如图,高一物理讲课视频,这个式子是怎么推下去的?

503 Service Temporarily Unavailable
503 Service Temporarily Unavailable
openresty/1.11.2.4高中物理_典型例题及答案_选修3-1-海文库
全站搜索:
您现在的位置:&>&&>&高中理化生
高中物理_典型例题及答案_选修3-1
第一章 静电场一、库仑定律 知识要点 1.真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。即:F?kq1q29 22
其中k为静电力常量, k=9.0310 N?m/c r2成立条件:①真空中(空气中也近似成立);②点电荷。即带电体的形状和大小对相互作用力的影响可以忽略不计。(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r球心距代替r)。2.同一条直线上的三个点电荷的计算问题。3.与力学综合的问题。例题分析例1:在真空中同一条直线上的A、B两点固定有电荷量分别为+4Q和-Q的点电荷。①将另一个点电荷放在该直线上的哪个位置,可以使它在电场力作用下保持静止?②若要求这三个点电荷都只在电场力作用下保持静止,那么引入的这个点电荷应是正电荷还是负电荷?电荷量是多大?
解:①先判定第三个点电荷所在的区间:只能在B点的右
r?Q侧;再由F?kQq,F、k、q相同时∴r∶r=2∶1,即ABr2C在AB延长线上,且AB=BC。②C处的点电荷肯定在电场力作用下平衡了;只要A、B两个点电荷中的一个处于平衡,另一个必然也平衡。由F?kQq2,F、k、QA相同,Q∝r,∴QC∶QB=4∶1,而且必须是正电荷。所以C点处引入的点电荷QC= +4Q r2例2:已知如图,带电小球A、B的电荷分别为QA、QB,OA=OB,都用长L的丝线悬挂在O点。静止时A、B相距为d。为使平衡时AB间距离减为d/2,可采用以下哪些方法A.将小球A、B的质量都增加到原来的2倍B.将小球B的质量增加到原来的8倍C.将小球A、B的电荷量都减小到原来的一半D.将小球A、B的电荷量都减小到原来的一半,同时将小球B的质量增加到原来的2倍解:由B的共点力平衡图kQAQBLkQAQBFd,可知,选BD 3d??,而F?2mgdmBgL例3:已知如图,光滑绝缘水平面上有两只完全相同的金属球A、B,带电量分别为-2Q与-Q。现在使它们以相同的初动能E0(对应的动量大小为p0)开-2
始相向运动且刚好能发生接触。接触后两小球又各自反向运动。当它们刚好回到各自的出发点时的动能分别为E1和E2,动量大小分别为p1和p2。有下列说法:①E1=E2& E0,p1=p2& p0 ②E1=E2= E0,p1=p2= p0 ③接触点一定在两球初位置连线的中点右侧某点 ④两球必将同时返回各自的出发点。其中正确的是A.②④
D.③④解:由牛顿定律的观点看,两球的加速度大小始终相同,相同时间内的位移大小一定相同,必然在连线中点相遇,又同时返回出发点。由动量观点看,系统动量守恒,两球的速度始终等值反向,也可得出结论:两球必将同时返回各自的出发点。且两球末动量大小和末动能一定相等。从能量观点看,两球接触后的电荷量都变为-1.5Q,在相同距离上的库仑斥力增大,返回过程中电场力做的正功大于接近过程中克服电场力做的功,由机械能定理,系统机械能必然增大,即 末动能增大。选C。本题引出的问题是:两个相同的带电小球(可视为点电荷),相碰后放回原处,相互间的库仑力大小怎样变化?讨论/ / / / / /如下:①等量同种电荷,F=F;②等量异种电荷,F=0&F;③不等量同种电荷F&F;④不等量异种电荷F&F、F=F、F&F都有可能,当满足q1=(3±22)q2时F=F。例4:已知如图,在光滑绝缘水平面上有三个质量都是m的相同小球,两两间的距离都是l,A、B电荷量都是+q。给C一个外力F,使三个小球保持相对静止共同加速运动。求:C球的带电电性和电荷量;外力F的大小。解:先分析A、B两球的加速度:它们相互间的库仑力为斥力,因此C对它们只能是引力,且两个库仑力的合力应沿垂直与AB连线的方向。这样 /F33kq2就把B受的库仑力和合力的平行四边形确定了。于是可得QC= -2q,F=3FB=33FAB=。 l2二、电场的性质 知识要点电场的最基本的性质是对放入其中的电荷有力的作用,电荷放入电场后就具有电势能。1.电场强度E是描述电场的力的性质的物理量。?定义:放入电场中某点的电荷所受的电场力F跟它的电荷量q的比值,叫做该点的电场强度,简称场强。①这是电场强度的定义式,适用于任何电场。②其中的q为试探电荷(以前称为检验电荷),是电荷量很小的点电荷(可正可负)。③电场强度是矢量,规定其方向与正电荷在该点受的电场力方向相同。?点电荷周围的场强公式是:?匀强电场的场强公式是: 2.电势 E?UdE?Fq
kQr2,其中Q是产生该电场的电荷,叫场电荷。 E?,其中d是沿电场线方向上的距离。孤立点电荷周围的电场 等量异种点电荷的电场 等量同种点电荷的电场
点电荷与带电平板 匀强电场φ是描述电场的能的性质的物理量。电场中某点的电势,等于单位正电荷由该点移动到参考点(零电势点)时电场力所做的功。和机械能中的重力势能类似,电场力做功也只跟始末位置间的电势差有关,和路径无关。W电=Uq。根据功是能量转化的量度,有ΔE=-W电,即电势能的增量等于电场力做功的负值。3.电场线和等势面要牢记以下6种常见的电场的电场线和等势面,注意电场线、等势面的特点和电场线与等势面间的关系:①电场线的方向为该点的场强方向,电场线的疏密表示场强的大小。②电场线互不相交,等势面也互不相交。③电场线和等势面在相交处互相垂直。④电场线的方向是电势降低的方向,而且是降低最快的方向。⑤电场线密的地方等差等势面密;等差等势面密的地方电场线也密。4.电荷引入电场
(1)将电荷引入电场:将电荷引入电场后,它一定受电场力Eq,且一定具有电势能φq。(2)在电场中移动电荷电场力做的功:在电场中移动电荷电场力做的功W=qU,只与始末位置的电势差有关。在只有电场力做功的情况下,电场力做功的过程是电势能和动能相互转化的过程。W= -ΔE=ΔEK。
?正电荷在电势高处电势能大;负电荷在电势高处电势能小。?利用公式W=qU进行计算时,各量都取绝对值,功的正负由电荷的正负和移动的方向判定。?每道题都应该画出示意图,抓住电场线这个关键。(电场线能表示电场强度的大小和方向,能表示电势降低的方向。有了这个直观的示意图,可以很方便地判定点电荷在电场中受力、做功、电势能变化等情况。) 例题分析 例1:如图所示,在等量异种点电荷的电场中,将一个正的试探电荷由a 点沿直线移到o点,再沿直线由o点移到c点。在该过程中,检验电荷所受的电场力大小和方向如何改变?其电势能又如何改变? 解:根据电场线和等势面的分布可知:电场力一直减小而方向不变;电势能先减小后不变。 例2:图中边长为a的正三角形ABC的三点顶点分别固定三个点电荷+q、+q、-q,求该三角形中心O点处的场强大小和方向。 解:每个点电荷在O点处的场强大小都是 kq
E? 2a/3A 由图可得O点处的合场强为Eo?6kq方向由O指向C 。 2a例3:如图,在x轴上的x = -1和x =1两点分别固定电荷量为- 4Q
和+9Q的点电荷。求:x轴上合场强为零的点的坐标。并求在x = -3点 处的合场强方向。解:由库仑定律可得合场强为零的点的坐标为x= -5。x= -3、x= -1、x=1这三个点把x轴分成四段,可以证明:同一直线上的两个点电荷所在的点和它们形成的合场强为零的点把该直线分成4段,相邻两段上的场强方向总是相反的。本题从右到左,4个线段(或射线)上的场强方向依次为:向右、向左、向右、向左,所以x= -3点处的合场强方向为向右。例4:如图所示,三个同心圆是同一个点电荷周围的三个等势面,已知这三个圆的半径成等差数列。A、B、C分别是这三个等势面上的点,且这三点在同一条电场线上。A、C两点的电势依次为φA=10V和φC=2V,则B点的电势是A.一定等于6V
B.一定低于6V
C.一定高于6V
D.无法确定解:由U=Ed,在d相同时,E越大,电压U也越大。因此UAB& UBC,选B-10例5:如图所示,将一个电荷量为q = +3310C的点电荷从电场-9
中的A点移到B点过程,克服电场力做功6310J。已知A点的电势为φA= - 4V,求B点的电势。 解:先由W=qU,得AB间的电压为20V,再由已知分析:向右移动正电荷做负功,说明电场力向左,因此电场线方向向左,得出B点电势高。因此φB=16V。例6:α粒子从无穷远处以等于光速十分之一的速度正对着静止的金核射去(没有撞到金核上)。已知离点电荷Q距离为r处的电势的计算式为 φ=kQ,那么α粒子的最大电势能是多大?由此估算金原子核的半径是多大? rmMv2,由于金核
2m?M解:α粒子向金核靠近过程克服电场力做功,动能向电势能转化。设初动能为E,到不能再接近(两者速度相等时),可认为二者间的距离就是金核的半径。根据动量守恒定律和能量守恒定律,动能的损失?Ek? 质量远大于α粒子质量,所以动能几乎全部转化为电势能。无穷远处的电势能为零,故最大电势能E=1mv2?3.0?10?12J,2再由E=φq=kQq-14-14,得r =1.2310m,可见金核的半径不会大于1.2310m。 r-6例7:已知ΔABC处于匀强电场中。将一个带电量q= -2310C的点电荷从A移到B的过程中,电场力做功W1= -1.2-5-6310J;再将该点电荷从B移到C,电场力做功W2= 6310J。已知A点的电势φA=5V,则B、C两点的电势分别为____V和____V。试在右图中画出通过A
点的电场线。解:先由W=qU求出AB、BC间的电压分别为6V和3V,再根据负电荷A→B电场力做负功,电势能增大,电势降低;B→C电场力做正功,电势能减小,电势升高,知φB= -1VφC=2V。沿匀强电场中任意一条直线电势都是均匀变化的,因此AB中点D的电势与C点电势相同,CD为等势面,过A做CD的垂线必为电场线,方向从高电势指向低电势,所以斜向左下方。例8:如图所示,虚线a、b、c是电场中的三个等势面,相邻等势面间的电势差相同,实线为一个带正电的质点仅在电场力作用下,通过该区域的
运动轨迹,P、Q是轨迹上的两点。下列说法中正确的是A.三个等势面中,等势面a的电势最高B.带电质点一定是从P点向Q点运动
