构成次原子粒子子

当前位置:
>>>以氧原子为例,说明构成原子的粒子有哪几种,它们是怎样构成原子..
以氧原子为例,说明构成原子的粒子有哪几种,它们是怎样构成原子的?为什么整个原子不显电性?
题型:问答题难度:中档来源:不详
根据原子的构成:原子是由原子核和核外电子组成,原子核由质子和中子组成(质子带正电,中子不带电).原子核带正电,电子带负电,两者的带电量相同,一正一负,所以整个原子显示的是电中性.故答案为:构成原子的粒子有质子、中子和电子;氧原子有8个质子和8个中子构成原子核,8个电子在原子核外高速运动;原子核中8个质子带8个单位的正电荷,8个电子带8个单位的负电荷,中子不带电,质子带的电量与核外电子带的电量相等,电性相反,因此整个原子不显电性.
马上分享给同学
据魔方格专家权威分析,试题“以氧原子为例,说明构成原子的粒子有哪几种,它们是怎样构成原子..”主要考查你对&&原子结构,原子的定义&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
原子结构原子的定义
原子的构成:原子核的构成:原子核相对原子来说,体积很小,但质量却很大,原子的质量主要集中在原子核上,电子的质量约为质子质量的。质子的质量为:1.6726×10-27kg 中子的质量为:1.6749×10-27kg 构成原子的粒子间的关系:对原子构成的正确理解: (1)原子核位于原子中心,绝大多数由质子和中构成 (有一种氢原子的原子核内只含有1个质子,无中子),体积极小,密度极大,几乎集中了原子的全部质量,核外电子质量很小,可以忽略不计。 (2)每个原子只有一个原子核,核电荷数(核内质子数)的多少,决定了原了的种类。 (3)在原子中:核电荷数二质子数二核外电子数。 (4)原子核内的质子数不一定等干中子数,如钠原子中,质子数为11,中子数为12。 (5)并不是所有的原子中都有中子,如有一种氢原子中就没有中子。 (6)在原子中,由于质子(原子核)与电子所带电荷数相等,且电性相反,因而原子中虽然存在带电的粒子,但原子在整体上不显电性。核外电子的排布:①电子层核外电子运动有自己的特点,在含有多个电子的原子里,有的电子通常在离核较近的区域运动,有的电子通常在离核较远的区域运动,科学家形象地将这些区域称为电子层。 ②核外电子的分层排布通常用电子层来形象地表示运动着的电子离核远近的不同:离核越近,电子能量越低;离核越远,电子能量越高。电子层数、离核远近、能量高低的关系如下所示:电子层数 1 2 3 4 5 6 7 离核远近 近→&&&&&&& 远能量高低 低→&&&&&&& 高 ③核外电子排布的规律了解一些核外电子排布的简单规律对理解原子核外电子排布的情况有很重要的作川,核外电子排布的简单规律主要有: a.每层上的电子数最多不超过2n2(n为电子层数),如第一电子层上的电子数可能为1,也可能为2,但最多为2。 b.核外电子排布时先排第一层,排满第一层后,再排第二层,依次类推。 c.最外层上的电子数不超过8;当只有一个电子层时,最外层上的电子数不超过2。原子的不可再分与原子的结构:化学变化中原子不会由一种原子变成另外一种原子,即化学变化中原了的种类不变,其原因是化学变化中原子核没有发生变化。如硫燃烧生成了二氧化硫,硫和氧气中分别含有硫原子和氧原子,反应后生成的二氧化硫中仍然含硫原子和氧原子。原子不是最小粒子,只是在化学变化的范围内为“最小粒子”,它还可再分,如原子弹爆炸时的核裂变,就是原子发生了变化。原子尽管很小,但具有一定的构成,是由居于原子中心的带正电的原子核和核外带负电的电子构成的。原子结构示意图: 由原子构成的物质:绝大多数的单质是由原子构成的,如金属单质、稀有气体均是由原子直接构成的,碳、硫、磷等大多数的非金属单质也是由原子直接构成的。&原子的定义:原子是化学变化中最小的粒子。例如,化学变化中,发生变化的是分子,原子的种类和数目都未发生变化。对原子的概念可从以下三个方面理解: ①原子是构成物质的基本粒子之一。 ②原了也可以保持物质的化学性质,如由原子直接构成的物质的化学性质就由原子保持。 ③原子在化学变化中不能再分,是“化学变化中最小的粒子”,脱离化学变化这一条件,原子仍可再分。 原子的性质: ①原子的质量、体积都很小; ②原子在不停地运动; ③原子之间有一定的间隔; ④原子可以构成分子,如一个氧分子是由两个氧原子构成的;也可以直接构成物质,如稀有气体、铁、汞等都是由原子直接构成的; ⑤化学反应中原子不可再分。 原子的表示方法—元素符号:原子可用元索符号表示:如O既可表示氧元素,也可表示1个氧原子。分子和原子的联系与区别:
道尔顿的原子模型: 英国自然科学家约翰·道尔顿将古希腊思辨的原子论改造成定量的化学理论,提出了世界上第一个原子的理论模型。他的理论主要有以下四点: ①所有物质都是由非常微小的、不可再分的物质微粒即原子组成 ②同种元素的原子的各种性质和质量都相同,不同元素的原子,主要表现为质量的不同 ③原子是微小的、不可再分的实心球体 ④原子是参加化学变化的最小单位,在化学反应中,原子仅仅是重新排列,而不会被创造或者消失。 虽然,经过后人证实,这是一个失败的理论模型,但道尔顿第一次将原子从哲学带入化学研究中,明确了今后化学家们努力的方向,化学真正从古老的炼金术中摆脱出来,道尔顿也因此被后人誉为“近代化学之父”。
发现相似题
与“以氧原子为例,说明构成原子的粒子有哪几种,它们是怎样构成原子..”考查相似的试题有:
23534712718911647621142220715149459《原子与原子核的结构》教学设计
当前位置:>>>>>>>>>>>>>>
  摘要:本教学设计选自人教版高中物理选修1-2 第3章第2节,教学过程有“回顾历史,提出问题;提出假设,科学验证;分析讨论,得出结论;小结交流,测试反馈”四个环节,教学中借助现代信息技术、网络资源把科学问题的探究引人课堂,使学生在了解科学家的探究过程的基础上,理解科学概念和科学探究的本质,培养科学的探究能力。
  关键词:探究学习;教学设计
  学时:2学时,第1学时完成原子的核式结构模型;第2学时完成原子核的组成和质能方程。
  一、教材结构框图
  二、教学目标设计
  (一)知识与技能
  1.了解卢瑟福a粒子散射实验,核式结构模型的建立,了解从分析实验结果到提出原子的核式结构学说的过程;
  2.知道质子和中子的发现过程及原子核的组成;了解原子物理的研究方法是在实验的基础上进行科学分析;
  3.了解原子核的表示方法,了解同位素;了解爱因斯坦质能方程的含义,感受它的科学之美。
  (二)过程与方法
  通过对原子结构的认识过程的学习,体会物理学解决“黑箱问题”的方法,并理解人类对微观世界的认识是不断扩大和加深的科学探究永无止境;
  (三)情感态度与价值观
  通过阅读史料,感受前辈科学家为探究真理而毕生奋斗的科学精神。
  三、学习重点
  卢瑟福的α粒子散射实验的现象及所说明的问题。
  四、教学过程设计
  第一环节:回顾历史,提出问题
  (播放1964年我国第一颗原子弹爆炸成功的视频)
  1945年7月16日,美国在新墨西哥州沙漠中阿拉莫戈多的“三一”试验场内30米高的铁塔上,进行了人类有史以来的第一次核试验;1954年建在前苏联的卡卢加州奥布宁斯克城的世界首座核电站;1964年我国第一颗原子弹爆炸成功。说明人类已经开始利用原子的核能。
  1893年道尔顿(J. Dalton)提出了原子学说:一切物质都由极小的微粒──原子组成。不同的物质,含有不同的原子,不同原子的大小、质量和性质不同。随后被许多实验所证实,并且对许多现象给予了定量的解释。科学的发展证实了原子的存在。当原子学说逐渐被人们接受以后,人们又面临着新的问题:原子到底有多大?原子是如何构成的?内部结构如何?原子是最小的粒子吗……
  (出示鸡蛋或者鸡蛋的图片)
  问题1:假如你以前从未吃过鸡蛋,甚至没有见过鸡蛋,现在你想知道这东西里面究竟有什么,有什么办法吗?
