1-壬稀要使处于基态的氢原子同一个平面的1碳原子数有多少

怎样在一个有机分子中看碳原子是否在同一平面上?
同一平面上的碳原子结构有这几种1链状的有碳碳双键和碳碳三键碳碳双键除了那两个碳原子,连接在这两个碳原子上的另外4个原子也和这两个原子同面而碳碳三键的除了这两个碳原子,连接在这两个碳原子上的另外2个原子也和这两个原子同面,而且是同直线如果一个分子中有多个双键或三键,像三键隔一个单键又是一个双键,那它们是同一面的2另外是环装,如苯环,环己烷等等,它们的碳原子是在同一面上的如果是多个环状相连,比如两个苯环以一根碳键相连,你要知道,单键是可以看做能旋转的,那么就是可能共面,所以是最少8原子共面,最多12原子共面.这种题不难,记住简单的就能退复杂的.暂时只能想到这么多了,如果有什么不懂,欢迎提问.
为您推荐:
其他类似问题
扫描下载二维码&& 历史版本
最新历史版本
编辑时间:02-19 13:59
内容长度:99984 图片数:0目录数:3
&    烷烃(拼音:wántīng;英文:Alkane),又称石蜡烃,是碳氢化合物下的一种饱和烃,其整体构造大多仅由碳、氢、碳-碳单键与碳氢单键所构成,同时也是最简单的一种有机化合物,而其下又可细分出链烷烃与环烷烃。其名“烷”(Wán、ㄨㄢˊ)是化学家取“碳”右下角之火,加上“完”以造出的字。“碳”表示其结构中含有碳,而“完”表示其分子结构中碳原子化合价完足的意思。
2 基本分类
  分子中没有环的烷烃称为链烷烃(acyclic alkane),其通式为CnH2n+2,n为碳原子数。分子中含有环状结构的烷烃叫环烷烃(cycloalkane),又称为脂环化合物(alicyclic compound)。只含有一个环的环烷烃称为单环烷烃,单环烷烃的通式为CnH2n,与单烯烃互为同分异构体。环烷烃按环的大小,分为①小环:三、四元环,②普通环:五、六、七元环,③中环:八至十一元环,④大环:十二元环以上。分子中只有一个环的称为单环;两个环的称为双环;有三个或以上环的称为多环环系各以环上一个碳原子用单键直接相连而成的多环烧烃称为集合环烷烃(cycloalkane ring assembly)。两个环共用两个或多个碳原子的多环烷烃称为桥环烷烃(bridged cycloalkane)。单环之间共用一个碳原子的多环烧径称为螺环烷烃(spirocyclicalkane)。
3 基本性质
&  物理性质  一些链烷烃和环烷烃的物理常数名称分子式沸点/℃熔点/℃相对密度甲烷CH4-161.7-182.6——乙烷C2H6-88.6-172.0——丙烷(环丙烷)C3H8(C3H6)-42.2(-32.7)-187.1(-127.6)0.5005丁烷(环丁烷)C4H10(C4H8)-0.5(12.5)-135.0(-80)0.5788戊烷(环戊烷)C5H12(C5H10)36.1(49.3)-129.3(-93.9)0.7)己烷(环己烷)C6H14(C6H12)68.7(80.7)-94.0(6.6)0.6)庚烷(环庚烷)C7H16(C7H14)98.4(118.5)-90.5(-12.0)0.8)辛烷(环辛烷)C8H18(C8H16)125.6(150)-56.8(14.3)0.9)壬烷C9H20150.7-53.70.7179癸烷C10H22174.0-29.70.7298十一烷C11H24195.8-25.60.7404十二烷C12H26216.3-9.60.7493十三烷C13H28(230)-60.7568十四烷C14H302515.50.7636十五烷C15H32268100.7688十六烷C16H3428018.10.7749十七烷C17H3630322.00.7767十八烷C18H3830828.00.7767十九烷C19H4033032.00.7776二十烷C20H4234336.40.7886三十烷C30H62449.7660.7750四十烷C40H82——81——化学性质  自由基反应  1.碳自由基的定义和结构  某一键均裂时会产生带有孤电子的原子或基团,称之为自由基。孤电子在氢原子上的自由基称为氢自由基。孤电子在碳原子上的自由基称为碳自由基。烷烃中的碳氢键均裂时会产生一个氢自由基和一个烷基自由基即碳自由基。自由基碳sp2杂化,三个sp2杂化轨道具有平面三角形的结构,每个sp2杂化轨道与其它原子的轨道通过轴向重叠形成σ键,成键轨道上有一对自旋相反的电子。一个p轨道垂直于此平面,p轨道被一个孤电子占据。  2.键解离能和碳自由基的稳定性  (1)键解离能  分子中的原子总是围绕着它们的平衡位置做微小的振动,分子振动类似于弹簧连接的小球的运动,室温时,分子处于基态,这时振幅很小,分子吸收能量,振幅增大。