C.带电质点通过P点时的加速度比通过Q点时小D.带电质点通过P点时的动能比通过Q点时小解:先画出电场线,再根据速度、合力和轨迹的关系,可以判定:质点在各点受的电场力方向是斜向左下方。由于是正电荷,所以电场线方向也沿电场线向左下方。答案仅有D三、带电粒子在电场中的运动知识要点1.带电粒子在匀强电场中的加速一般情况下带电粒子所受的电场力远大于重力,所以可以认为只有电场力做功。由动能定理W=qU=ΔEK,此式与电场是否匀强无关,与带电粒子的运动性质、轨迹形状也无关。 2.带电粒子在匀强电场中的偏转质量为m电荷量为q的带电粒子以平行于极板的初速度v0射入长L板间距离为d的平行板电容器间,两板间电压为U,求射出时的侧移、偏转角和动能增量。 Uq??L?UL千万不要死记公式,要清楚物?侧移:y?1??????2?dm??v?4U?d22 理过程。根据不同的已知条件,结论改用不同的表达形式(已知初速度、初动能、初动量或加速电压等)。 ?偏角:tan??vy?UqL?UL,注意到y?Ltan?,说明穿出时刻的末速度的反向延长线与初速度延长线交点恰好2vdmv22U?d在水平位移的中点。这一点和平抛运动的结论相同。?穿越电场过程的动能增量:ΔEK=Eqy (注意,一般来说不等于qU) 3.带电物体在电场力和重力共同作用下的运动。当带电体的重力和电场力大小可以相比时,不能再将重力忽略不计。这时研究对象经常被称为“带电微粒”、“带电尘埃”、“带电小球”等等。这时的问题实际上变成一个力学问题,只是在考虑能量守恒的时候需要考虑到电势能的变化。例题分析例1:如图所示,两平行金属板竖直放置,左极U板接地,中间有小孔。右极板电势随时间变化的规律如图所示。电子原来静止在左极板小孔处。(不计重力
作用)下列说法中正确的是 A.从t=0时刻释放电子,电子将始终向右运动,直到打到右极板上
B.从t=0时刻释放电子,电子可能在两板间振动C.从t=T/4时刻释放电子,电子可能在两板间振动,也可能打到右极板上D.从t=3T/8时刻释放电子,电子必将打到左极板上解:从t=0时刻释放电子,如果两板间距离足够大,电子将向右先匀加速T/2,接着匀减速T/2,速度减小到零后,又开始向右匀加速T/2,接着匀减速T/2??直到打在右极板上。电子不可能向左运动;如果两板间距离不够大,电子也始终向右运动,直到打到右极板上。从t=T/4时刻释放电子,如果两板间距离足够大,电子将向右先匀加速T/4,接着匀减速T/4,速度减小到零后,改为向左先匀加速T/4,接着匀减速T/4。即在两板间振动;如果两板间距离不够大,则电子在第一次向右运动过程中就有可能打在右极板上。从t=3T/8时刻释放电子,如果两板间距离不够大,电子将在第一次向右运动过程中就打在右极板上;如果第一次向右运动没有打在右极板上,那就一定会在第一次向左运动过程中打在左极板上。选AC例2:如图所示,热电子由阴极飞出时的初速忽略不计,电子发射装置的加3速电压为U0。电容器板长和 板间距离均为L=10cm,下极板接地。电容器右端到荧光
屏的距离也是L=10cm。在电容器两极板间接一交变电压,上极板的电势随时间变化的图象如左图。(每个电子穿过平行板的时间极短,可以认为电压是不变的)求:①在t=0.06s时刻,电子打在荧光屏上的何处?②荧光屏上有电子打到的区间有多长?③屏上的亮点如何移动?解:①由图知t=0.06s时刻偏转电压为1.8U0,可求得y = 0.45L= 4.5cm,打在屏上的点距O点13.5cm。②电子的最大侧移为0.5L(偏转电压超过2.0U0,电子就打到极板上了),所以荧光屏上电子能打到的区间长为3L=30cm。③屏上的亮点由下而上匀速上升,间歇一段时间后又重复出现。例3:已知如图,水平放置的平行金属板间有匀强电场。一根长l的绝缘细
绳一端固定在O点,另一端系有质量为m并带有一定电荷的小球。小球原来静+ 止在C点。当给小球一个水平冲量后,它可以在竖直面内绕O点做匀速圆周运动。若将两板间的电压增大为原来的3倍,求:要使小球从C点开始在竖直面内绕O点做圆周运动,至少要给小球多大的水平冲量?在这种情况下,在小球运动过程中细绳所受的最大拉力是多大?解:由已知,原来小球受到的电场力和重力大小相等,增大电压后电场力是重力的3倍。在C点,最小速度对应最
小的向心力,这时细绳的拉力为零,合力为2mg,可求得速度为v=2gl,因此给小球的最小冲量为I = m2gl。在最高2mvD1122点D小球受到的拉力最大。从C到D对小球用动能定理:2mg?2l?mvD?mvC,在D点F?2mg?,解得F=12mg。 l226例4:已知如图,匀强电场方向水平向右,场强E=1.5310V/m,丝线长l=40cm,-4-10上端系于O点,下端系质量为m=1.0310kg,带电量为q=+4.9310C的小球,将小球从最低点A由静止释放,求:?小球摆到最高点时丝线与竖直方向的夹角多大??摆动过程中小球的最大速度是多大?解:?这是个“歪摆”。由已知电场力Fe=0.75G摆动到平衡位置时丝线与竖直方向成37°角,因此最大摆角为74°。2?小球通过平衡位置时速度最大。由动能定理:1.25mg?0.2l=mvB/2,vB=1.4m/s。 例5(16分)如图12所示,在沿水平方向的匀强电场中有一固定点O,用一根长度为l=0.40 m的绝缘细线把质量为m=0.10 kg,带有正电荷的金属小球悬挂在O点,小球静止在B点时细线与竖直方向的夹角为
= 。现将小球拉至位置A使细线水平后由静止释放,求:(1)小球运动通过最低点C时的速度大小。(2)小球通过最低点C时细线对小球的拉力大小。(g取10 m/s ,
sin =O.60,
cos =0.80)
四、电容器知识要点1.电容器:两个彼此绝缘又相隔很近的导体都可以看成一个电容器。2.电容器的电容: 电容C?Q是表示电容器容纳电荷本领的物理量,是由电容器本身的性质(导体大小、形状、相对位置及电介质)U决定的。3.平行板电容器的电容: 平行板电容器的电容的决定式是:C??s?s
?4?kdd 4.两种不同变化:电容器和电源连接如图,改变板间距离、改变正对面积或改变板间电解电容,从而可能引起电容器两板间电场的变化。这里一定要分清两种常见的?电键K保持闭合,则电容器两端的电压恒定(等于电源电动势),这
质材料,都会改变其变化:
种情况下带电量 Q?CU?C,而C??S?SU1?,E?? 4?kdddd?充电后断开K,保持电容器带电量Q恒定,这种情况下C??sd,U?d1,E? ?s?s例题分析例1:如图所示,在平行板电容器正中有一个带电微粒。K闭合时,该微粒恰好能保持静止。在①保持K闭合;②充电后将K断开;两种情况下,各用什么方法能使该带电微粒向上运动打到上极板?A.上移上极板M
B.上移下极板NC.左移上极板M
D.把下极板N接地解:由上面的分析可知①选B,②选C。例2:计算机键盘上的每一个按键下面都有一个电容传感器。电容的计算公式是C??M -12-1S,其中常量ε=9.0310F?m,S表示两金属片的正对d面积,d表示两金属片间的距离。当某一键被按下时,d发生改变,引起电容器的电容发生改变,从而给电子线路发出相2应的信号。已知两金属片的正对面积为50mm,键未被按下时,两金属片间的距离为0.60mm。只要电容变化达0.25pF,电子线路就能发出相应的信号。那么为使按键得到反应,至少需要按下多大距离
解:先求得未按下时的电容C1=0.75pF,再由得Δd= 0.15mm
C1d2?C?d?得和C2=1.00pF,?C2d1C2d1例3(14分)如图所示,水平放置的平行板电容器,原来两板不带电,上极板接地,它的极板长L = 0.1m,两板间距离 d = 0.4 cm,有一束相同的带电微粒以相同的初速度先后从两板中心平行极板射入,由于重力作用微粒能落到下板上,微粒所带电荷立即转移到下极板且均匀分布在下极板上.设前一微粒落到下极板上时后一微粒才能开始射入两极板间。已知微粒质量为 m = 2×10-6kg,电量q
C,电容器电容为C =10-6 F,取.求:(1)为使第一个微粒的落点范围能在下板中点到紧靠边缘的B点之内,求微粒入射的初速度v0的取值范围;(2)若带电微粒以第一问中初速度极板上?例5、如图所示,水平方向的匀强电场的场强为E,场区宽度为L,竖直方向足够长。紧挨着电场的是垂直于纸面向外的两个匀强磁场区域,其磁感应强度分别为B和2B。一个质量为m,电量为q的带正电粒子,其重力不计,从电场的 的最小值入射,则最多能有多少个带电微粒落到下边界MN上的a点由静止释放,经电场加速后进入磁场,经过时间 穿过中间磁场,进入右边磁场后能按某一路径再返回到电场的边界MN上的某一点b,途中虚线为场区的分界面。求:(1)中间场区的宽度d;(2)粒子从a点到b点所经历的时间 粒子从a点出发,在电场中加速和在磁场中偏转,回到MN上的b点,轨迹如图所示解:(1)粒子在电场中加速运动时,有 (3);当粒子第 次返回电场的MN边界时与出发点之间的距离 。 解得: ①由:得:粒子在中间磁场通过的圆弧所对的圆心角为 30° ②粒子在中间磁场通过的圆弧半径为:由几何关系得:
③(2)粒子在右边磁场中运动:其圆弧对应的圆心角为 α=120°则:
④粒子在电场中加速时:⑤根据对称性:= 6 \* GB3 ⑥(3)由轨迹图得:= 7 \* GB3 ⑦= 8 \* GB3 ⑧再由周期性可得:= 9 \* GB3 ⑨例6、(18分)如图所示,坐标系xoy位于竖直平面内,所在空间有沿水平方向垂直于纸面向里的匀强磁场,磁感应强度大小为B,在x&0的空间内还有沿x轴负方向的匀强电场,场强大小为E。一个带正电的油滴经图中x轴上的M点,沿着直线MP做匀速运动,过P点后油滴进入x&0的区域,图中需在该区域内加一个匀强电场。若带电油滴做匀速圆周运动时沿(1)油滴运动速率的大小;(2)在x&0的区域内所加电场的场强大小和方向;(3)油滴从x轴上的M点经P点运动到N点所用的时间。 。要使油滴在x&0的区域内做匀速圆周运动,弧垂直于x轴通过了轴上的N点,求:
(1)如图所示, 油滴受三力作用沿直线匀速运动,由平衡条件有① (2分)② (2分)由①式解得 ③ (1分)(2)在x&0的区域,油滴要做匀速圆周运动,其所受的电场力必与重力平衡,由于油滴带正电,所以场强方向竖直向上。 (1分)若设该电场的场强为 ,则有 ④ (1分)由②、④式联立解得 (1分)(3)如图所示,弧PN为油滴做圆周运动在x&0,y&0区域内的圆弧轨迹。过P点作垂直于MP的直线,交x轴于 点,则 点一定是圆心,且∠ (2分)
设油滴从M点到P点和从P点到N点经历的时间分别为做匀速圆周运动时有 ⑤ (2分)由②、③、⑤式解得 ⑥ (1分)所以 ⑦ (2分)⑧ (2分)全过程经历的时间为(1分)例7、关于同一电场的电场线,下列表述正确的是A.电场线是客观存在的B.电场线越密,电场强度越小C.沿着电场线方向,电势越来越低D.电荷在沿电场线方向移动时,电势能减小答案.C【解析】电场是客观存在的,而电场线是假想的,A错.电场线越密的地方电场越大B错.沿着电场线的方向电势逐渐降低C对.负电荷沿着电场线方向移动时电场力做负功电势能增加D错 例8、带电粒子垂直匀强磁场方向运动时,会受到洛伦兹力的作用。下列表述正确的是A.洛伦兹力对带电粒子做功B.洛伦兹力不改变带电粒子的动能C.洛伦兹力的大小与速度无关D.洛伦兹力不改变带电粒子的速度方向答案.B【解析】根据洛伦兹力的特点, 洛伦兹力对带电粒子不做功,A错.B对.根据F?qvB,可知大小与速度有关. 洛伦兹力的效
果就是改变物体的运动方向,不改变速度的大小. 例9、如图6,一带负电粒子以某速度进入水平向右的匀强电场中,在电场力作用下形成图中所示的运动轨迹。M和N是轨迹上的两点,其中M点在轨迹的最右点。不计重力,下列表述正确的是A.粒子在M点的速率最大B.粒子所受电场力沿电场方向C.粒子在电场中的加速度不变D.粒子在电场中的电势能始终在增加
