电压小于0.6V,TR4截止,其集电极经R36呈现近似5V的高电平,因而使TR3导通,由12V电压接出R26与地短路,二极管D7反偏截止,因而此部分电路与第三者第(4)脚电压无关。第(4)脚电压为第(14)脚的5V基准电压经R12和R16分压的0.5V左右电压,设定末级半桥式开磁电路必要的死区时间。当电源取样系统发生故障时,+5V电压升高或-5V电压因负载短路而降低时,TR4将导通,其集电极为低电平,使TR3截止。12V电压经R26,使D7导通,第(4)脚电压被R10分压后仍为5V左右,使输出脉冲关断,电源保护,各组无输出。第(5)脚步内部振荡电路,外接定时电容C18,第(6)脚为外接定时电阻R9。此RC的值决定TL494输出脉冲的重复频率,其值为FKHZ=1.2/R欧姆.C(UF)。按图中数据,此电源的工作频率为30KHZ。第(7)脚共地端,也是供电的负极端。第(8)(11)脚为两路输出放大管的集电极。驱动放大器由R7、R8供电,其输出脉冲送入驱动脉冲变压器T2变换阻抗后驱动半桥式变换器TR1和TR2。C17使T2中点为驱动脉冲的零电位点。第(9)(10)脚为内部驱动放大管的发射极,接地。第(12)脚为供电端,其允许输入电压可达8-40V,因此无需外部稳压器。由小型工频变压器T1输出低压交流电,经D1、D2全波整流,C23滤波得到约10V电压,向第(12)脚提供启动电压。待电源启动后,次级12电压经D8隔离后向第(12)脚供电。此时由于D1、D2整流电压低于12V,D1、D2截止,启动电压退出电路。第(13)脚为工作状态设定端。当第(13)脚为5V基准电压时,两路输出脉冲相差180旌,每路输出量大200MA的驱动电流,用于驱动推挽或半桥、桥式电路。当第(13)脚接地时,两路输出脉冲为同相位,为8-40V时,第(14)脚均输出5+-0.25V的稳定基准电压。第(15)脚为第二并联输出400MA的驱动电流,用于驱动单端式开关电路。该机为半桥式推挽电路,第(13)脚接5V基准电压。第(14)脚内部基准电压源。在IC供电组误差放大器的反向输入端,在该电源中作为过流保护取样输入。T3为串联在负载电路的“电流互感器”式电流取样电路。当负载电流增大时,T3次级电压升高,经D5、D6整流后输出负电压,再经R17、R18分压后与+5V一起R15相联,送入第(15)脚。正常负载时负电压输出较小,两反向电压相加,结果有1.5-2V电压加在反向输入端,误差放大输出低电平,对脉宽控制无作用。如果产生过载觐同载短路,T3负整流电压升高,使加在第(15)脚的电压变成负值,则误差放大器输出高电平,使脉宽受控变小。由于此组误差放大器同样式相输入端是接地的,属零电平,一旦第(15)脚电压为-0.6V以上,电路产即动作,实现输出脉冲由减小脉宽到并闭的保护过程。由于TL494第(4)(15)脚的保护功能,该电源可以开路。此时次级电压+-5V的升高受第(4)脚的控制,+5V还受到第(1)脚PWM系统的控制。电源程序可以实现短路自动保护,排除短路后又自动恢复。
非常好我支持^.^
(18) 85.7%
不好我反对
相关阅读:
( 发表人:admin )
评价:好评中评差评
技术交流、我要发言
发表评论,获取积分! 请遵守相关规定!提 交
Copyright &
.All Rights Reserved求ATX电源检修??_风扇_百科问答
求ATX电源检修??