  问题2:如果你不想打碎它,但又想知道这里面有什么,有什么办法吗?
  问题3:在陌生的环境中,发现一个不认识的东西。为了了解它,有什么简洁的办法?
  (黑箱法:指一个系统内部结构不清楚,或根本无法弄清楚时,从外部输入控制信息,使系统内部发生反应后输出信息,再根据其输出信息来研究其功能和特性的一种方法。)
  问题4:我们用什么办法去探究微观的原子世界?
  很自然地引导学生归纳出科学家进行科学探索常用的思维方法:即观察物理现象──提出假设──构建理想化物理模型──实验验证。
  第二环节:提出假设,科学验证
  (一)原子的核式结构模型
  (1)电子的发现──把人们带入了原子内部的世界
  1897年,汤姆逊通过阴极射线管的实验发现了电子,并进一步测出了电子的荷质比:e/m。不久,人们发现在气体电离和过电效应等现象中,都可以从物质中击出电子。电子的质量比最轻的氢原子的质量小的多,因而认为电子是原子的组成部分。
  汤姆逊被誉为:“一位最先打开通向基本粒子物理学大门的伟人。”
  (2)提出假设──汤姆生原子模型
  电子带负电,而原子是中性的,可见,原子内还有带正电的物质。由此,科学家提出了许多原子模型,最有影响力的是汤姆生提出的枣糕式模型。
  (3)设计新的探究方案──α粒子散射实验
  1909―1911年,卢瑟福为了验证他的导师汤姆生的“枣糕式模型”,建议他的研究生盖革和马斯顿观察镭发射出的高速α粒子穿过薄的金属箔片后的偏转情况。
  1.α粒子散射实验原理:
  汤姆生提出的枣糕式原子模型是否对呢?原子的结构非常紧密,用一般的方法是无法探测它的内部结构的,要认识原子的结构,需要用高速粒子对它进行轰击。而粒子具有足够的能量,可以接近原子中心。它还可以使荧光屏物质发光。如果粒子与其他粒子发生相互作用,改变了运动方向,荧光屏就能够显示出它的方向变化。研究高速的粒子穿过原子的散射情况。是研究原子结构的有效手段。
  (教师指出:研究原子内部结构要用到的方法:黑箱法、微观粒子碰撞方法。)
  2.α粒子散射实验装置
  粒子散射实验的装置,主要由放射源、金箔、荧光屏、望远镜和转动圆盘几部分组成。
  (由于α粒子散射实验无法用真实的实验演示给学生看,所以利用动画向学生模拟实验的装置、过程和现象,使学生获得直观的切身体验,留下深刻的印象。通过多媒体重点指出,荧光屏和望远镜能够围绕金箔在一个圆周上运动,从而可以观察到穿透金箔后偏转角度不同的粒子。并且要让学生了解,这种观察是非常艰苦细致的工作,所用的时间也是相当长的。实验设计的巧妙之处:1.炮弹奇特,高速α粒子;电量是氢离子的2倍,质量是氢离子的四倍,是电子的7000倍,速度是光速的1/10,能量巨大。2.靶子极薄,金的延展性非常好,可以达到微米级的厚度,容易打穿。3.装置巧妙,显微镜和荧光屏可以在一个圆周上运动,统计在各个不同位置相同时间内接收到的粒子数就可以确定α粒子穿过金原子后的偏转情况。)
  3.实验的观察结果
  α粒子散射实验的数据
  根据以上实验数据,用科学语言表述实验结果:
  (学生分组讨论交流)得到实验结果:绝大多数沿原来的方向前进,少数发生了较大偏转,极少数发生大角度偏转。
  第三环节:分析讨论,得出结论
  根据汤姆生原子模型分析:
  问题1:α粒子出现大角度散射有没有可能是与电子碰撞后造成的?