答案.C【解析】根据做曲线运动物体的受力特点合力指向轨迹的凹一侧,再结合电场力的特点可知粒子带负电,即受到的电场力方向与电场线方向相反,B错.从N到M电场力做负功,减速.电势能在增加.当达到M点后电场力做正功加速电势能在减小则在M点的速度最小A错,D错.在整个过程中只受电场力根据牛顿第二定律加速度不变. 例10、在光滑的绝缘水平面上,有一个正方形的abcd,顶点a、c处分别固定一个正点电荷,电荷量相等,如图所示。若将一个带负电的粒子置于b点,自由释放,粒子将沿着对角线bd往复运动。粒子从b点运动到d点的过程中A. 先作匀加速运动,后作匀减速运动B. 先从高电势到低电势,后从低电势到高电势C. 电势能与机械能之和先增大,后减小D. 电势能先减小,后增大答案:D解析:由于负电荷受到的电场力是变力,加速度是变化的。所以A错;由等量正电荷的电场分布知道,在两电荷连线的中垂线O点的电势最高,所以从b到a,电势是先增大后减小,故B错;由于只有电场力做功,所以只有电势能与动能的相互转化,故电势能与机械能的和守恒,C错;由b到O电场力做正功,电势能减小,由O到d电场力做负功,电势能增加,D对。 例11、如图所示,匀强电场方向沿x轴的正方向,场强为E。在A(d,0)点有一个静止的中性微粒,由于内部作用,某一时刻突然分裂成两个质量均为m的带电微粒,其中电荷量为q的微粒1沿y轴负方向运动,经过一段时间到达(0,?d)点。不计重力和分裂后两微粒间的作用。试求(1)分裂时两个微粒各自的速度;(2)当微粒1到达(0,?d)点时,电场力对微粒1做功的
瞬间功率;(3)当微粒1到达(0,?d)点时,两微粒间的距离。答案:(1)v1??qEd,v2?2m-2qEdqEd方向沿y正方向(2)P?qE(3)22d 2mm解析:(1)微粒1在y方向不受力,做匀速直线运动;在x方向由于受恒定的电场力,做匀加速直线运动。所以微粒1做的是类平抛运动。设微粒1分裂时的速度为v1,微粒2的速度为v2则有:在y方向上有-d?v1t在x方向上有qE m12-d?at 2a?v1?--qEd 2m根号外的负号表示沿y轴的负方向。中性微粒分裂成两微粒时,遵守动量守恒定律,有mv1?mv2?0v2??v1?qEd 2m方向沿y正方向。(2)设微粒1到达(0,-d)点时的速度为v,则电场力做功的瞬时功率为 P?qEvBcos??qEvBx 其中由运动学公式vBx?-2ad??-2qEd m所以P?qE-2qEd m(3)两微粒的运动具有对称性,如图所示,当微粒1到达(0,-d)点时发生的位移S1?2d则当当微粒1到达(0,-d)点时,两微粒间的距离为BC?2S1?22d 例12、如图所示,平行板电容器与电动势为E的直流电源(内阻不计)连接,下极板接地。一带电油滴位于容器中的P
点且恰好处于平衡状态。现将平行板电容器的上极板竖直向上移动一小段距离A.带点油滴将沿竖直方向向上运动B.P点的电势将降低C.带点油滴的电势将减少D.若电容器的电容减小,则极板带电量将增大答案B【解析】电容器两端电压U不变,由公式E?U,场强变小,电场力变小,带点油滴将沿竖直方向向下运动,A错; Pd到下极板距离d不变,而强场E减小,由公式U=Ed知P与正极板的电势差变小,又因为下极板电势不变,所以P点的电势变小,B对;由于电场力向上,而电场方向向下,可以推断油滴带负电,又P点的电势降低,所以油滴的电势能增大,C错;图中电容器两端电压U不变,电容C减小时由公式Q=CU,带电量减小,D错。 例13、如图所示,在第一象限有一匀强电场,场强大小为E,方向与y轴平行;在x轴下方有一匀强磁场,磁场方向与纸面垂直。一质量为m、电荷量为-q(q&0)的粒子以平行于x轴的速度从y轴上的P点处射入电场,在x轴上的Q点处进入磁场,并从坐标原点O离开磁场。粒子在磁场中的运动轨迹与y轴交于M点。已知OP=l,OQ?23l。不计重力。求(1)M点与坐标原点O间的距离;(2)粒子从P点运动到M点所用的时间。【解析】(1)带电粒子在电场中做类平抛运动,在y轴负方向上做初速度为零的匀加速运动,设加速度的大小为a;在x轴正方向上做匀速直线运动,设速度为v0,粒子从P点运动到Q点所用的时间为t1,进入磁场时速度方向与x轴正方向的夹角为?, 则a?xqE
④ v0其中x0?,y0?l。又有tan??联立②③④式,得??30?因为M、O、Q点在圆周上,?MOQ=90?,所以MQ为直径。从图中的几何关系可知。
⑦(2)设粒子在磁场中运动的速度为v,从Q到M点运动的时间为t2, 则有v ?v0?R
⑨ cos?v带电粒子自P点出发到M点所用的时间为t为t?t1+ t2
联立①②③⑤⑥⑧⑨⑩式,并代入数据得t?+ 1? 例14、如图所示。一电场的电场线分布关于y轴(沿竖直方向)对称,O、M、N是y轴上的三个点,且OM=MN,P点在y轴的右侧,MP⊥ON,则A. M点的电势比P点的电势高B. 将负电荷由O点移动到P点,电场力做正功C. M、N 两点间的电势差大于O、M两点间的电势差D. 在O点静止释放一带正电粒子,该粒子将沿y轴做直线运动答案AD【解析】本题考查电场、电势、等势线、以及带电粒子在电场中的运动.由图和几何关系可知M和P两点不处在同一等势线上而且有?M??P,A对.将负电荷由O点移到P要克服电场力做功,及电场力做负功,B错.根据U?Ed,O到M的平均电场强度大于M到N的平均电场强度,所以有UOM?UMN,C错.从O点释放正电子后,电场力做正功,该粒子将沿y轴做加速直线运动. 例15、图中虚线为匀强电场中与场强方向垂直的等间距平行直线。两粒子M、N质量相等,所带电荷的绝对值也相等。现将M、N从虚线上的O点以相同速率射出,两粒子在电场中运动的轨迹分别如图中两条实线所示。点a、b、c为实线与虚线的交点,已知O点电势高于c 点。若不计重力,则A. M带负电荷,N带正电荷B. N在a点的速度与M在c点的速度大小相同C. N在从O点运动至a点的过程中克服电场力做功D. M在从O点运动至b点的过程中,电场力对它做的功等于零答案BD【解析】本题考查带电粒子在电场中的运动.图中的虚线为等势线,所以M点从O点到b点的过程中电场力对粒子做功等于零,D正确.根据MN粒子的运动轨迹可知N受到的电场力向上M受到的电场力向下,电荷的正负不清楚但为异种电荷.A错.o到a的电势差等于o到c的两点的电势差,而且电荷和质量大小相等,而且电场力都做的是正功根据动能定理得a
与 c两点的速度大小相同,但方向不同,B对. 例16、如图所示,在x轴上关于原点O对称的两点固定放置等量异种点电荷+Q和-Q,x轴上的P点位于的右侧。下列判断正确的是(
)A.在x轴上还有一点与P点电场强度相同B.在x轴上还有两点与P点电场强度相同C.若将一试探电荷+q从P点移至O点,电势能增大D.若将一试探电荷+q从P点移至O点,电势能减小 答案:AC考点:电场线、电场强度、电势能解析:根据等量正负点电荷的电场分布可知,在x轴上还有一点与P点电场强度相同,即和P点关于O点对称,A正确。若将一试探电荷+q从P点移至O点,电场力先做正功后做负功,所以电势能先减小后增大。一般规定无穷远电势为零,过0点的中垂线电势也为零,所以试探电荷+q在P点时电势能为负值,移至O点时电势能为零,所以电势能增大,C正确。提示:熟悉掌握等量正负点电荷的电场分布。知道WAB?EPA?EPB,即电场力做正功,电势能转化为其他形式的能,电势能减少;电场力做负功,其他形式的能转化为电势能,电势能增加,即W???E。 例17、如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴间右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响)。已知t=0时刻进入两板间的带电粒子恰好在t0时,刻经极板边缘射入磁场。上述m、q、l、l0、B为已知量。(不考虑粒子间相互影响及返回板间的情况)(1)求电压U的大小。(2)求1时进入两板间的带电粒子在磁场中做圆周运动的半径。 2(3)何时把两板间的带电粒子在磁场中的运动时间最短?求此最短时间。 解析:
(1)t?0时刻进入两极板的带电粒子在电场中做匀变速曲线运动,t0时刻刚好从极板边缘射出,在y轴负方向偏移的距离为U1l,则有E?0①,Eq?ma② l2112③ l?at022ml2联立以上三式,解得两极板间偏转电压为U0?2④。 qt0(2)动。带电粒子沿x轴方向的分速度大小为v0?111t0时刻进入两极板的带电粒子,前t0时间在电场中偏转,后t0时间两极板没有电场,带电粒子做匀速直线运222l⑤ t0带电粒子离开电场时沿y轴负方向的分速度大小为vy?at0⑥
带电粒子离开电场时的速度大小为v? 12v2设带电粒子离开电场进入磁场做匀速圆周运动的半径为R,则有Bvq?m⑧
R联立③⑤⑥⑦⑧式解得R? 0'(3)2t0时刻进入两极板的带电粒子在磁场中运动时间最短。带电粒子离开磁场时沿y轴正方向的分速度为vy?at0⑩,设带电粒子离开电场时速度方向与y轴正方向的夹角为?,则tan??v0, v'y联立③⑤⑩式解得???4,带电粒子在磁场运动的轨迹图如图所示,圆弧所对的圆心角为2???2,所求最短时间为2?m?m1,联立以上两式解得tmin?。 tmin?T,带电粒子在磁场中运动的周期为T?Bq2Bq4【考点】带电粒子在匀强电场、匀强磁场中的运动 例18、如图所示,带等量异号电荷的两平行金属板在真空中水平放置,M、N为板间同一电场线上的两点,一带电粒子(不计重力)以速度vM经过M点在电场线上向下运动,且未与下板接触,一段时间后,粒子以速度vN折回N点。则A.粒子受电场力的方向一定由M指向NB.粒子在M点的速度一定比在N点的大C.粒子在M点的电势能一定比在N点的大D.电场中M点的电势一定高于N点的电势B【解析】由于带电粒子未与下板接触,可知粒子向下做的是减速运动,故电场力向上,A错;粒子由M到N电场力做负功电势能增加,动能减少,速度增加,故B对C错;由于粒子和两极板所带电荷的电性未知,故不能判断M、N点电势的 高低,C错。 例19、空间存在匀强电场,有一电荷量q?q?0?、质量m的粒子从O点以速率v0射入电场,运动到A点时速率为2v0。现有另一电荷量?q、质量m的粒子以速率2v0仍从O点射入该电场,运动到B点时速率为3v0。若忽略重力的影响,则A.在O、A、B三点中,B点电势最高B.在O、A、B三点中,A点电势最高C.OA间的电势差比BO间的电势差大D.OA间的电势差比BA间的电势差小答案AD【解析】正电荷由O到A,动能变大,电场力做正功,电势能减小,电势也减小,O点电势较高;负电荷从O到B速度增大,电场力也做正功,电势能减小,电势升高,B点电势比O点高。所以B点最高,A对;UOA??m?v0?2WOA3mv0
???qq2q??m?2v0?2WOB5mv0,故D对 ????q?q?2qUOB 例20、如图所示,相距为d的平行金属板A、B竖直放置,在两板之间水平放置一绝缘平板。有一质量m、电荷量q(q&0)的小物块在与金属板A相距l处静止。若某一时刻在金属板A、B间加一电压UAB??生了一次碰撞,碰撞后电荷量变为?3?mgd,小物块与金属板只发2q1q,并以与碰前大小相等的速度反方向弹回。已知小物块与绝缘平板间的动摩擦2因素为μ,若不计小物块电荷量对电场的影响和碰撞时间。则(1)小物块与金属板A碰撞前瞬间的速度大小是多少?(2)小物块碰撞后经过多长时间停止运动?停在何位置?