如果吸收了足够的能量,振幅增大到一定程度,键就断了,这时吸收的热量,是键解离反应的焓(ΔH),是这个键的键能,或称键解离能(bond-dissociation energy),用Ed表示。  (2)碳自由基的稳定性  自由基的稳定性,是指与它的母体化合物的稳定性相比较,比母体化合物能量高得多的较不稳定,高得少的较稳定。从上面C一H键的解离能数据可以看出:CH4中C—H键解离,其解离能最大,在同列系中第一个化合物往往是比较特殊的;CH3CH3与CH3CH2CH3中断裂一级碳上的氢,解离能较CH4稍低,形成的均为一级自由基;CH3CH2CH3中断裂二级碳原子上的氢,其解离能又低一些,形成二级自由基;(CH3)3CH中三级碳原子上的氢断裂,其解离能最低,形成三级自由基。这些键解离反应中,产物之一是,均是相同的,因此键解离能的不同,是反映了碳自由基的稳定性不同。解离能越低的碳自由基越稳定。因此碳自由基的稳定性顺序为  3°C·&2°C·&1°C·&H3C·  在烷烃分子中,C—C键也可解离。  3.自由基反应的共性  化学键均裂产生自由基。由自由基引发的反应称为自由基反应,或称自由基型的链反应(chain reaction)。自由基反应一般都经过链引发(initiation )、链转移(propagation,或称链生成)、链终止(termirrntimi)三个阶段。链引发阶段是产生自由基的阶段。由于键的均裂需要能量,所以链引发阶段需要加热或光照。  有些化合物十分活泼,极易产生活性质点自由基,这些化合物称之为引发剂(initiator)。有时也可以通过单电子转移的氧化还原反应来产生自由基。链转移阶段是由一个自由基转变成另一个自由基的阶段,犹如接力赛一样,自由基不断地传递下去,像一环接一环的链,所以称之为链反应。链终止阶段是消失自由基的阶段。自由基两两结合成键。所有的自由基都消失了,自由基反应也就终止了。  自由基反应的特点是没有明显的溶剂效应,酸、碱等催化剂对反应也没有明显影响,当反应体系中有氧气(或有一些能捕捉自由基的杂质存在)时,反应往往有一个诱导期(induction period) 。  烷烃的卤化  烷烃中的氢原子被卤原子取代的反应称为卤化反应(halogenation)。卤化反应包括氟化(fluorinate),氯化(chlorizate),溴化(brominate)和碘化(iodizate)。但有实用意义的卤化反应是氯化和溴化。  1.甲烷的氯化  甲烷在紫外光或热(250~400℃)作用下,与氯反应得各种氯代烷。  如果控制氯的用量,用大量甲烷,主要得到氯甲烷;如用大量氯气,主要得到四氯化碳。工业上通过精馏,使混合物一一分开。以上几个氯化产物,均是重要的溶剂与试剂。  甲烷氯化反应的事实是:  ①在室温暗处不发生反应;  ②髙于250℃发生反应;  ③在室温有光作用下能发生反应;  ④用光引发反应,吸收一个光子就能产生几千个氯甲烷分子;  ⑤如有氧或有一些能捕捉自由基的杂质存在,反应有一个诱导期,诱导期时间长短与存在这些杂质多少有关。根据上述事实的特点可以判断,甲烷的氯化是一个自由基型的取代反应。  2.甲烷的卤化  在同类型反应中,可以通过比较决定反应速率一步的活化能大小,了解反应进行的难易。  氟与甲烷反应是大量放热的,但仍需+4.2kJ/mol活化能,一旦发生反应,大量的热难以移走,破坏生成的氟甲烷,而得到碳与氟化氢,因此直接氟化的反应难以实现。碘与甲烷反应,需要大于141kJ/mol的活化能,反应难以进行。氯化只需活化能+16.7kJ/mol,溴化只需活化能+75.3kJ/mol,故卤化反应主要是氯化、溴化。氯化反应比溴化易于进行。  碘不能与甲烷发生取代反应生成碘甲烷,但其逆反应很容易进行。  由基链反应中加入碘,它可以使反应中止。  3.高级烷烃的卤化  在紫外光或热(250~400℃)作用下,氯、溴能与烷烃发生反应,氟可在惰性气体稀释下进行烷烃的氟化,而碘不能。  烷烃的热裂  无氧存在时,烷烃在髙温(800℃左右)发生碳碳键断裂,大分子化合物变为小分子化合物,这个反应称为热裂(pymlysis)。石油加工后除得汽油外,还有煤油、柴油等相对分子质量较大的烷烃;通过热裂反应,可以变成汽油、甲烷、乙烷、乙烯及丙烯等小分子的化合物,其过程很复杂,产物也复杂;碳碳键、碳氢键均可断裂,断裂可以在分子中间,也可以在分子一侧发生;分子愈大,愈易断裂,热裂后的分子还可以再进行热裂。热裂反应的反应机制是热作用下的自由基反应,所用的原料是混合物。  热裂后产生的自由基可以互相结合。热裂产生的自由基也可以通过碳氢键断裂,产生烯烃。  总的结果是大分子烷烃热裂成分子更小的烷烃、烯烃。这个反应在实验室内较难进行,在工业上却非常重要。工业上热裂时用烷烃混以水蒸气在管中通过800℃左右的加热装置,然后冷却到 300~400°C,这些都是在不到一秒钟时间内完成的,然后将热裂产物用冷冻法加以一一分离。