求不定积分24个基本公式分

Access denied | zs.symbolab.com used Cloudflare to restrict access
Please enable cookies.
What happened?
The owner of this website (zs.symbolab.com) has banned your access based on your browser's signature (3d49dd487fff6d84-ua98).定积分_百度百科
声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。
[dìng jī fēn]
定积分是的一种,是函数f(x)在区间[a,b]上的积分和的。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(),其它一点关系都没有!一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
定积分积分分类
不定积分(Indefinite integral)
即已知求。若F′(x)=f(x),那么[F(x)+C]′=f(x).(C∈R C为常数).也就是说,把f(x),不一定能得到F(x),因为F(x)+C的导数也是f(x)(C是任意常数)。所以f(x)积分的结果有无数个,是不确定的。我们一律用F(x)+C代替,这就称为。即如果一个导数有原函数,那么它就有无
限多个原函数。
定积分 (definite integral)
定积分就是求函数f(X)在区间[a,b]中的图像包围的面积。即由 y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为,特例是。[1]
定积分定义
设函数f(x) 在区间[a,b]上,将区间[a,b]分成n个子区间[x0,x1], (x1,x2], (x2,x3], …, (xn-1,xn],其中x0=a,xn=b。可知各区间的长度依次是:△x1=x1-x0,在每个子区间(xi-1,xi]中任取一点ξi(1,2,...,n),作和式
。该和式叫做积分和,设λ=max{△x1, △x2, …, △xn}(即λ是最大的区间长度),如果当λ→0时,积分和的极限存在,则这个极限叫做函数f(x) 在区间[a,b]的定积分,记为
,并称函数f(x)在区间[a,b]上可积。[2]
其中:a叫做积分下限,b叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。
之所以称其为定积分,是因为它积分后得出的值是确定的,是一个常数, 而不是一个。
根据上述定义,若函数f(x)在区间[a,b]上可积分,则有n等分的特殊分法:
特别注意,根据上述表达式有,当[a,b]区间恰好为[0,1]区间时,则[0,1]区间积分表达式为:
定积分性质
1、当a=b时,
2、当a&b时,
3、常数可以提到积分号前。
4、代数和的积分等于积分的代数和。
5、定积分的可加性:如果积分区间[a,b]被c分为两个子区间[a,c]与[c,b]则有
又由于性质2,若f(x)在区间D上可积,区间D中任意c(可以不在区间[a,b]上)满足条件。
6、如果在区间[a,b]上,f(x)≥0,则
7、积分中值定理:设f(x)在[a,b]上连续,则至少存在一点ε在(a,b)内使
定积分常用积分法
定积分换元积分法
(2)x=ψ(t)在[α,β]上单值、可导;
(3)当α≤t≤β时,a≤ψ(t)≤b,且ψ(α)=a,ψ(β)=b,
定积分分部积分法
设u=u(x),v=v(x)均在区间[a,b]上可导,且u′,v′∈R([a,b]),则有分部积分公式:[3]
(见参考资料1)
定积分分点问题
定积分是把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。习惯上,我们用等差级数分点,即相邻两端点的间距Δx是相等的。但是必须指出,即使
不相等,积分值仍然相同。我们假设这些“矩形面积和”
那么当n→+∞时,
的最大值趋于0,所以所有的
趋于0,所以S仍然趋于积分值.
利用这个规律,在我们了解之前,我们便可以对某些函数进行积分。例如我们可以证明对于函数
我们选择等比级数来分点,令公比
那么“矩形面积和”
利用等比级数公式,得到
令n增加,则s,q都趋于1,因而N的极限为(u+v)/v=u/v+1=k+1.
定积分黎曼积分
定积分的正式名称是。用自己的话来说,就是把上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a,b.
我们可以看到,定积分的本质是把图象无限细分,再累加起来,而积分的本质是求一个导函数的原函数。它们看起来没有任何的联系,那么为什么定积分要写成积分的形式呢?