)时间为,停在2l处或距离B板为2l 【解析】本题考查电场中的动力学问题(1)加电压后,B极板电势高于A板,小物块在电场力作用与摩擦力共同作用下向A板做匀加速直线运动。电场强度为
E?UBA d小物块所受的电场力与摩擦力方向相反,则合外力为F合?qE??mg故小物块运动的加速度为
a1?F合m?qU??mgd1??g md2设小物块与A板相碰时的速度为v1,由v1?2a1l解得
v1?2?gl(2)小物块与A板相碰后以v1大小相等的速度反弹,因为电荷量及电性改变,电场力大小与方向发生变化,摩擦力的方向发生改变,小物块所受的合外力大小 为
F合??mg?加速度大小为
a2?qE 2F合1??g m4设小物块碰后到停止的时间为 t,注意到末速度为零,有0?v1??a2t解得
2设小物块碰后停止时距离为x,注意到末速度为零,有0-v1??2a2x 2v2?2l 则
x?2a2或距离B板为
d?2l 例21、如图3所示,在一个粗糙水平面上,彼此靠近地放置两个带同种电荷的小物块,由静止释放后,两个物块向相反方向运动,并最终停止,在物块的运动过程中,下列表述正确的是 A.两个物块的电势能逐渐减少B.物块受到的库仑力不做功C.两个物块的机械能守恒D.物块受到的摩擦力始终小于其受到的库仑力+q +q 图
解析:由于带同种电荷的小物块在库仑力的作用下,向相反方向运动,因此,物块受到的库仑力做正功,两个物块的电势能逐渐减少,但两个物块的机械能不守恒,物块受到的摩擦力开始小于其受到的库仑力,后来大于其受到的库仑力. 例22、图9是质谱仪的工作原理示意图,带电粒子被加速电场加速后,进入速度选择器。速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E。平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2。平板S下方有强度为B0的匀强磁场。下列表述正确的是A.质谱仪是分析同位素的重要工具B.速度选择中的磁场方向垂直纸面向外 C.能通过狭缝P的带电粒子的速率等于E/BD.粒子打在胶片上的位置越靠近狭缝P,粒子的荷质比越小 答案:ABC
解析:质谱仪是分析同位素的重要工具,根据受力的平衡条件及左手定则,可以判断,速度选择中的磁场方向垂直纸面向外,能通过狭缝P的带电粒子的速率满足qE=qBv,得到v=E/B,由R?打在胶片上的位置越靠近狭缝P,半径R越小,粒子的荷质比越大. 例23、如图8所示,表面粗糙的斜面固定于地面上,并处于方向垂直纸面向外、强度为B的匀强磁场中,质量为m、带电量为+Q的小滑块从斜面顶端由静止下滑。在滑块下滑的过程中,下列判断正确的是A.滑块受到的摩擦力不变
B.滑块到达地面时的动能与B的大小无关C.滑块受到的洛伦兹力方向垂直斜面向下
D.B很大时,滑块可能静止于斜面上 答案:C
解析:带电量为+Q的小滑块从斜面顶端开始下滑的过程中,所受的洛伦兹力的方向垂直斜面向下,因此,滑块与斜面的压力增大,滑块受到的摩擦力增大,滑块到达地面时的的状态存在可能性,因此,其动能与B的大小有关,B很大时,滑块可能在斜面上匀速运动,但不可能静止于斜面上. 例24、如图所示为研究电子枪中电子在电场中运动的简化模型示意图。在Oxy平面的ABCD区域内,存在两个场强大小均为E的匀强电场I和II,两电场的边界均是边长为L的正方形(不计电子所受重力)。(1)在该区域AB边的中点处由静止释放电子,求电子离开ABCD区域的位置。(2)在电场I区域内适当位置由静止释放电子,电子恰能从ABCD区域左下角D处离开,求所有释放点的位置。(3)若将左侧电场II整体水平向右移动L/n(n≥1),仍使电子从ABCD区域左下角D处离开(D不随电场移动),求在电场I区域内由静止释放电子的所有位置。
mvqB0及v=E/B知m?qEBB0R,粒子 解:(1)设电子的质量为m,电量为e,电子在电场I中做匀加速直线运动,出区域I时的速度为v0,此后进入电场II做类平抛运动,假设电子从CD边射出,出射点纵坐标为y,有12 eEL?mv02L11eE?L?(?y)?at2??? 222m?v0?解得 y=211L,所以原假设成立,即电子离开ABCD区域的位置坐标为(-2L,L) 44(2)设释放点在电场区域I中,其坐标为(x,y),在电场I中电子被加速到v1,然后进入电场II做类平抛运动,并从D点离开,有eEx?12mv1 2211eE?L?y?at2??? 22m?v1?L2解得 xy=,即在电场I区域内满足该方程的点即为所求位置。 4(3)设电子从(x,y)点释放,在电场I中加速到v2,进入电场II后做类平抛运动,在高度为y′处离开电场II时的情景与(2)中类似,然后电子做匀速直线运动,经过D点,则有eEx?11eE?L?12mv2 , y?y??at2??? 22m?v2?22vy?at?eELL,y??vy mv2nv2?11???,即在电场I区域内满足该方程的点即为所求位置 ?2n4?解得 xy?L?2
四 易错题集 例1
如图8-1所示,实线是一个电场中的电场线,虚线是一个负检验电荷在这个电场中的轨迹,若电荷是从a处运动到b处,以下判断正确的是:
]A.电荷从a到b加速度减小B.b处电势能大C.b处电势高D.电荷在b处速度小【错解】由图8-1可知,由a→b,速度变小,所以,加速度变小,选A。因为检验电荷带负电,所以电荷运动方向为电势升高方向,所以b处电势高于a点,选C。
【错解原因】选A的同学属于加速度与速度的关系不清;选C的同学属于功能关系不清。【分析解答】由图8-1可知b处的电场线比a处的电场线密,说明b处的场强大于a处的场强。根据牛顿第二定律,检验电荷在b处的加速度大于在a处的加速度,A选项错。由图8-1可知,电荷做曲线运动,必受到不等于零的合外力,即Fe≠0,且Fe的方向应指向运动轨迹的凹向。因为检验电荷带负电,所以电场线指向是从疏到密。再利用“电场线方向为电势降低最快的方向”判断a,b处电势高低关系是Ua>Ub,C选项不正确。根据检验电荷的位移与所受电场力的夹角大于90°,可知电场力对检验电荷做负功。功是能量变化的量度,可判断由a→b电势能增加,B选项正确;又因电场力做功与路径无关,系统的能量守恒,电势能增加则动能减小,即速度减小,D选项正确。【评析】理解能力应包括对基本概念的透彻理解、对基本规律准确把握。本题就体现高考在这方面的意图。这道小题检查了电场线的概念、牛顿第二定律、做曲线运动物体速度与加速度的关系、电场线与等势面的关系、电场力功(重力功)与电势能(重力势能)变化的关系。能量守恒定律等基本概念和规律。要求考生理解概念规律的确切含义、适用条件,鉴别似是而非的说法。 例2
将一电量为q=2310C的点电荷从电场外一点移至电场中某点,电场力做功4310J,求A点的电势。【错解】
【错解原因】错误混淆了电势与电势差两个概念间的区别。在电场力的功的计算式W=qU中,U系指电场中两点间的电势差而不是某点电势。【分析解答】解法一:设场外一点P电势为UP所以UP=0,从P→A,电场力的功W=qUPA,所以W=q(UP-UA),即(0-UA)
UA=-20V解法二:设A与场外一点的电势差为U,由W=qU,
-5-6 因为电场力对正电荷做正功,必由高电势移向低电势,所以UA= -20V【评析】公式W=qU有两种用法:(1)当电荷由A→B时,写为W=qUAB=q(UA-UB),强调带符号用,此时W的正、负直接与电场力做正功、负功对应,如“解法一”;(2)W,q,U三者都取绝对值运算,如“解法二”,但所得W或U得正负号需另做判断。建议初学者采用这种方法。 例3
点电荷A和B,分别带正电和负电,电量分别为4Q和Q,在AB连线上,如图8-2,电场强度为零的地方在
]A.A和B之间
B.A右侧C.B左侧
D.A的右侧及B的左侧
【错解】错解一:认为A,B间一点离A,B距离分别是2r和r,则A,
B 错解二:认为在A的右侧和B的左侧,由电荷产生的电场方向总相反,因而都有可能抵消,选D。【错解原因】 错解一忽略了A,B间EA和EB方向都向左,不可能抵消。错解二认为在A的右侧和B的左侧,由两电荷产生的电场方向总相反,因而都有可能抵消,却没注意到A的右侧EA总大于EB,根本无法抵消。【分析解答】因为A带正电,B带负电,所以只有A右侧和B左侧电场强度方向相反,因为QA>QB,所以只有B左侧,才有可能EA与EB等量反向,因而才可能有EA和EB矢量和为零的情况。【评析】解这类题需要的基本知识有三点:(1)点电荷场强计算公式
点电荷而来;(3)某点合场强为各场源在该点场强的矢量和。 例4
如图8-3所示,QA=3310C,QB=-3310C,A,B两球相距5cm,在水平方向外电场作用下,A,B保持静止,悬线竖直,求A,B连线中点场强。(两带电小球可看作质点)
-8-8 【错解】以A为研究对象,B对A的库仑力和外电场对A的电场力相等,所
AB中点总场强E总=E+EA+EB=E外=1.8310(N/C),方向向左。【错解原因】在中学阶段一般不将QB的电性符号代入公式中计算。在求合场强时,应该对每一个场做方向分析,然后用矢量叠加来判定合场强方向,
【分析解答】以A为研究对象,B对A的库仑力和外电场对A的电场力平衡,
E外方向与A受到的B的库仑力方向相反,方向向左。在AB的连线中点处EA,EB的方向均向右,设向右为正方向。则有E总=EA+EB-E外。
【评析】本题检查考生的空间想象能力。对于大多数同学来说,最可靠的办法是:按照题意作出A,B的受力图。从A,B的电性判断点电荷A,B的场强方向,从A或B的受力判断外加匀强电场的方向。在求合场强的方向时,在A,B的连线中点处画出每一个场强的方向,最后再计算。这样做恰恰是在按照物理规律解决问题。 例5
在电场中有一条电场线,其上两点a和b,如图8-4所示,比较a,b两点电势高低和电场强度的大小。如规定无穷远处电势为零,则a,b处电势是大于零还是小于零,为什么?