提问者:毛余博
维修步骤:1/检查整流后电压是否为380V.如果没有说明保险烧了,桥堆坏了.2/检查各输出电压是否正确,如果没有或不正确,检查光耦,IC.C1,C2为159V,Q1Q2C级300V一是用万用表测量脉宽调制器TL494(或是7500)的4脚电压,它是保护电路的关键测试点。可直接测量TL494的4脚电压,正常值应为0.4V以下,若测得电压值为+4V以上,则说明电源的处于保护状态下,应重点检查产生保护的原因。 绿紫+5V不工作次级问题,无电压初级---------------------------------我今天也修了一个ATX电源,故障现象与楼主差不多,紫线5V,绿线3V左右,短接绿线开机,TL494的4脚电压不但不拉低反而上升为4V左右,查了所有的晶体管均正常,查资料,有人说这种情况是开机电路有问题,查来查去没解决,忽然想起测输出端对地电阻,黄线对地达1K多,感觉有问题(在我应象中黄线应为几百欧,事实上该电源确为1.4K多),当查到12V的反馈电阻(即反馈到TL494的1脚)20K的东东好似不对,拆下一测断路,换之,一切OK。搞定。 ---------------------------------------------二是从+5VSB、PS-ON和PW-OK信号入手来定位故障区域。+5VSB紫色是供主机系统在ATX待机状态时的电源,所以当电源一加入市电220V后,+5VBS端就应有+5V电压输出的特点,可先检测这一点电压的有无,若有+5V电压说明辅助电源是好的,故障在主控电源电路中,应在主控电源电路中查明故障的原因。量紫色线与地之间看看是不是5V,如果少于4.5V,需更换两个辅助供电部分输出的电容。用万用表测量AC电源线两端的正反向电阻及电容器充电情况,如果电阻值过低,说明电源内部存在短路,正常时其阻值应能达到100千欧以上;电容器应能够充放电,如果损坏,则表现为AC电源线两端阻值低,呈短路状态,否则可能是开关三极管Q1、Q2击穿。 然后检查直流输出部分。脱开负载,分别测量各组输出端的对地电阻,正常时,表针应有电容器充放电摆动,最后指示的应为该路的泄放电阻的阻值。否则多数是整流二极管反向击穿所致。---------------------------------------------1、 输入端过压保护 电源的高压滤波电路(容)边上,有两个蓝色的压敏电阻,其耐压值为270V,当市电电压超过270V时,压敏电阻就会被击穿,从而保护电源其它电路以及电脑配件的安全。2、 输入端过流保护 第二道EMI滤波电容旁边,会有一根保险丝,当瞬间电流非常大时,保险丝就会熔断,从而保护电源和电脑。3、 输出端过流保护 过电流会损伤电源和配件。在下图中,有两根细导线连接了控制电路部分和驱动变压器,当控制电路监测到输出端有过大的电流时,通过导线反馈到驱动变压器,驱动变压器就会相应动作,关断电源的输出。4、 输出端过压保护 输出端输出过高的电压,会对电脑配件造成致命的损害,因此防止输出过压是非常重要的功能,分布着一些稳压管,当比较器检测到的输出电压与基准电压偏差较大时,稳压管就会对电压进行调整,小二级管样的。6、 输出端短路保护 输出端短路时,LM339N的比较器会侦测到电流的变化,并通过驱动变压器、PWM关断开关管的输出。兰色的是温度原件,若开关管正常,将PS-ON对地短接而无电压输出,应为保护电路动作或KA7500B、LM339及其外围元 件损坏。先测KA7500B的12脚电压,应在10V~40V。若无,可断开12脚与外部的连接,如电压正常,KA7500B必坏;若仍无,查至辅助电源间的供电支路。12脚供电电压正常,测14脚+5V基准电压,若无或偏差+5V很大,则KA7500B必坏。14脚+5V电压正常,测4脚,应为低电平。