定积分定理
定积分一般定理
定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。
定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
定积分牛顿-莱布尼茨公式
定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是:
如果f(x)是[a,b]上的连续函数,并且有F′(x)=f(x),那么
用文字表述为:一个定积分式的值,就是原函数在上限的值与原函数在下限的值的差。
正因为这个理论,揭示了积分与黎曼积分本质的联系,可见其在微积分学以至更高等的数学上的重要地位,因此,牛顿-莱布尼兹公式也被称作微积分基本定理。
定积分应用
定积分解决求曲边图形的面积问题
面图形D的面积S.
定积分求变速直线运动的路程
做的物体经过的路程s,等于其速度函数v=v(t) (v(t)≥0)在时间区间[a,b]上的定积分。
定积分变力做功
某物体在变力F=F(x)的作用下,在位移区间[a,b]上做的功等于F=F(x)在[a,b]上的定积分。(见图册“应用”)
定积分数列求和的极限
若函数在[a,b]上连续,则有:
若函数在[a,b]上连续,则有:
若函数在[0,1]上连续,则有:
以上三个结论。[4]
Apostol, Tom M. (1967), Calculus, Vol. 1: One-Variable Calculus with an Introduction to Linear Algebra (2nd ed.), Wiley, ISBN 978-0-471-00005-1
同济大学数学系.高等数学第六版上册.北京:高等教育出版社,2007年
Burton, David M. (2005), The History of Mathematics: An Introduction (6th ed.), McGraw-Hill, p. 359, ISBN 978-0-07-
.百度文库[引用日期]
本词条认证专家为
副教授审核
南京理工大学求不定积分的方法及技巧小汇总_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
求不定积分的方法及技巧小汇总
阅读已结束,下载文档到电脑
想免费下载本文?
定制HR最喜欢的简历
下载文档到电脑,方便使用
还剩1页未读,继续阅读
定制HR最喜欢的简历
你可能喜欢论文发表、论文指导
周一至周五
9:00&22:00
对不定积分计算方法的思考
  摘 要: 本文通过分析不定积分计算教与学中的困难,提出老师和学生要注意的问题,并对几种常用方法作了分析。 中国论文网 http://www.xzbu.com/9/view-969945.htm  关键词: 不定积分计算 困难 分析 常用方法      不定积分是大学数学关于计算问题的一个重要内容,是定积分、重积分、线面积分计算、微分方程求解的基础。因此,熟练掌握不定积分的计算方法与技巧,对于学好高等数学是十分必要的,然而它的计算却存在着一定的难度。   一、不定积分计算的困难及分析   不定积分计算的困难首先是由其概念本身带来的,因为从求导的逆运算引进,造成了它的计算是非构造性的一类运算,它与求导相比有着显著的不同,求导有一定的公式可套,但求不定积分并非如此。   不定积分计算的困难还在于错误的思考方法,对于学生来说,解题往往通过“猜”的方式,猜原函数,这显然相当的困难;在老师方面,不定积分的教学也是一个难点,老师的任务是理出方法,教会学生如何理解方法,而不是凭感觉。现实存在的问题有两个:一是当在指定让学生用哪种方法解决时,学生可以做到,但如果把方法混在一起,学生往往不知道用哪种方法;二是在当时学生会解决的题目,时间久了,学生就忘记了。原因都在于学生没有真正理解透各种方法的本质特点,面对问题时,不知道怎么根据其特征选择适当的方法。   二、不定积分计算的方法思考   在介绍积分方法时,老师首先应提醒学生注意被积函数的多样性,而不同类型的被积函数就需要不同的积分方法来解决,对于一个给定的f(x),要求f(x)dx,这是一个未知的问题,从宏观上说我们要将未知的问题转化为已学知识来讨论。那么就存在两个问题:已知的是什么?怎么转化过去?   