  (引导学生讨论交流)碰撞前后,质量大的α粒子遇到电子,就像飞行的子弹遇到空气中的尘埃,因此不可能出现大角散射。
  问题2:α粒子在原子附近或穿越原子内部后有没有可能发生大角度偏转?
  (学生分组讨论交流得到结果)对于α粒子在原子附近时由于原子呈中性,与粒子之间没有或很小的库仑力的作用,正电荷在原子内部均匀的分布,α粒子穿过原子时,由于原子两侧正电荷将对它的斥力有相当大一部分互相抵消,使α粒子偏转的力不会很大,所以α粒子不可能发生大角度偏转。
  问题3:这个实验结果和我们预想的结果有什么不同?汤姆生原子结构模型准确吗?
  学生分组讨论交流得到结果:汤姆生原子结构模型无法解释粒子散射实验现象。
  问题4:汤姆生原子模型中的正电荷和质量均匀分布在整个原子内预想的结果与实验现象不同,你认为原子中的正电荷和质量应如何分布,才有可能造成粒子的大角度偏转?
  (学生小组讨论、小组间互相提问)解答:实验中发现极少数粒子发生了大角度偏转,甚至反弹回来,表明这些粒子在原子中某个地方受到了质量、电量均比它本身大得多的物体的作用,可见原子中的正电荷、质量应都集中在一个中心上。
  (师生互动,学生小组讨论,学生分析推理)得到:
  1.绝大多数粒子不偏移→原子内部绝大部分是“空”的。
  2.少数粒子发生较大偏转→原子内部有“核”存在。
  3.极少数粒子被弹回表明:①作用力很大;②质量很大电量集中。
  (卢瑟福的原子结构模型图片)
  在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间里绕着核旋转。
  根据卢瑟福的原子核式模型和α粒子散射的实验数据,可以推算出各种元素原子核的电荷数,还可以估计出原子核的大小。
  ①原子的半径约为10-10米、原子核半径约是10-14米,原子核的体积只占原子的体积的万亿分之一。
  ②原子核所带正电荷数与核外电子数以及该元素在周期表内的原子序数相等。
  ③电子绕核旋转所需向心力就是核对它的库仑力。&
  卢瑟福的原子核式模型,能解释α粒子散射实验,却与经典的电磁理论发生了矛盾。
  (二)原子核的组成
  阅读:质子和中子的发现──人们认识到原子核的组成
  ①英国物理学家卢瑟福在1919年做核反应实验时发现了质子,经过研究证明,质子带正电荷,其电量和一个电子的电量相同,它的质量等于一个电子质量的1836倍.进一步研究表明,质子的性质和氢原子核的性质完全相同,所以质子就是氢原子核。
  ②1932年英国物理学家查德威克又发现了中子,通过研究证明中子的质量和质子的质量基本相同,但是不带电.是中性粒子.在对各种原子核进行的实验中,发现质子和电子是组成原子核的两种基本粒子。
  中子的发现是世界科学史上又一个里程碑,它使人类从此跨进了原子能时代。因为中子的发现解决了理论物理学家在原子核的质子、电子模型上碰到的难题,人们认识到原子核原来是由质子和中子组成的,而不是由质子和电子组成的。意大利的著名科学家费米后来用中子作核炮弹依次来袭击各种元素的原子核,于是由此发现了核裂变和核的链式反应。查德威克由于发现了中子,被授予1935年的诺贝尔物理奖。
  阅读课本48页后回答:什么是同位素?