若偏高,可断开4脚与LM339电路的连接,仍高的话,KA7500B损坏。先测KA7500B的12脚电压,应在10V~40V。若无,可断开12脚与外部的连接,如电压正常,KA7500B必坏;若仍无,查至辅助电源间的供电支路。12脚供电电压正常,测14脚+5V基准电压,若无或偏差+5V很大,则KA7500B必坏。14脚+5V电压正常,测4脚,应为低电平。若偏高,可断开4脚与LM339电路的连接,仍高的话,KA7500B损坏。KA7500B正常,4脚仍高电平,有两种情况:一是4脚与14间的电解电容漏电;二是LM339及其外围电路异!TL494各电压实测值对照表(V)
引脚 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 待机时 0 4.5 0 3.3 1.5 3.2 0 2.3 0 0 2.4 10~40 5 5 5 0.5 启动后 4.4 4.3 3 0 1.5 3.2 0 2.3 0 0 2.4 10~40 5 5 5 0.5-----------------------------1、辅助电源部分的检修如果紫色线没有5V(往往伴随绿线没有3.6-5.2V)的话 ,就要检修辅助电源。如果保险烧了,检查四个整流二极管(一般只坏两个),和两个330UF/250V电容有没有鼓包(一般只坏一个电容,但它所接的 150K电阻绝对开路了 ),查辅助电源开关管(绝大多数为XN60系列场效应管,多彩、鑫谷、达硕多选用K3067等,也有一些选用普通三极管的(如世纪之星多选用 TOP221Y等)和两个E13007开关管或C4242有没有坏,这样检查过后就不会再烧保险了。如果辅助电源还没有输出,就要检查300V到辅助电源变压器初级的限流电阻(一般为1.5-4.7欧)、辅助电源开关管B极所接电阻,还有输出电源变压器输出的两个整流管。检查到这一步,电源紫色线肯定有5V,同时绿线应该有3.6-5.2V了。如果绿色线仍然没有3.6v-5.2V的电压, 这时就需要检修TL494了(这里TL494是一个总称,它包括TL494、LM339及周边电路)。2、 TL494(可与KA7500互换)及后级输出的检修接入市电后,紫色线有5V,绿色线没电压时,应检修TL494。TL494正常值是:12脚应为12V,2脚应为2.5V,13\14\15脚为5V,1 脚为0V,4脚为5V,8\11脚待机时为2.5V,开机时为1.5V,否则,TL494坏了应更换或者LM339及外围有问题,实际应用中LM339及外围低压阻容极少损坏。如果上述电压都有了,说明TL494及其外围没有问题. , 这时应检查末级的三个肖特基高速整流管有没有坏和末级输出电压的电容,如果还不行,查TL494的8\11脚所接的两个推动管(C945或C1815)肯定有一个坏了。 测电源有没有问题时,一定要记住测紫5V和灰线待机0V、启动后恒5V,至于绿线有的为5V多,有的3.6V,反正在3.6V-5.2V之间的都是正常的。---------------------------------------------近日,接到一台ATX电源,不用短接绿线与地,电源会自动启动,+12V、+5V、+3。3V各组电压一切正常。据此初步判断主电源部分没有问题。关键问题是在辅助电源部分。经检查TL494的12脚16V,4脚死区控制电压,一开机就电压上升一秒就为0V。再查VSB+5V,结果才不到3V,绿线(PS-ON)也才2V多一点。由于12脚电压正常,所以判断VSB+5V滤波不正常,果断换下VSB+5V的滤波电容(此电容外观一切正常,不会鼓)。至此,故障排除,短接绿线与地,电源正常启动。 --------------TL494+LM339-------------------------------1.整流输出的+300V分别通过两个脉冲变压器加到主电源、辅助电源的功率管集电极,辅助电源开始工作,输出(1)+12V供电TL494;(2)+5VSB、PS-ON到20脚排插。 2.TL494,12脚得到+12V,开始工作,它的13,14,15输出+5V,但它被④脚死区控制。当PS-ON端为低电平时,④脚电压跳变,解除控制,从⑧、11输出推挽波形,推动小功率对管工作,通过变压器耦合,使主电源功率对管工作,由主脉冲变压器另一端后续电路输出各型电压。3.TL494输出的+5V,供电LM339③脚,它由四个比较器构成,一般两个用来完成启动控制,一个用来形成power-good信号,一个用来空载检测。1.TL494 注意:12脚Vcc端有的为20V,甚至高达40V。2.LM339 ②脚通过二极管(IN4148)等控制TL494④脚;⑥脚通过电阻等联接20针排插PS-ON端;还可以分别测各比较器的输入(+,-)和输出端电压值,判断其逻辑功能是否正常。3.易损部件:(1)保险、电解电容、开关管、整流桥堆;(2)与开关管联接的启动电阻、限流电阻;(3)开关管附近的快恢复二极管、IN4148和稳压管、小功率三极管;(4)TL494、LM339。4.常见配件型号:(1)主电源的功率对管为E13007、C4242、C4161;(2)辅助电源管为C5027、C3866,有的为N型场效应管;(3)集成块有两片,一片为TL494,有的型号尽管不含494字样,但功能相同,另一片为LM339,有的用LM393(8脚),但周围一定有多个小功率三极管。5.其它:(1)正常的ATX电源,短路PS-ON,风扇转动正常,各路输出正常,若风扇一转即停,再重复,又如此,这是有空载保护,把硬盘接在输出端,应出现正常现象;否则,为故障。
(2)输出正常,排除主机板故障,但主机不工作,最大可能为power-good信号不正常。(3)电源功率与主机要配匹,主机经常重新启动,排除电力供应的故障,应考虑换电源。(4)检修完毕,一定要测各路输出的电压值是否正常。五、检修实例1.东阳电源 现象:无任何反应。检查:(1)保险暴裂,电解电容好;(2)功率对管短路,b极2只1Ω电阻开路,b、e间的电阻2.2k开路;(3)辅助电源管短路,限流电阻开路,附近的2个IN4148短路,10V稳压管短路,C1815击穿。检修:(1)不装功率对管,其余部件换新。加电,测20针排插的+5VSB,PS-ON高电平是否正常,否则,进一步检修辅助电源;(2)测TL494,12、④、13,14,15值正常否,特别注意⑧、11脚电位应相等,不等就换TL494,否则,会烧功率对管。经上述检测后,换上功率对管,短路PS-ON端,风扇转,一切正常。2.高达电源现象:短路PS-ON端,风扇一转即停,再重复,无效,但经过一段时间后,可出现该现象。检查:保险好,功率管等好,加电测+5VSB,PS-ON输出正常。 检修(1)断开LM339②脚到TL494④脚中的IN4148,短路PS-ON端,风扇转,输出正常。(2)重查LM339周围的IN4148,无结果,测各比较器的逻辑功能,正常。(3)查D35正向阻值减小,反向有几K的阻值,换掉,正常。注意用数字表在路测D35(二极管档)有蜂鸣声,即可发现故障位,但指针表在路无法判断,除非短路。通电,用数字表测二极管(IN4148)正、负极电位,根据它截止或导通状态,也可判断它的好坏,但指针表很难做到。3.SUNYONG电源现象:保险裂,换桥堆后,风扇一转即停,再重复,又如此。检修:重复例2的检修,无效。该机集成块用的一片LM393,周围有4个小三极管,TL494④脚有二路控制,一路由PS-ON端控制,断开另一路控制的IN4148,结果正常。