塑料、橡胶、纤维等的原料均可通过此反应得到。  烷烃的氧化  在生活中经常碰到这样的现象,人老了皮肤有皱纹,橡胶制品用久了变硬变黏,塑料制品用久了变硬易裂,食用油放久了变质,这些现象称为老化。老化过程很慢,老化的原因首先是空气中的氧进人具有活泼氢的各种分子而发生自动氧化反应(autoxidaticm),继而再发生其它反应。  燃烧  所有的烷烃都能燃烧,完全燃烧时,反应物全被破坏,生成二氧化碳和水,同时放出大量热。  烷烃的硝化  烷烃与硝酸或四氧化二氮进行气相(400~450℃)反应,生成硝基化合物(RNO2)。这种直接生成硝基化合物的反应叫做硝化(nitration),它在工业上是一个很重要的反应。它之所以重要是由于硝基烷烃可以转变成多种其它类型的化合物,如胺、羟胺、腈、醇、醛、酮及羧酸等。此外,硝基烷烃可以发生多种反应,故在近代文献中有关硝基烷烃的应用的报道日益增多。在实验室中采用气相硝化法有很大的局限性,所以实验室内主要通过间接方法制备硝基烷烃。气相硝化法制备硝基烷烃,常得到多种硝基化合物的混合物。  烷烃的磺化及氯磺化  烷烃在高温下与硫酸反应,和与硝酸反应相似,生成烷基磺酸,这种反应叫做磺化(sulfcmation)。  长链烷基磺酸的钠盐是一种洗涤剂,称为合成洗涤剂,例如十二烷基磺酸钠即其中的一种。  高级烷烃与硫酰氯(或二氧化硫和氯气的混合物)在光的照射下,生成烷基磺酰氯的反应称为氯磺化。磺酰氯这个名称是由硫酸推衍出来的。硫酸去掉一个羟基后剩下的基闭称为磺(酸)基,磺(酸)基和烷基或其它烃基相连而成的化合物统称为磺酸。磺酸中的羟基去掉后,就得磺酰基,它与氯结合,就得磺酰氯。  磺酰氯经水解,形成烷基磺酸,其钠盐或钾盐即上述的洗涤剂。其反应机理与烷烃的氯化很相似。  小环烷烃的开环反应  五元或五元以上的环烷烃和链烷烃的化学性质很相像,对一般试剂表现得不活泼,也不易发生开环(opening of ring)反应。但能发生自由基取代反应,三元、四元的小环烷烃分子不稳定,比较容易发生开环反应。  1.与氢反应  环丙烷与氢气在Pt/C,50℃或Ni,80℃时反应,生成丙烷。  乙基环丙烷与氢气在Pt/C,50℃或Ni,80℃时反应,生成2-甲基丁烷。  环丁烷与氢气在Pt/C,125℃或Ni,200℃时反应,生成丁烷。  五元、六元、七元环在上述条件下很难发生反应。  2.与卤素反应  环丙烷与溴在室温下反应,生成1,3-二溴丙烷。  环丙烷在三氯化铁存在下与氯气反应,生成1,3-二氯丙烷。  四元环和更大的环很难与卤素发生开环反应。  3.与氢碘酸反应  环丙烷、甲基环丙烷、环丁烷可与氢碘酸反应,其它环烷烃不发生这类反应。  从上述例子可以看到,开环的反应活性为:三元环&四元环&五、六、七元环。此外,小环化合物在合适的条件下也能发生自由基取代反应。&
版本创建者
浏览次数: 1888
编辑次数: 1 次未将对象引用设置到对象的实例。
“/”应用程序中的服务器错误。
未将对象引用设置到对象的实例。
说明: 执行当前 Web 请求期间,出现未处理的异常。请检查堆栈跟踪信息,以了解有关该错误以及代码中导致错误的出处的详细信息。
异常详细信息: System.NullReferenceException: 未将对象引用设置到对象的实例。
执行当前 Web 请求期间生成了未处理的异常。可以使用下面的异常堆栈跟踪信息确定有关异常原因和发生位置的信息。
[NullReferenceException: 未将对象引用设置到对象的实例。]
book_2.LoadFlexPaperInfo() +351
book_2.Page_Load(Object sender, EventArgs e) +16455
System.Web.Util.CalliHelper.EventArgFunctionCaller(IntPtr fp, Object o, Object t, EventArgs e) +24
System.Web.Util.CalliEventHandlerDelegateProxy.Callback(Object sender, EventArgs e) +41
System.Web.UI.Control.OnLoad(EventArgs e) +131
System.Web.UI.Control.LoadRecursive() +65
System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint) +2427
版本信息:&Microsoft .NET Framework 版本:2.0.; ASP.NET 版本:2.0.}

我要回帖

更多关于 碳原子处于同一平面 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信