【错解】顺电场线方向电势降低,∴Ua>Ub,因为无穷远处电势为零,顺电场线方向电势降低,∴Ua>Ub>0。【错解原因】由于把所给电场看成由正点电荷形成的电场,认为从正电荷出发,顺电场线电势逐渐减小到零,从而得出Ua,Ub均大于零。【分析解答】顺电场线方向电势降低,∴Ua>Ub,由于只有一条电力线,无法看出电场线疏密,也就无法判定场强大小。同样无法判定当无穷远处电势为零时,a,b的电势是大于零还是小于零。若是由正电荷形成的场,则Ea>Eb,Ua>Ub>0,若是由负电荷形成的场,则Ea<Eb,0>Ua>Ub。【评析】 只有一条电场线,可以判定各点电势高低,但无法判定场强大小及电势是否大于零。 例6
如图8-5所示,把一个不带电的枕型导体靠近带正电的小球,由于静电感应,在a,b端分别出现负、正电荷,则以下说法正确的是:A.闭合K1,有电子从枕型导体流向地B.闭合K2,有电子从枕型导体流向地C.闭合K1,有电子从地流向枕型导体D.闭合K2,没有电子通过K2
【错解】枕型导体电荷总是守恒的,没有电子流过K2。选D。【错解原因】由于对没有正确理解电荷守恒的相对性,所以在本题中认为枕型导体的电荷总是守恒的,便错选答案D。【分析解答】在K1,K2都闭合前,对于枕型导体它的电荷是守恒的,a,b出现的负、正电荷等量。当闭合K1,K2中的任何一个以后,便把导体与大地连通,使大地也参与了电荷转移。因此,导体本身的电荷不再守恒,而是导体与大地构成的系统中电荷守恒。由于静电感应,a端仍为负电荷,大地远处感应出等量正电荷,因此无论闭K1还是K2,都是有电子从地流向导体,应选答案C。【评析】在解决此类静电平衡问题时,对电荷守恒的理解应为:电荷守恒定律有相对性,一个物理过程中,某个物体或某些物体的电荷并不守恒,有增或有减,而这一过程中必有另一些物体的电荷有减或有增,其中的增量和减量必定相等,满足全范围内的守恒。即电荷是否守恒要看是相对于哪一个研究对象而言。电荷守恒是永恒的,是不需要条件的。电荷守恒定律也是自然界最基本的规律之一。在应用这个定律时,只要能够全面地考察参与电荷转移的物体,就有了正确地解决问题的基础。 例7
如图8-6所示,两个质量均为m的完全相同的金属球壳a与b,其壳层的厚度和质量分布均匀,将它们固定于绝缘支座上,两球心间的距离为l,为球半径的3倍。若使它们带上等量异种电荷,使其电量的绝对值均为Q,那么,a、b两球之间的万有引力F引库仑力F库分别为:
【错解】(1)因为a,b两带电球壳质量分布均匀,可将它们看作质量集中在球心的质点,也可看作点电荷,因此,万有引力定律和库仑定律对它们都适用,故其正确答案应选A。(2)依题意,a,b两球中心间的距离只有球半径的3倍,它们不能看作质点,也不能看作点电荷,因此,既不能用万有引力定律计算它们之间的万有引力,也不能用库仑定律计算它们之间的静电力,故其正确答案应选B。【错解原因】由于一些同学对万有引力定律和库仑定律的适用条件理解不深刻,产生了上述两种典型错解,因库仑定律只适用于可看作点电荷的带电体,而本题中由于a,b两球所带异种电荷的相互吸引,使它们各自的电荷分布不均匀,即相互靠近的一侧电荷分布比较密集,又因两球心间的距离l只有其半径r的3倍,不满足l>>r的要求,故不能将两带电球壳看成点电荷,所以不能应用库仑定律。万有引力定律适用于两个可看成质点的物体,虽然两球心间的距离l只有其半径r的3倍,但由于其壳层的厚度和质量分布均匀,两球壳可看作质量集中于球心的质点。因此,可以应用万有引力定律。综上所述,对于a,b两带电球壳的整体来说,满足万有引力的适用条件,不满足库仑定律的适用条件,故只有选项D正确。【评析】用数学公式表述的物理规律,有它的成立条件和适用范围。也可以说物理公式是对应着一定的物理模型的。应用物理公式前,一定要看一看能不能在此条件下使用该公式。 例8
如图8-7中接地的金属球A的半径为R,A点电荷的电量Q,到球心距离为r,该点电荷的电场在球心O处的场强等于:
【错解】根据静电平衡时的导体内部场强处处为零的特点,Q在O处场强为零,选C。【错解原因】有些学生将“处于静电平衡状态的导体,内部场强处处为零”误认为是指Q电荷电场在球体内部处处为零。实际上,静电平衡时O处场强
相等,方向相反,合场强为零。【分析解答】静电感应的过程,是导体A(含大地)中自由电荷在电荷Q所形成的外电场下重新分布的过程,当处于静电平衡状态时,在导体内部电荷Q所形成的外电场E与感应电荷产生的“附加电场E'”同时存在的,且在导体内部任何一点,外电场电场场强E与附加电场的场强E'大小相等,方向相反,这两个电场叠加的结果使内部的合场强处处为零。即E内=0。
【评析】还应深入追究出现本题错解的原因:只记住了静电平衡的结论,对静电平衡的全过程不清楚。要弄清楚“导体进入电场,在电场力的作用下自由电子定向移动,出现感应电荷的聚集,进而形成附加电场”开始,直到“附加电场与外电场平衡,使得导体内部的场强叠加为零,移动自由电子电场力为零。”为止的全过程。 例9
如图8-8所示,当带正电的绝缘空腔导体A的内部通过导线与验电器的小球B连接时,问验电器是否带电?
【错解】因为静电平衡时,净电荷只分布在空腔导体的外表面,内部无静电荷,所以,导体A内部通过导线与验电器小球连接时,验电器不带电。 【错解原因】关键是对“导体的外表面”含义不清,结构变化将要引起“外表面”的变化,这一点要分析清楚。错解没有分析出空腔导体A的内部通过导线与验电器的小球B连接后,验电器的金箔成了导体的外表面的一部分,改变了原来导体结构。A和B形成一个整体,净电荷要重新分布。【分析解答】当导体A的内部通过导线与验电器的小球B连接时,导体A和验电器已合为一个整体,整个导体为等势体,同性电荷相斥,电荷重新分布,必有净电荷从A移向B,所以验电器带正电。【评析】一部分同学做错这道题还有一个原因,就是知识迁移的负面效应。他们曾经做过一道与本题类似的题:“先用绝缘金属小球接触带正电的绝缘空腔导体A的内部,然后将绝缘金属小球移出空腔导体A与验电器的小球B接触,验电器的金箔不张开。”他们见到本题就不假思索地选择了不带电的结论。“差异就是矛盾,”学习中要善于比较,找出两个问题的区别才方能抓住问题的关键。这两道题的差异就在于:一个是先接触内壁,后接触验电器小球;另一个是正电的绝缘空腔导体A的内部通过导线与验电器的小球B连接。进而分析这种差异带来的什么样的变化。生搬硬套是不行的。 例10
三个绝缘的不带电的相同的金属球A,B,C靠在一起,如图8-9所示,再将一个带正电的物体从左边靠近A球,并固定好,再依次拿走C球、B球、A球,问:这三个金属球各带什么电?并比较它们带电量的多少。
【错解】将带正电的物体靠近A球,A球带负电,C球带正电,B球不带电。将C,B,A三球依次拿走,C球带正电,B球不带电,A球带负电,QA=QC。【错解原因】认为将C球拿走后,A,B球上所带电量不改变。其实,当C球拿走后,A,B球原来的静电平衡已被破坏,电荷将要重新运动,达到新的静电平衡。【分析解答】将带正电的物体靠近A,静电平衡后,A,B,C三球达到静电平衡,C球带正电,A球带负电,B球不带电。当将带正电的C球移走后,A,B两球上的静电平衡被打破,B球右端电子在左端正电的物体的电场的作用下向A运动,形成新的附加电场,直到与外电场重新平衡时为止。此时B球带正电,A球所带负电将比C球移走前多。依次将C,B,A移走,C球带正电,B球带少量正电,A球带负电,且A球带电量比C球带电量多。|QA|=|QB|+|QC|【评析】 在学习牛顿第二定律时,当外力发生变化时,加速度就要发生变化。这种分析方法不仅适用于力学知识,而且也适用于电学知识,本题中移去C球,电场发生了变化,电场力相应的发生了变化,要重新对物理过程进行分析,而不能照搬原来的结论。 例11
如图8-10所示,当带电体A靠近一个绝缘导体B时,由于静电感应,B两端感应出等量异种电荷。将B的左端接地,绝缘导体B带何种电荷?【错解】对于绝缘体B,由于静电感应左端带负电,右端带正电。左端接地,左端电荷被导走,导体B带正电。【错解原因】将导体B孤立考虑,左端带负电,右端带正电,左端接地后左边电势比地电势低,所以负电荷将从电势低处移到电势高处。即绝缘体B上负电荷被导走。【分析解答】因为导体B处于正电荷所形成的电场中,而正电荷所形成的电场电势处处为正,所以导体B的电势是正的,UB>U地;而负电荷在电场力的作用下总是从低电势向高电势运动,B左端接地,使地球中的负电荷(电子)沿电场线反方向进入高电势B导体的右端与正电荷中和,所以B导体将带负电荷。
如图8-11所示,质量为m,带电量为q的粒子,以初速度v0,从A点竖直向上射入真空中的沿水平方向的匀强电场中,粒子通过电场中B点时,速率vB=2v0,方向与电场的方向一致,则A,B两点的电势差为:
【错解】带电粒子在电场中运动,一般不考虑带电粒子的重力,根据动能定理,电场力所做的功等于带电粒子动能的增量,电势差等于动能增量与电量Q的比值,应选D。【错解原因】带电粒子在电场中运动,一般不考虑带电粒子的重力,则粒子在竖直方向将保持有速度v0,粒子通过B点时不可能有与电场方向一致的2v0,根据粒子有沿场强方向的速度2v0,则必是重力作用使竖直向上的速度变为零。如一定不考虑 粒子重力,这只有在电场无限大,带电粒子受电场力的作用,在电场方向上的速度相比可忽略不计的极限状态,且速度沿电场方向才能成立。而本题中v0与vB相比不能忽略不计,因此本题应考虑带电粒子的重力。【分析解答】在竖直方向做匀减速直线运动2gh=v0①
2 根据动能定理
【评析】根据初、末速度或者运动轨迹判断物体的受力情况是解决与运动关系问题的基本功。即使在电学中,带电粒子的运动同样也要应用这个基本功。通过这样一些题目的训练,多积累这方面的经验,非常必要。例13
在边长为30cm的正三角形的两个顶点A,B上各放一个带电小球,其中Q1=10C,求它们在三角形另一顶点C处所产生的电场强度。【错解】C点的电场强度为Q1,Q2各自产生的场强之和,由点电荷的场强公式,
-6-6 ∴E=E1+E2=0【错解原因】认为C点处的场强是Q1,Q2两点电荷分别在C点的场强的代数和。【分析解答】计算电场强度时,应先计算它的数值,电量的正负号不要代入公式中,然后根据电场源的电性判断场强的方向,用平行四边形法求得合矢量,就可以得出答案。
由场强公式得:
C点的场强为E1,E2的矢量和,由图8-12可知,E,E1,E2组成一个等边三角形,大小相同,∴E2=4310(N/C)方向与AB边平行。例14
置于真空中的两块带电的金属板,相距1cm,面积均为10cm,带电量分别为Q1=2310C,Q2=-2310C,若-9在两板之间的中点放一个电量q=5310C的点电荷,求金属板对点电荷的作用力是多大?【错解】点电荷受到两板带电荷的作用力,此二力大小相等,方向相同,由