  (三)质能方程
  阅读课本49页:
  (1)质量亏损&
  科学家研究证明在核反应中原子核的总质量并不相等,例如精确计算表明:氘核的质量比一个中子和一个质子的质量之和要小一些,这种现象叫做质量亏损,质量亏损只有在核反应中才能明显的表现出来。(回顾质量、能量的定义、单位。明确质量不是能量、能量也不是质量,质量不能转化能量,能量也不能转化质量,质量只是物体具有能量多少及能量转变多少的一种量度)
  (2)爱因斯坦质能方程: E=mc2&
  相对论指出,物体的能量(E)和质量(m)之间存在着密切的关系,即E=mc2式中,c为真空中的光速。爱因斯坦质能方程表明:物体所具有的能量跟它的质量成正比。由于c2这个数值十分巨大,因而物体的能量是十分可观的。
  (3)核反应中由于质量亏损而释放的能量:△E=△m c2
  物体贮藏着巨大的能量是不容置疑的,但是如何使这样巨大的能量释放出来?从爱因斯坦质能方程同样可以得出,物体的能量变化△E与物体的质量变化△m的关系:△E=Δmc2
  第四环节:小结交流,测试反馈
  课本50页“问题与练习”1,2,3,4
  5.卢瑟福提出原子的核式结构学说的根据是,在用α粒子轰击金箔的实验中发现α粒子( &&&)
  A.全部穿过或发生很小的偏转;
  B.绝大多数穿过,只有少数发生很大偏转,甚至极少数被弹回;
  C.绝大多数发生很大的偏转,甚至被弹回,只有少数穿过;
  D.全部发生很大的偏转。
  6.在用α粒子轰击金箔的实验中,卢瑟福观察到的α粒子的运动情况是(&& )
  A.全部α粒子穿过金属箔后仍按原来的方向前进
  B.绝大多数α粒子穿过金属箔后仍按原来的方向前进,少数发生较大偏转,极少数甚至被弹回
  C.少数α粒子穿过金属箔后仍按原来的方向前进,绝大多数发生较大偏转,甚至被弹回
  D.全部α粒子都发生很大偏转
  7.原子的核式结构学说,是卢瑟福根据以下哪个实验或现象提出来的(&&& )
  A.光电效应实验&&& &B.氢原子光谱实验& &C.α粒子散射实验&& D.天然放射现象
  8.卢瑟福α粒子散射实验的结果(&& )
  A.证明了质子的存在&& B.证明了原子核是由质子和中子组成的
  C.说明原子的全部正电荷和几乎全部质量都集中在一个很小的核上
  D.说明原子的电子只能在某些不连续的轨道上运动
  9.当α粒子被重核散射时,如图所示的运动轨迹哪些是不可能存在的(&& )
  10.质子的质量mp,中子的质量为mn,它们结合成质量为m的氘核,放出的能量应为(&&& )
  A.(mp+mn-m)C2  B.(mp+mn)c2  C.mc2  D.(m-mp)c2
  五、结束语
  《普通高中物理课程标准》指出:“高中物理课程应促进学生自主学习,让学生积极参与、乐于探究、勇于实验、勤于思考。通过多样化的教学方式,帮助学生学习物理知识与技能,培养其科学探究能力,使其逐步形成科学态度与科学精神。”为了更好地实现物理学科教学的新理念,适应《普通高中物理课程标准》和新课程的需要,帮助学生从被动的学习者转变为主动的学习者,所以在探究物理规律的过程中培养获取和处理信息的基本科学方法和思维模式,在参与解决问题、决策、小组讨论、学习评价的过程中,将所学的科学知识应用到新的问题中去,在学习过程中逐步形成科学探究能力。
  参考文献:
  [1]罗星凯、李萍昌执笔.探究式学习:含义、特征及核心要素[J].教育研究.2001;(12).