推断这一路为空载检测控制,找一块坏硬盘挂在输出端,果然,短路PS-ON端,正常(注意ATX电源一般不设空载检测)。4.劲王 ATX-310T 现象:无任何反应。检查:(1)保险完好,电解电容好;(2)高速高压辅助电源管Q3 C3866明显炸裂,测短路,R11电阻明显烧焦,附近的D7 IN4148短路,Q4 C1815击穿短路。检修:(1)部件换新。加电,测20针排插的+5VSB,PS-ON高电平是否正常,否则,进一步检修辅助电源;(3)测TL49412、④、131415值正常否,特别注意⑧、11脚电位应相等,不等就换TL494,否则,会烧功 率对管。经上述检测后,换上功率对管,短路PS-ON端,风扇转,一切正常。ATX电源输出14脚(绿色线)为PS-ON信号,主板就是通过这个信号来控制电源的开启和关闭的。当主板电源的“电源检测部件”使PS-ON信号为高电平时,电源关闭;当主板使PS-ON信号为低电平时,电源工作,向主板供电。当ATX电源不和主板相连时,电源内部提供PS-ON信号高电平,ATX电源不工作,处于待机状态。当计算机通电后无法开启时,可将所有供电插头拔下,将14脚和地线(黑色线)用导线短接,若电源风扇转动,各路输出正确,即可判定电源是正常的,否则是电源故障。电源维修要谨慎,确定维修好后才能上板。---------------------------------------------在维修电源前首先不要忙于通电,先打开ATX电源盒坼出电路板,打扫干净电源盒里电路板和风扇上的灰尘。灰尘是损坏电源的罪魁祸首。先目测有没鼓包漏液的电解电容。如有鼓包漏液的电容一般都用同电压同温度105度同容量的代换。如没同型号,代换电容不能降低原来电容的温度和耐压V切记,电容容量可以增加。检修300V电路要小心触电。首先查看电路板上的保险管。如保险管严重发黑,说明300V电路严重短路。千万不要给电源换新保险管盲目通电。因为没排除短路故障换上新保险管还会爆掉。要排除短路原件电路正常后才可以通电。 一.300V电路检修 300V短路要检查的原件有; 1、 过压保护元件压敏电阻击穿; (一般可以目测得到压敏电阻爆开)先目测压敏电阻有没爆开,如已经爆开。换上在交流220V电路上用的压敏电阻都可以,不一定要同型号。 2、整流管击穿; (靠近交流进线的4只二极管)故障率高。测量4只整流二极管反向电阻为无穷大。如反向有电阻值为击穿短路。一般用原型号换上即可。如没有原型号。就用代换型号把4只全部换掉。注;(用在P4 CPU478以下的电源我用的代换型号RL205整流二极管代换 CPU775以上的电源我用的代换型号IN5408整流二极管代换)代换成功率百分百没有出现返工。(注意有的电源用的是整流全桥代替,没有4只这样的整流二极管,如损坏直接换整个全桥)。 3、大电解电容击穿; (电源最大个的2个串联的电容)坏得很少 目测有没鼓包漏液,如损坏换同型号即可。(在通电检修时测量2个串联的大电容的两端电压为300V左右为正常)。 4、初级开关管击穿。 (靠近大电容的散热片上一般有3只,其中有2只是同型号的是主电源开关管。另外一只是辅助电源开关管)故障率高。上面检查完就剩下开关管了用吸锡抢吸掉焊锡整体取下散热片和开关管进行测量把击穿的换掉。注;主电源开关管 用在P4 CPU478的电源我用的代换型号13007E代换。 用在CPU775以上的电源用的代换型号13009代换。没出现返工情况。现在300V电路检修完毕可以通电检修,下面我给大家介绍一种安全通电检修开关电源方法,这种方法如电路有问题不会漏烧元件。这是我在维修家电时经常应用的方法,现在可以应用于ATX开关电源。液晶显示器开关电源。笔记本开关电源盒等各种开关电源电路上维修应用。