2-8-85 【错解原因】库仑定律只适用于点电荷间相互作用,本题中两个带电金属板面积较大,相距较近,不能再看作是点电荷,应用库仑定律求解就错了。【正确解答】两个平行带电板相距很近,其间形成匀强电场,电场中的点电荷受到电场力的作用。
【评析】如果以为把物理解题当作算算术,只要代入公式就完事大吉。那就走入了学习物理的误区。 例15
如图8-14,光滑平面上固定金属小球A,用长l0的绝缘弹簧将A与另一个金属小球B连接,让它们带上等量同种电荷,弹簧伸长量为x1,若两球电量各漏掉一半,弹簧伸长量变为x2,则有:(
故选B【错解原因】错解只注意到电荷电量改变,忽略了两者距离也随之变化,导致错误。【分析解答】由题意画示意图,B球先后平衡,于是有
r常指弹簧形变后的总长度(两电荷间距离)。例16
有两个带电量相等的平行板电容器A和B,它们的正对面积之比SA∶SB=3∶1,板长之比∶lA∶lB=2∶1,两板距离之比dA∶dB=4∶1,两个电子以相同的初速度沿与场强垂直的方向分别射入两电容器的匀强电场中,并顺利穿过电场,求两电子穿越电场的偏移距离之比。【错解】
【错解原因】把电容器的电压看成是由充电电量和两板正对面积决定而忽视了板间距离对电压的影响,所以电压比和偏离比都搞错了。【分析解答】
【评析】高考中本题只能作为一道选择题(或填空题)出现在试卷上。很多考生为了腾出时间做大题,急急忙忙不做公式推导,直接用数字计算导致思考问题不全面,以至会做的题目得不到分。同时按部就班解题,养成比较好的解题习惯,考试时就会处变不惊,稳中求准,稳中求快。例17
如图8-15所示,长为l的绝缘细线,一端悬于O点,另一端连接一质量为m的带负电小球,置于水平向右的匀强电场中,在O点
向右水平拉直后从静止释放,细线碰到钉子后要使小球刚好饶钉子O′在竖直平面内作圆周运动,求OO′长度。
【错解】摆球从A落下经B到C的过程中受到重力G,绳子的拉力T和电场力F电三个力的作用,并且重力和电场力做功,拉力不做功,由动能定理
摆球到达最低点时,摆线碰到钉子O′后,若要小球刚好绕钉子O′在竖直平面内做圆周运动,如图8-16。则在最高点D应满足:
从C到D的过程中,只有重力做功(负功),由机械能守恒定律
【错解原因】考生以前做过不少“在重力场中释放摆球。摆球沿圆弧线运动的习题”。受到这道题思维定势的影响,没能分析出本题的摆球是在重力场和电场叠加场中运动。小球同时受到重力和电场力的作用,这两个力对摆球运动轨迹都有影响。受“最高点”就是几何上的最高点的思维定势的影响,没能分析清楚物理意义上的“最高点”含义。在重力场中应是重力方向上物体运动轨迹的最高点,恰好是几何意义上的最高点。而本题中,“最高点”则是重力与电场力的合力方向上摆球运动的轨迹的最高点。【正确解答】本题是一个摆在重力场和电场的叠加场中的运动问题,由于重力场和电场力做功都与路径无关,因此可以把两个场叠加起来看成一个等效力场来处理,如图8-17所示,
∴θ=60°。开始时,摆球在合力F的作用下沿力的方向作匀加速直线运动,从A点运动到B点,由图8-17可知,△AOB为等边三角形,则摆球从A到B,在等效力场中,由能量守恒定律得:
在B点处,由于在极短的时间内细线被拉紧,摆球受到细线拉力的冲量作用,法向分量v2变为零,切向分量
接着摆球以v1为初速度沿圆弧BC做变速圆周运动,碰到钉子O′后,在竖直平面内做圆周运动,在等效力场中,过点O′做合力F的平行线与圆的交点为Q,即为摆球绕O′点做圆周运动的“最高点”,在Q点应满足
过O点做OP⊥AB取OP为等势面,在等效力场中,根据能量守恒定律得:
【评析】用等效的观点解决陌生的问题,能收到事半功倍的效果。然而等效是有条件的。在学习交流电的有效值与最大值的关系时,我们在有发热相同的条件将一个直流电的电压(电流)等效于一个交流电。本题中,把两个场叠加成一个等效的场,前提条件是两个力做功都与路径无关。例18
在平行板电容器之间有匀强电场,一带电粒子以速度v垂直电场线射入电场,在穿越电场的过程中,粒子的动能由Ek增加到2Ek,若这个带电粒子以速度2v垂直进入该电场,则粒子穿出电场时的动能为多少?【错解】设粒子的的质量m,带电量为q,初速度v;匀强电场为E,在y方向的位移为y,如图8―18所示。
【错解原因】认为两次射入的在Y轴上的偏移量相同。实际上,由于水平速度增大带电粒子在电场中的运动时间变短。在Y轴上的偏移量变小。【分析解答】建立直角坐标系,初速度方向为x轴方向,垂直于速度方向为y轴方向。设粒子的的质量m,带电量为q,初速度v;匀强电场为E,在y方向的位移为y。速度为2v时通过匀强电场的偏移量为y′,平行板板长为l。 由于带电粒子垂直于匀强电场射入,粒子做类似平抛运动。
两次入射带电粒子的偏移量之比为
【评析】当初始条件发生变化时,应该按照正确的解题步骤,从头再分析一遍。而不是想当然地把上一问的结论照搬到下一问来。由此可见,严格地按照解题的基本步骤进行操作,能保证解题的准确性,提高效率。其原因是操作步骤是从应用规律的需要归纳出来的。例19
A,B两块平行带电金属板,A板带负电,B板带正电,并与大地相连接,P为两板间一点。若将一块玻璃板插入A,B两板间,则P点电势将怎样变化。【错解】UpB=Up-UB=Ed
电常数ε增大,电场强度减小,导致Up下降。【错解原因】没有按照题意画出示意图,对题意的理解有误。没有按照电势差的定义来判断PB两点间电势差的正负。【分析解答】按照题意作出示意图,画出电场线,图8-19所示。
我们知道电场线与等势面间的关系:“电势沿着电场线的方向降落”所以UpB=Up-UB<0,B板接地UB=0UBp=UB-Up=0-UpUp=-Ed
常数ε增大,电场强度减小,导致Up上升。【评析】如何理解PB间的电势差减小,P点的电势反倒升高呢?请注意,B板接地Up<0,PB间的电势差减小意味着Up比零电势降落得少了。其电势反倒升高了。例20
如图8-20电路中,电键K1,K2,K3,K4均闭合,在平行板电容器C的极板间悬浮着一带电油滴P,(1)若断开K1,则P将__________;(2)若断开K2,则P将________;(3)若断开K3,则P将_________;(4)若断开K4,则P将_______。【常见错解】(1)若断开K1,由于R1被断开,R2上的电压将增高,使得电容器两端电压下降,则P将向下加速运动。(2)若断开K2,由于R3被断开,R2上的电压将增高,使得电容器两端电压下降,则P将向下加速运动。(3)若断开K3,由于电源被断开,R2上的电压将不变,使得电容器两端电压不变,则P将继续悬浮不动。(4)若断开K4,由于电源被断开,R2上的电压将变为零,使得电容器两端电压下降,则P将加速下降。【错解原因】上述四个答案都不对的原因是对电容器充放电的物理过程不清楚。尤其是充电完毕后,电路有哪些特点不清楚。
【分析解答】电容器充电完毕后,电容器所在支路的电流为零。电容器两端的电压与它所并联的两点的电压相等。本题中四个开关都闭合时,有R1,R2两端的电压为零,即R1,R2两端等势。电容器两端的电压与R3两端电压相等。(1)若断开K1,虽然R1被断开,但是R2两端电压仍为零,电容器两端电压保持不变,则P将继续悬浮不动 (2)若断开K2,由于R3被断开,电路再次达到稳定时,电容器两端电压将升高至路端电压R2上的电压仍为零,使得电容器两端电压升高,则P将向上加速运动。(3)若断开K3,由于电源被断开,电容器两端电压存在一个回路,电容器将放电至极板两端电压为零,P将加速下降。(4)K4断开,电容器两端断开,电量不变,电压不变,场强不变,P将继续悬浮不动。【评析】在解决电容器与直流电路相结合的题目时,要弄清楚电路的结构,还要会用静电场电势的观点分析电路,寻找等势点简化电路。例21
一个质量为m,带有电荷-q的小物块,可在水平轨道Ox上运动,O端有一与轨道垂直的固定墙,轨道处于匀强电场中,场强大小为E,方向沿Ox轴正方向,如图8-21所示,小物体以初速v0从x0沿Ox轨道运动,运动时受到大小不变的摩擦力f作用,且f<qE。设小物体与墙碰撞时不损失机械能且电量保持不变。求它在停止运动前所通过的总路程s。
【错解】错解一:物块向右做匀减速运动到停止,有
错解二:小物块向左运动与墙壁碰撞后返回直到停止,有W合=△Ek,得
【错解原因】错误的要害在于没有领会题中所给的条件f>Eq的含义。当物块初速度向右时,先减速到零,由于f<Eq物块不可能静止,它将向左加速运动,撞墙后又向右运动,如此往复直到最终停止在轨道的O端。初速度向左也是如此。【分析解答】设小物块从开始运动到停止在O处的往复运动过程中位移为x0,往返路程为s。根据动能定理有
【评析】在高考试卷所检查的能力中,最基本的能力是理解能力。读懂题目的文字并不困难,难的是要抓住关键词语或词句,准确地在头脑中再现题目所叙述的实际物理过程。常见的关键词语有:“光滑平面、缓慢提升(移动)、伸长、伸长到、轻弹簧、恰好通过最高点等”这个工作需要同学们平时多积累。并且在做新情境(陌生题)题时有意识地从基本分析方法入手,按照解题的规范一步一步做,找出解题的关键点来。提高自己的应变能力。例22
1000eV的电子流在两极板中央斜向上方进入匀强电场,电场方向竖直向上,它的初速度与水平方向夹角为30°,如图8-22。为了使电子不打到上面的金属板上,应该在两金属板上加多大电压U?
【错解】电子流在匀强电场中做类似斜抛运动,设进入电场时初速度为v0,
因为电子流在电场中受到竖直向下电场力作用,动能减少。欲使电子刚好打不到金属板上有Vr=0,此时电子流动能
【错解原因】电子流在电场中受到电场力作用,电场力对电子做功We=Fes=eEs其中s必是力的方向上位移,即d/2,所以We=eU,U是对应沿d方向电势降落。则电子从C到A,应对应We=eUAC,故上面解法是错误的。 【分析解答】电子流在匀强电场中做类似斜抛运动,欲使电子刚好不打金属板上,则必须使电子在d/2内竖直方向分速度减小到零,设此时加在两板间的电压为U,在电子流由C到A途中,电场力做功We=EUAC,由动能定理
至少应加500V电压,电子才打不到上面金属板上。【评析】动能定理是标量关系式。不能把应用牛顿定律解题方法与运用动能定理解题方法混为一谈。例23
如图8-23,一个电子以速度v0=6.0310m/s和仰角α=45°从带电平行板电容器的下板边缘向上板飞行。4-2两板间场强E=2.0310V/m,方向自下向上。若板间距离d=2.0310m,板长L=10cm,问此电子能否从下板射至上板?它将击中极板的什么地方?