课本根据求导与不定积分的关系由基本求导公式给出了积分基本公式,它们可以作为已知的知识,那么不能直接由积分公式解决的问题,就要通过几种转化方法转化到现有的公式上,转化的依据要根据被积函数的结构和转化方法的特点。常用方法有以下几种。   1.基本变形。这个方法是由不定积分的性质线性引出的,只要做恒等变形就可以将要求的不定积分转化到基本积分公式中去,它的特点就是多个变单个。   2.凑微分法。顾名思义,关键在于一个“凑”字,如果能想到如何“凑”,则题目会迎刃而解,若想不到方法,则会无处入手。因此,归纳并熟记常用的凑微分公式是十分必要的。   老师在讲解这个方法的时候可以先通过几个简单的凑微分的例子引出凑微分这个方法,以形象地观察出凑微分法的本质、特点,书上给出的定理是比较抽象的,在对其证明中,可以采取比较通俗的方式,如:要验证f[φ(x)]?φ′(x)dx=f(u)du=F(u)+C=F[φ(x)]+C是否成立,只要验证(F[φ(x)]+C)′=f[φ(x)]?φ′(x)是否成立。   如果成立,则证明了该定理,也证明了前几个例子的做法是正确的。再结合例子和定理归纳出凑微分法的特点就是“变元再协同”。   有些例题要“凑”多次,老师可以举相关例题让学生充分体会凑微元法的本质特点是变元再协同中的“再”,总的来说凑微元法就是一个“变元再协同”的过程。   3.变量代换法。从被积函数中会发现一些难以处理的因式,使用凑微元怎么也协同不了,在讲解这个方法的时候可以先举几个这样的例子,告诉学生思考这个问题的方法,多列几个学生就会知道想办法去掉难以处理的因式,当然是有多种代换方法的。在学生接受了这种思路后再给出定理,证明手段类似凑微元的证明。   例1:求.   思路一:被积函数中既有x,又含有x,所以我们想办法通过变元都协同到x上,然后再观察,再协同。   解一:===    =d=d    =arctan+C   思路二:考虑被积函数中含有根号,想办法去掉根号,使用三角代换很容易将其算出。   观察这两种方法的各自特点,第一种思路它比较难想到,但计算起来比较简单,第二种方法它虽然操作起来相对麻烦一些,但指向性非常明确。三角换元法一般是把被积函数中含有的,,,分别用x=asint,x=atant,x=asect做变换去掉根式,没有太多的技巧,但是有些含有这样根式的不定积分不需要采取变量代换的方法,例如xdx,dx,被积函数中含有了比较难处理的因式,而变量代换就是起到一个去掉难处理的因式的作用,但在有些题目中只要用凑微元做就可以了,提醒学生不要犯教条。   4.分部积分。其基本公式为udv=uv-vdu,此方法用于求udv不易,而求vdu较易的题目。在运用分部积分法关键是u与dv的选取,掌握此方法的一个关键在于你要对哪个求导,du是一个局部求导,求导之后要方便运算才有意义。   例2:求xedx.   分析:被积函数是指数函数e与三角函数x的乘积,用分部积分有两种方案:xedx=edx=ex-xdexde,第一种方案是对e局部求导,而我们知道对它求导还是本身,所以解决不了根本问题,所以学生在做题的时候要思考到底对谁局部求导能达到目的,这题中对x局部求导就可以去掉这个因式,所以选择第二种方案。   这部分内容的学习要求我们要对各类积分法进行总结比较,分析各类积分方法的特征,达到掌握并熟练运用的目的。      参考文献:   [1]华东师范大学数学系编.数学分析(上册)[M].高等教育出版社,1990.   [2]仉志余.大学数学应用教程(上册)[M].北京大学出版社,2006.8.   [3]夏磊.不定积分在高职教学中的教学浅析[J].教育研究与实践,2008,(12).
本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文
转载请注明来源。原文地址:
【xzbu】郑重声明:本网站资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有,如有不愿意被转载的情况,请通知我们删除已转载的信息。
xzbu发布此信息目的在于传播更多信息,与本网站立场无关。xzbu不保证该信息(包括但不限于文字、数据及图表)准确性、真实性、完整性等。}

我要回帖

更多关于 不定积分题目及答案 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信