在坏保险管位子上串上40-60W灯泡,把交流电进线焊下来。把准备好的带插头的电源线焊接在电路板上的交流进线处,插上电源通电一瞬间,这时可以看见灯泡亮一下就熄灭,证明300V电路短路故障检修成功,取下灯泡换上新保险管。反之如灯泡常亮证明电路短路故障没检修完毕在继续检查至到看见灯泡亮一下就熄灭。如插上电灯泡不亮。则为300V电路为开路状态。拔掉电源插头后切记不要手摸300V电路大电容两端电路,应为电容里面储存有300V电压会有触电危险。这种情况要用灯泡放电才能检修。 二.辅助电源检修;
辅助电源开关管击穿。严重的会烧毁辅助开关变压器。该变压器不易配到。如果检修时遇见辅助电路其他元件都正常还漏损开关管,这种情况一般是烧爆开关管使辅助开关变压器初级线圈砸间短路了。开关管击穿爆管一定要把辅助电源部分元件全部检查一遍把损坏的原件换掉在换开关管切记。确保电源稳定一般用同型号的开关管换上。辅助电源开关变压器次级输出两组电压一组是+5VSB待机电压。+5VSB是供主机待机状态时的电源,所以当电源一加入市电220V后,+5VBS端就应有+5V电压输出,可先检测这一点电压的有无,若有+5V电压说明辅助电源是好的,故障在主控电源电路中.另一组为+12V 为IC 494或7500 12脚供电。在检修负载能力差。开机困难。无辜掉电 都是这两组滤波电容损坏容量不足引起。在检修电源时它的故障率很高。是因为用户只关掉电脑而没拔电源插头,使辅助电源长期工作的缘故。所以在维修时不管该滤波电容坏没坏,都要把这两组滤波电容换新确保电源工作稳定。 三.+5VSB、PS-ON、控制信号检修 ATX开关电源靠+5VSB待机、PS-ON控制信号的组合来实现电源的开启和关闭。+5VSB是供主机待机状态时的电源,使用紫色线由20针插头9脚引出+5V到主板。PS-ON控制信号是通过按下主机面板的POWER开关。使主板的电子开关接地,使PS-ON绿色线3-5V高电平变为低电平0V从20针插头14脚输出进入ATX电源来控制电源的启动,反之为关闭。所以在维修不能开机的电源故障时,短接绿线到地(黑线)电源就应该启动。不能启动可以进一步短接494 或 7500 4脚到地,如电源能启动表示主控电路正常,问题出在IC 339的电路中。反之短接494 或 7500 4脚到地,如电源不能启动表示问题出在主控电路,IC 494 脚为主控信号输出脚,5、6脚外接定时阻容元件。 四.电源次级整流输出检修
整流输出电路简单。实际就是全波整流管加LC滤波电路。电源的次级为低电压大电流,尤其是+5V输出电流达10-20A,在几只次级整流管当中+5V故障率最高。我在维修换+5V整流管时一般都是选用60V30A肖特基二极管全波整流管。所以电路中以低内阻的肖特基二极管作全波整流,以避免过大的损耗。-5V和+12V电压因电流较小,可用普通快恢复二极管,如国产的FR100系列。整流管损坏故障主要表现,开机风扇转一下及停 为整流管短路。 带负载能力差,空载正常为全波整流管有一半开路。滤波电容容量不足。在代换电源里的电解电容时最好不要用旧电源里坼机电容。因为电源里的电解电容长期在高温下工作。大部分的电解电容电解液已经干枯。即使是好的它的参数和稳定性也很差,所以一般都主张用105°新电容代换。 五.最后风扇保养