6 【错解】规定平行极板方向为x轴方向;垂直极板方向为y轴方向,将电子的运动分解到坐标轴方向上。由于重力远小于电场力可忽略不计,则y方向上电子在电场力作用下做匀减速运动,速度最后减小到零。∵vt-v0=2asy=d=s
即电子刚好击中上板,击中点离出发点的水平位移为3.99310(m)。【错解原因】
-2 为d,(击中了上板)再求y为多少,就犯了循环论证的错误,修改了原题的已知条件。【分析解答】应先计算y方向的实际最大位移,再与d进行比较判断。
由于ym<d,所以电子不能射至上板。
【评析】因此电子将做一种抛物线运动,最后落在下板上,落点与出发点相距1.03cm。斜抛问题一般不要求考生掌握用运动学方法求解。用运动的合成分解的思想解此题,也不是多么困难的事,只要按照运动的实际情况把斜抛分解为垂直于电场方向上的的匀速直线运动,沿电场方向上的坚直上抛运动两个分运动。就可以 第二章 恒定电流一、恒定电流 知识要点 1.电流 电流的定义式:I?q,适用于任何电荷的定向移动形成的电流。 t对于金属导体有I=nqvS(n为单位体积内的自由电子个数,S为导线的横截面积,v为自由电子的定向移动速率,约 -55810m/s,远小于电子热运动的平均速率10m/s,更小于电场的传播速率3310m/s),这个公式只适用于金属导体,千万不要到处套用。2.电阻定律导体的电阻R跟它的长度l成正比,跟它的横截面积S成反比。R??l s?ρ是反映材料导电性能的物理量,叫材料的电阻率(反映该材料的性质,不是每根具体的导线的性质)。单位是Ω?m。 ?纯金属的电阻率小,合金的电阻率大。
①金属的电阻率随温度的升高而增大(可以理解为温度升高时金属原子热运动加剧,对自由电子的定向移动的阻碍增大。)铂较明显,可用于做温度计;锰铜、镍铜的电阻率几乎不随温度而变,可用于做标准电阻。 ②半导体的电阻率随温度的升高而减小(可以理解为半导体靠自由电子和空穴导电,温度升高时半导体中的自由电子和空穴的数量增大,导电能力提高)。材料由正常状态转变为超导状态的温度叫超导材料的转变温度TC。我国科学家在1989年把TC提高到130K。现在科学家们正努力做到室温超导。3.欧姆定律U(适用于金属导体和电解液,不适用于气体导电)。 R电阻的伏安特性曲线:注意I-U曲线和U-I曲线的区别。I? 还要注意:当考虑到电阻率随温度的变化时,电阻的伏安特性曲线不再是过原点的直线。
4.电功和电热 R1&R2
R1&R2电功就是电场力做的功,因此是W=UIt;由焦耳定律,电热Q=I2Rt。其微观解释是:电流通过金属导体时,自由电子在加速运动过程中频繁与正离子相碰,使离子的热运动加剧,而电子速率减小,可以认为自由电子只以某一速率定向移动,电能没有转化为电子的动能,只转化为内能。?对纯电阻而言,电功等于电热:W=Q=UIt=IR t=Ut
22R?对非纯电阻电路(如电动机和电解槽),由于电能除了转化为电热以外还同时转化为机械能或化学能等其它能,所2以电功必然大于电热:W&Q 例题分析 例1:实验室用的小灯泡灯丝的I-U特性曲线可用以下哪个图象来表示:
U解:灯丝在通电后一定会发热,当温度达到一定值时才会发出可见光,这时温度能达到很高,因此必须考虑到灯丝
的电阻将随温度的变化而变化。随着电压的升高,电流增大,灯丝的电功率将会增大,温度升高,电阻率也将随之增大,电阻增大,。U越大I-U曲线上对应点于原点连线的斜率必然越小,选A。 2例2:下图所列的4个图象中,最能正确地表示家庭常用的白炽电灯在不同电压下消耗的电功率P与电压平方U之间的函数关系的是以下哪个图象A.
D.解:此图象描2述P随U变化的规律,由功率表达2U式知:P?,UR越大,电阻越大,2 2 2 o图象上对应点与原点连线的斜率越小。选C。 例3:某一电动机,当电压U1=10V时带不动负载,因此不转动,这时电流为I1=2A。当电压为U2=36V时能带动负载正常运转,这时电流为I2=1A。求这时电动机的机械功率是多大?解:电动机不转时可视为为纯电阻,由欧姆定律得,R?U1?5?,这个电阻可认为是不变的。电动机正常转动时,I1输入的电功率为P电=U2I2=36W,内部消耗的热功率P热=I2R=5W,所以机械功率P=31W由这道例题可知:电动机在启动时电流较大,容易被烧坏;正常运转时电流反而较小。 例4:来自质子源的质子(初速度为零),经一加速电压为800kV的直线加速器加速,形成电流强度为1mA的细柱形-19质子流。已知质子电荷e=1.60310C。这束质子流每秒打到靶上的质子数为_________。假定分布在质子源到靶之间的加速电场是均匀的,在质子束中与质子源相距L和4L的两处,各取一段极短的相等长度的质子流,其中的质子数分别为n1和n2,则n1∶n2=_______。解:按定义,I?2nenI,???6.25?1015.,由于各处电流相同,设这段长度为l,其中的质子数为n个,则由ttes22? s
11I?nnelnev1和t?得I?,?n?。而v2?
s,?1?n2tvlvv
v 二、串、并联与混联电路 知识要点 1.应用欧姆定律须注意对应性。选定研究对象电阻R后,I必须是通过这只电阻R的电流,U必须是这只电阻R两端的电压。该公式只能直接用于纯电阻电路,不能直接用于含有电动机、电解槽等用电器的电路。2.公式选取的灵活性。 ?计算电流,除了用I?U外,还经常用并联电路总电流和分电流的关系:I=I1+I2 R?计算电压,除了用U=IR外,还经常用串联电路总电压和分电压的关系:U=U1+U2?计算电功率,无论串联、并联还是混联,总功率都等于各电阻功率之和:P=P1+P2U2对纯电阻,电功率的计算有多种方法:P=UI=I R= R2以上公式I=I1+I2、U=U1+U2和P=P1+P2既可用于纯电阻电路,也可用于非纯电阻电路。既可以用于恒定电流,也可以用于交变电流。3.对复杂电路分析,一般情况下用等势点法比较方便简洁。?凡用导线直接连接的各点的电势必相等(包括用不计电阻的电流表连接的点)。 ?在外电路,沿着电流方向电势降低。?凡接在同样两个等势点上的电器为并联关系。?不加声明的情况下,不考虑电表对电路的影响。4.电路中有关电容器的计算。?电容器跟与它并联的用电器的电压相等。 ?在计算出电容器的带电量后,必须同时判定两板的极性,并标在图上。 ?在充放电时,电容器两根引线上的电流方向总是相同的,所以要根据正极板电荷变化情况来判断电流方向。 ?如果变化前后极板带电的电性相同,那么通过每根引线的电荷量等于始末状态电容器电荷量的差;如果变化前后极板带电的电性改变,那么通过每根引线的电荷量等于始末状态电容器电荷量之和。 例题分析 例1:已知如图,R1=6Ω,R2=3Ω,R3=4Ω,则接入电路后这三只电阻的实际功率之比为_________。 解:本题解法很多,注意灵活、巧妙。经过观察发现三只电阻的电流关系最简单:电流之比是I1∶I2∶I3=1∶2∶3;还可以发现左面两只电阻并联后总阻值为2Ω,因此电压之比是U1∶U2∶U3=1∶1∶2;在此基础上利用P=UI,得P1∶P2∶P3=1∶2∶6 例2:已知如图,两只灯泡L1、L2分别标有“110V,60W”和“110V,100W”,另外有一只滑动变阻器R,将它们连接后接入220V的电路中,要求两灯泡都正常发光,并使整个电路消耗的总功率最小,应使用下面哪个电路?L1
D.解:A、C两图中灯泡不能正常发光。B、D中两灯泡都能正常发光,它们的特点是左右两部分的电流、电压都相同,因此消耗的电功率一定相等。可以直接看出:B图总功率为200W,D图总功率为320W,所以选B。 例3:实验表明,通过某种金属氧化物制成的均匀棒中的电流I跟电压U
之间遵循I =kU 的规律,其中U表示棒两端的电势差,k=0.02A/V。现将该棒与一个可变电阻器R串联在一起后,接在一个内阻可以忽略不计,电动势为6.0V的电源上。求:?当串联的可变电阻器阻值R多大时,电路中的电流为0.16A??当串联的可变电阻器阻值R多大时,棒上消耗的电功率是电阻R上消耗电功率的1/5?解:画出示意图如右。3?由I =kU 和I=0.16A,可求得棒两端电压为2V,因此变阻器两端电压为4V,由欧姆定律得阻值为25Ω。3?由于棒和变阻器是串联关系,电流相等,电压跟功率成正比,棒两端电压为1V,由I =kU得电流为0.02A,变阻器两端电压为5V,因此电阻为250Ω。 例4:左图为分压器接法电路图,电源电动势为E,
内阻不计,变阻器总电阻为r。闭合电键S后,负载电阻R两端的电压U随变阻器本身a、b两点间的阻值Rx变化的图线应最接近于右图中的哪条实线? Rx A.①
D.④解:当Rx增大时,左半部分总电阻增大,右半部分电阻减小,所以R两端的电压U应增大,排除④;如果没有并联R,电压均匀增大,图线将是②;实际上并联了R,对应于同一个Rx值,左半部分分得的电压将比原来小了,所以③正确,选C。 例5:已知如图,电源内阻不计。为使电容器的带电量增大,可采取以下那些方法:A.增大R1
D.减小R1 解:R3上无电流,于和R2并联。只有增大R2或减小R1才能增大电容器C两端的电压,从而增大其带电量。改变R3不能改变电容器的带电量。因此选BD。 例6:已知如图,R1=30Ω,R2=15Ω,R3=20Ω,AB间电压U=6V,A端R
R- 6为正C=2μF,为使电容器带电量达到Q =2310C,应将R4的阻值调节到多大?
解:由于R1 和R2串联分压,可知R1两端电压一定为4V,由电容器的-6
B 电容知:为使C的带电量为2310C,其两端电压必须为1V,所以R3的电压可以为3V或5V。因此R4应调节到20Ω或4Ω。两次电容器上极板分别-6还可以得出:当R4由20Ω逐渐减小的到4Ω的全过程中,通过图中P点的电荷量应该是4310C,电流方向为向下。 例7、如图所示电路中,甲、断开时,AB之间电阻为3Ω,S求R1、R2的阻值各为多少?