风扇的好坏决定电源能否长期工作稳定可靠。电源里的电容鼓包漏液都是由于风扇运转不正常或灰尘太多电源里散热不好而鼓包漏液的。一般风扇很少坏,当然也有风扇坏的 大部分都是风扇芯缺润滑油。所以我们在把电源维修正常后。不管风扇是否运转正常都要对风扇芯加油,首先把风扇标签纸撕开取下防尘盖,先在里面滴一滴机油,来回转动风扇使其转动灵活。记住只滴一滴不能太多,在赌上少许黄油在盖好防尘盖和标签纸。风扇维修完毕。只要风扇运转正常,确保你修好的电源稳定运行两年以上。检修完毕装好电路板和风扇 ,空载时短接绿黑线测量电源输出各路电压正常。在接上假负载测试。本人用的假负载是能启动电源的废主板,废硬盘,废光驱。接好后 短接主板上的POWER排针启动电源测量各组电压输出达到正常值即可。---------------------------------------------检修ATX开关电源,从+5VSB、PS-ON和PW-OK信号入手来定位故障区域,是快速检修中行之有效的方法。 一、+5VSB、PS-ON、PW-OK控制信号 ATX开关电源与AT电源最显著的区别是,前者取消了传统的市电开关,依靠+5VSB、PS-ON控制信号的组合来实现电源的开启和关闭。+5VSB是供主机系统在ATX待机状态时的电源,以及开闭自动管理和远程唤醒通讯联络相关电路的工作电源,在待机及受控启动状态下,其输出电压均为5V高电平,使用紫色线由ATX插头(图1)9脚引出。PS-ON为主机启闭电源或网络计算机远程唤醒电源的控制信号,不同型号的ATX开关电源,待机时电压值为3V、3.6V、4.6V各不相同。当按下主机面板的POWER开关或实现网络唤醒远程开机,受控启动后PS-ON由主板的电子开关接地,使用绿色线从ATX插头14脚输入。PW-OK是供主板检测电源好坏的输出信号,使用灰色线由ATX插头8脚引出,待机状态为零电平,受控启动电压输出稳定后为5V高电平。 检修ATX开关电源,应从PS-ON和PW-OK、+5V SB信号入手。脱机带电检测ATX电源待机状态时,+5V SB、PS-ON信号高电平,PW-OK低电平,其他电压无输出。ATX电源由待机状态转为启动受控状态的方法是:用一根导线把ATX插头14脚PS- ON信号,与任一地端3、5、7、13、15、16、17中的一脚短接,此时PS-ON信号为零电平,PW-OK、+5V SB信号为高电平(绿灰线电平反转),开关电源风扇旋转,ATX插头+3.3V、+5V、+12V有输出。  一、常见故障分析与处理  1.电源无输出  当电源在有负载情况下,测量不出各输出端的直流电压时即认为电源无输出。这时应先打开电源检查保险丝,通过保险丝熔断情况来分析故障范围。  1)保险丝熔断并发黑  说明有严重短路现象,应重点检查整流滤波和功率逆变电路。  (1)交流滤波电容C3、C4因交流浪涌电压击穿而短路,有些ATX电源交流滤波电路比较复杂,应检查是否有短路的元件。  (2)交流主回路桥式整流电路中某个二极管击穿。损坏原因:由于直流滤波电容C5、C6一般为330μF或 470μF的大容量电解电容,瞬间充电电流可达20A以上。所以瞬间大容量的浪涌电流易造成整流桥中某个性能略差的整流管烧坏。另外交流浪涌电压也会击穿整流二极管而短路。  (3)整流滤波电路中的直流滤波电容C5、C6击穿,甚至发生爆裂现象。损坏原因:由于大容量的电解电容耐压一般为200V左右,而实际工作电压达到 150V左右,接近额定值。因此,当输入电压产生波动或某些电解电容质量较差时,就容易发生击穿电容现象。另外当电解电容发生漏电时,就会严重发热而爆裂。  (4)直流变换电路中的功率开关晶体管VT1、VT2和换向二极管VD1、VD2击穿损坏。损坏原因:由于整流滤波后的输出电压一般高达300V左右,逆变功率开关管的负载又是感性负载,漏感所形成的电压峰值可能接近于600V,而VT1、VT2的耐压Vceo只有450V左右。因此当输入电压偏高时,某些耐压偏低的开关管将被击穿。所以可选择耐压更高的功率开关管。  2)保险丝熔断但不发黑  说明不是短路引起保险丝熔断。  (1)通电瞬间烧断保险,多为瞬间的大电流将保险冲断,如开机时直流滤波电容的充电电流。  (2)使用过程中烧断保险,多为负载过大所致。  3)保险丝未熔断  如电源无输出。而保险丝完好,则应检查电源控制线路中是否有开路、短路现象,以及过压、过流保护电路是否动作,辅助电源是否完好等。  (1)交流输入回路的限流电阻THR开路,此时测不到300V直流电压。开关电源采用220V直接整流滤波电路,当接通交流电压时会有较大的浪涌电流 (电容充电电流),浪涌电流易造成限流电阻或保险丝熔断。  (2)辅助电源无+5V电压输出。应重点检查辅助电源电路中的相关元件,如辅助电源电路VT15振荡管损坏,VZ16稳压管、VD30、VD41二极管击穿短路,限流电阻R72或启动电阻R76断路等。  (3)脉宽调制芯片TL494损坏,电压比较器LM393损坏。另外如IC10、VT7短路,会使IC1的4脚的电压为高电平,而处于待机状态。  (4)直流输出端有短路,此时短路保护会起作用。其现象是开机瞬间电源指示亮,然后马上又熄灭。应仔细检查±5V、±12V线路是否有破损或电路板上有击穿的器件。一般最为常见+5V直流回路的肖特基二级管被击穿。  (5)直流输出过压,此时过压保护会起作用。此时应检查+5V、+12V自动稳压控制电路是否损坏,使自动稳压控制失效。  2.受控启动后直流电源无输出  (1)T2原边VT3、VT4推动管损坏,R54电阻阻值变大;  (2)半桥功率变换电路开关管VT1、VT2至少有一个开路;  (3)防偏磁电容C8容量变小或开路。  3.电源有输出,但开机不自检  这主要是因为电源的PW-OK信号延迟时间不够或无输出造成的。开机后,用电压表测量PW-OK的输出端(电源插头的8脚)有无+5V。此时应检查比较器LM393是否损坏。如因延时不够,则应检查延时电路中的电阻R104和电容C60。  4.电源负载能力差  电源负载能力差主要表现为:电源在轻负载情况下,如只向系统板、软驱供电时,能正常工作,而在配上大硬盘、扩充其他设备时,往往电源工作就不正常。这种情况一般是功率变换电路的开关管VT1、VT2性能不好,滤波电容器C5、C6容量不足。更换滤波电容时应注意 2个电容的容量和耐压值必须一致。  5.电源输出电压不准  如果只有一档电压偏离额定值,而其他各档电压均正常,则是该档电压的集成稳压电路或整流二极管损坏。如全部偏离额定值,则是由IC1的1、2脚误差放大器,R39、C32误差放大器负反馈回路,取样电阻R33、R34、R35、构成+5V、+12V自动稳压控制电路有故障。  在更换电源电路中的二级管时要注意,因为逆变器工作频率较高,一般大于20kHz,另外负载电流也较大,故电源中+5V档采用肖特基高频整流二极管SBD,其余各档也采用恢复特性的高频整流二极管FRD。所以在更换时要尽可能找到相同类型的整流二极管,以免再次损坏。  6.风扇不转或发生响声  计算机电源的风扇通常采用接在+12V直流输出端的直流风扇。如果电源输入输出一切正常,而风扇不转,多为风扇电机损坏。如果发出响声,其原因之一是由于机器长期的运转或运输过程中的激烈振动引起风扇的4个固定螺钉松动;其二是风扇内部灰尘太多或含油轴承缺油,只要及时清理或加入适量的高级润滑油,故障就可排除。
回答者:叶祥龙
Mail: Copyright by ;All rights reserved.
说的太好了,我顶!
Copyright & 2014
Corporation, All Rights Reserved
Processed in 0.0366 second(s), 3 db_queries,
0 rpc_queries}

我要回帖

更多关于 tl494去保护 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信