乙两个毫安表的内阻均为6Ω,R
3=R4=12Ω,S闭合时,甲、乙两个毫安表的示数之比为 ∶2,33解:断开时, 、 间的电阻为 ,于是
闭合时,设流过甲表的电流为I,则流过乙表的电流为2I,于是②由此可解得 ③④ 例8、如图6所示,电流表A1、A2和A3的内阻均可忽略。当滑动变阻器R1的滑动片P向右滑动时,下列说法中正确的是A.电流表A1的读数变大B.电流表A2的读数变大C.电流表A3的读数变大D.电流表A3的读数不变 【答题技巧】闭合电路欧姆定律结合串并联电路即可分析。电路中R1 、R2 、 R3组成并联然后与R4串联。P向右滑,电路总电阻减小,由闭合电路欧姆定律可知,总电流增大,故A选项正确,并联部分端电压减小,流过R2 、 R3的电流均减小,故A2读数减小,A3读数加上流过R3的电流等于总电流,所以A3读数变大,C选项正确。 例9、如图所示,电阻R 1 = R 2 = R 3 = 1.0Ω,,当电键S闭合时电压表的示数是1.0V,当电键S断开时电压表的示数是0.8V,求电源的电动势和内电阻。
闭合时,R1、R2并联再与R3串联外电路总电阻 ①干路电流 ②由闭合电路欧姆定律,得
③S断开时,R1与
R3串联外电路总电阻 ④干路电流
⑤由闭合电路欧姆定律,得
⑥由③、⑥两式解得
⑦⑧ 例10、图5所示是一实验电路图.在滑动触头由a端滑向b端的过程中,下列表述正确的是A.路端电压变小
B.电流表的示数变大C.电源内阻消耗的功率变小
D.电路的总电阻变大 答案.A【解析】当滑片向b端滑动时,接入电路中的电阻减少,使得总电阻减小D错.根据I?E,可知总电流在增加,根据闭合电R总U外R3,可知电流在减小,B错.根据路中的欧姆定律有E?Ir?U外,可知路端电压在减小,A对.流过电流表的示数为I?P?I2r,可知内阻消耗的功率在增大,C错.
例11、某实物投影机有10个相同的强光灯L1~L10(24V/200W)和10个相同的指示灯X1~X10(220V/2W),将其连接在220V交流电源上,电路见题18图,若工作一段时间后,L2 灯丝烧断,则( )A. X1的功率减小,L1的功率增大B. X1的功率增大,L1的功率增大C. X2功率增大,其它指示灯的功率减小D. X2功率减小,其它指示灯的功率增大答案:C解析:显然L1和X1并联、L2和X2并联?然后他们再串联接在220V交流电源上,L2 灯丝烧断,则总电阻变大、电路中电流I减小,又L1和X1并联的电流分配关系不变,则X1和L1的电流都减小、功率都减小,同理可知除X2 和L2 外各灯功率都减2小,A、B均错;由于I减小,各并联部分的电压都减小,交流电源电压不变,则X2 上电压增大,根据P=U/R可知X2 的功率变大,C对、D错。 三、闭合电路欧姆定律 知识要点
1.主要物理量。研究闭合电路,主要物理量有E、r、R、I、U,前两有:(1)E=U外+U内 E(2)I? (I、R间关系)R?r(3)U=E-Ir(U、I间关系) (4)U?RE(U、R间关系) R?r从(3)式看出:当外电路断开时(I = 0),路端电压等于电动势。而这时用电压表去测量时,读数却应该略小于电动势(有微弱电流)。当外电路短路时(R = 0,因而U = 0)电流最大为Im=E/r(一般不允许出现这种情况,会把电源烧坏)。2.电源的功率和效率。?功率:①电源的功率(电源的总功率)PE=EI
②电源的输出功率P出=UI2③电源内部消耗的功率Pr=I r?电源的效率:??P?U?R(最后一个等号只适用于纯电阻电路)PEER?r电源的输出功率P?E2RR?r2?4RrR?r2E2E2,可见电源输出功率??4r4rP随外电阻变化的图线如图所示,而当内外电阻相等时,电源的输出功率最2E大,为Pm?。 R 4r3.变化电路的讨论。闭合电路中只要有一只电阻的阻值发生变化,就会影响整个电路,使总电路路欧姆定律、串联电路的电压关系、并联电路的电流关系。以右图电路为例:设R1增大,总电阻一定增大;由I?因此U4、I4一定增大;由I3= I-I4,I3、U3一定减小;由U2=U-U3,U2、I2一定增大;由I1=I3 -I2,I1一定减小。总结规律如下:①总电路上R增大时总电流I减小,路端电压U增大; E
r ②变化电阻本身和总电路变化规律相同;③和变化电阻有串联关系(通过变化电阻的电流也通过该电阻)的看电流(即总电流减小时,该电阻的电流、电压都减小);④和变化电阻有并联关系的(通过变化电阻的电流不通过该电阻)看电压(即路端电压增大时,该电阻的电流、电压都增大)。4.闭合电路的U-I图象。右图中a为电源的U-I图象;b为外电阻的U-I
表示输出功率;a的斜率的绝对值表示内阻大小; b 出功率最大(可以看出当时路端电压是电动势的一半,电流是最大电流的一半)。 I5.滑动变阻器的两种特殊接法。 在电路图中,滑动变阻器有两种接法要特别引起重视: ?右图电路中,当滑动变阻器的滑动触头P从a端滑向b端的过程中,到达中点位置时外电阻最大,总电流最小。所以电流表A的示数先减小后增E,I一定减小;由U=E-Ir,U一定增大;R?r
大;可以证明:A1的示数一直减小,而A2的示数一直增大。?右图电路中,设路端电压U不变。当滑动变阻器的滑动触头P从a端滑向b端的过程中,总电阻逐渐减小;总电流I逐渐增大;RX两端的电压逐渐增大,电流IX也逐渐增大(这是实验中常用的分压电路的原理);滑动变阻器r左半部/ 的电流I 先减小后增大。 6.断路点的判定。当由纯电阻组成的串联电路中仅有一处发生断路故障时,用电压表就可以方便地判定断路点:凡两端电压为零的用电器或导线是无故障的;两端电压等于电源电压的用电器或导线发生了断路。7.黑盒问题。如果黑盒内只有电阻,分析时,从阻值最小的两点间开始。 例题分析 例1:已知如图,E =6V,r =4Ω,R1=2Ω,R2的变化范围是0~10Ω。求:①电源的最大输出功率;②R1上消耗的最大功率;③R2上消耗的最大功率。 解:①R2=2Ω时,外电阻等于内电阻,电源输出功率最大为2.25W;
②R1是定植电阻,电流越大功率越大,所以R2=0时R1上消耗的功率最大为2W;③把R1也看成电源的一部分,等效电源的内阻为6Ω,所以,当R2=6Ω时,R2上消耗的功率最大为1.5W。 例2:如图,电源的内阻不可忽略.已知定值电阻R1=10Ω,R2=8Ω.当电键S接位置1时,电流表的示数为0.20A.那么当电键S接位置2时,电流表的示数可能是下列的哪些值?A.0.28A
解:电键接2后,电路的总电阻减小,总电流一定增大,所以不可能是0.19A.电源的路端电压一定减小,原来路端电压为2V,所以电键接2后路端电压低于2V,因此电流一定小于0.25A.所以只能选C。例3:如图所示,电源电动势为E,内电阻为r.当滑动变阻器的触片P12变化的绝对值分别为ΔU1和ΔU2,下列说法中正确的是 A.小灯泡L1、L3变暗,L2变亮
B.小灯泡L3变暗,L1、L2变亮C.ΔU1&ΔU2D.ΔU1&ΔU2 解:滑动变阻器的触片P1L2电流增大,变亮,与电阻并联的灯泡L3电压降低,变暗。U1减小,U2增大,而路端电压U= U1+ U2减小,所以U1的变化量大于 U2的变化量,选BD。 例4:如图所示,图线a是某一蓄电池组的伏安特性曲线,图线b是一只某种型号的定值电阻的伏安特性曲线.若已知该蓄电池组的内阻为2.0Ω,则这只定值电阻的阻值为______Ω。现有4只这种规格的定值电阻,可任意选取其中的若干只进行组合,作为该蓄电池组的外电路,则所组成的这些外电路中,输出功率最大时是_______W。 I/A解:由图象可知蓄电池的电动势为20V,由斜率关系知外电阻阻值为6Ω。用3只这种电阻并联作为外电阻,外电阻等于2Ω,因此输出功率最大为50W。 例5:如图所示,电路中ab是一段长10 cm,电阻为100Ω的均匀电阻丝。两只定值电阻的阻值分别为R1=80Ω和R2=20Ω。当滑动触头P从
a端缓慢向b
b 端移动的全过程中灯泡始终发光。则当移动距离为____cm时灯泡最亮,移动 距离为_____cm时灯泡最暗。解:当P移到右端时,外电路总电阻最小,灯最亮,这时aP长10cm。当aP间电阻为20Ω时,外电路总电阻最大,灯最暗,这时aP长2cm。 例6:如图所示,黑盒有四个接线柱,内有4只阻值均为6Ω的电阻,每 c 只电阻都直接与接线柱相连。测得Rab=6Ω,Rac=Rad=10Ω。Rbc=Rbd=Rcd=4Ω,试画d 出黑盒内的电路。解:由于最小电阻是Rbc=Rbd=Rcd=4Ω,只有2只6Ω串联后再与1只6Ω并联才能出现4Ω,因此bc、cd 、db间应各接1只电阻。再于ab间接1只电阻,结论正合适。cd 例7
(12分)某待测电阻RX的阻值在 80Ω~100Ω之间,现要测量其电阻的阻值,实验室提供如下器材:A. 电流表A1(量程0.9mA、内阻r1=10Ω)B. 电流表A2(量程300μA、内阻r2 约为30Ω)C. 电流表A3(量程0.6A、内阻r1 约为0.2Ω)D. 电压表(量程15V、内阻约为20 kΩ
)E. 定值电阻R0=20ΩF. 滑动变阻器R ,最大阻值约为10ΩG. 电源E(电动势4V)A. 开关S、导线若干①.(2分)在上述提供的器材中,要完成此试验,应选用_________(填字母代号)②.(6分)测量要求电压表读数不得小于其量程的(图中元件用题干中相应的英文字母标注) ,请你在虚线框内画出测量电阻RX 的一种实验电路原理图③.(4分)用已知量和测量的量表示RX的表达式 RX=___________ .说明式中各字母所表示的物理量:__________________________________________
2分)ABEFGH.解析:根据测电阻实验原理、给定器材,实验要求。确定测电阻的方法-----“安安法”,从而选择实验器材。②(6分)
解析:考查:测定未知电阻的阻值。滑动变阻器的阻值R&10Rx,电表量程较小,控制电路采用分压电路;“伏安法”测电阻,测量中要求电压表读数不得小于其量程的 ,A1表测大电流,
A2表测小电流,假如A2
串联后与Rx并联, I1= I2m =137.5μA&I2m, 假如A2、Rx串联后与R0并联,I1=联。 I2m =550μA& I2 测量电路Rx与A2串联后与R0并③(4分) R0- r1 ,r1为A1表的内阻,R0为定值电阻,I1为A1表示数,I2为A2表示数,(I1-I2) R0= I2(Rx r1) Rx= 解决问题。R0Dr1例8、因为测量某电源电动势和内阻时得到的U-I图线。用此电源与三个阻值均为3?的电阻连接成电路,测得路端电压为4.8V。则该电路可能为
答案B【解析】本题考查测电源的电动势和内阻的实验.由测量某电源电动势和内阻时得到的U-I图线可知该电源的电动势为6v,内阻为0.5Ω.此电源与三个均为3?的电阻连接成电路时测的路端电压为4.8v,A中的路端电压为4v,B中的路端电压约为4.8V.正确C中的路端电压约为5.7v,D中的路端电压为5.4v. 例9、如图7所示,电动势为E、内阻不计的电源与三个灯泡和三个电阻相接,只合上开关S1,三个灯}

我要回帖

更多关于 高一物理视频 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信