【上一篇】
【下一篇】亚原子粒子 -
亚原子粒子现代粒子物理学的研究集中在亚原子粒子上。这些粒子的结构比原子要小,其中包括原子的组成部分如、和(质子和中子本身又是由所组成的)和和所造成的粒子如光子、和,以及许多其它奇特的粒子。
輕子及夸克(皆為費米子)-結構圖&
严格地说“粒子”这个称呼不精确,粒子物理学中研究的所有的物体都遵守量子力学的规则,它们都显示,根据不同的实验
&条件它们显示粒子的特性或波的特性。在物理理论中,它们既非粒子也非波,理论学家用希尔伯特空间中的状态向量来描写它们,详细的理论基础请参见。但按照粒子物理学的常规在这篇文章中这些物体依然被称为“粒子”,虽然这些粒子也具有的特性。
夸克組成之(中子,質子,介子)-結構圖
今天所知的所有基本粒子都可以用一个叫做标准模型的量子场论来描写。标准模型是目前粒子物理学中最好的理论,它包含47种基本粒子,这些基本粒子相互结合可以形成更加复杂的粒子。从1960年代以来实验物理学家已经发现和观察到了上百种了。几乎与至今为止观察到的所有的实验数据相符合。虽然如此大多数粒子物理学家相信它依然是一个不完善的理论,一个更加基本的理论还有待发现。最近发现的中微子静质量不为零是第一个与标准模型出现偏差的实验观测。
亚原子粒子 -
亚原子粒子亚原子粒子,按照参与基本相互作用的性质可以分为:
(Hadron)-直接参与强相互作用的粒子,按照自旋量子数和重子数又可分为:
W及Z弱玻色子圖
()-自旋量子数为整数(0,1,2……)、重子数为0的强子
()-自旋量子数为半奇数(1/2,3/2,5/2……)、重子数为+1或者-1的强子
(Lepton)-不直接参与强相互作用的粒子
(Boson)-传递基本相互作用的媒介粒子
以及:一个不属于规范玻色子的玻色子——(Higgsboson)
希格斯粒子圖
亚原子粒子
按照自旋量子数可以归入:
玻色子(Boson)-自旋为整数(0,1,2……)的粒子
(Fermion)-自旋为半奇数(1/2,3/2,5/2……)的粒子
按照衰变的性质可以分为:-不能通过强相互作用衰变的粒子
可以通过强相互作用的粒子
按照组成可以分为:
亚原子粒子 -
亚原子粒子夸克是构成质子和中子等基本粒子的亚原子结构。每个和中子包含三个,每个包含两个夸克。但有30年历史的量子色动力学理
正反(三色)12种夸克-結構圖&论认为,可能存在由更多夸克构成的粒子。科学家在2003年首次制造出了一个可能由4-5个构成的亚原子粒子。按照理论,一共存在正反12种夸克。迄今为止,科学家已经制造出这些夸克不同组合的数百种粒子。2003年,两个科研小组分别制造出一个由两个上夸克、两个下夸克和一个反奇异夸克组成的pentaquar粒子,这个粒子瞬间就衰变成为一个介子和一个中子。德国H1碰撞加速器的科学家此次制造出的pentaquar粒子中所包含的质量是反奇异夸克的10倍。
三代夸克圖&
亚原子粒子 -
亚原子微粒隐藏的宇宙奥秘
亚原子粒子在一片人烟稀少的地方,一项宇宙探测计划正在悄无声息地进行。科学家正在积极收集来自宇宙的神秘信息,希望能在不久的将来揭开一个隐藏在最深处的秘密。
这片土地远远看去没有什么特别,可要是仔细观看,就会发现,一个个像UFO一样的大型白色罐子有规律地排列在地上。据科学家说,在这片占地3000平方公里的区域,总共分布了数百个这样的白色罐子,它们是专门用来接收一种神秘、稀少而且高能的宇宙的。
科学家称这种射线中的亚原子微粒为“宇宙子弹”,是目前宇宙学中的一个未解之谜。这种粒子包含有大量能量,远远超出了宇宙中的普通粒子。科学家称如果能找出它们从何而来、如何形成,就有可能对现有的相对论等物理学理论提出根本性挑战,意义十分重大。
在阿根廷西部建立的名为的,总共耗资5000万美元。最早是由1980年的诺贝尔物理奖学得主,的教授提出设计构想,不久前正式完工。
此前,科学家对亚原子微粒了解很少,而在这个天文观测站建立之后,科学家每年可以收集50次亚原子微粒轰击地球时的详细资料。据参与这个研究项目的天体物理学家卡洛斯·赫瓦特说,这些信息对人类了解“宇宙子弹”将提供巨大帮助,甚至对人类自身的知识体系也将提出挑战。
亚原子粒子天体物理学家说:“我们希望研究这些粒子的最初形态,想知道它们的能量、速度信息,我们更愿意称它们为“宇宙信使”,因为它们能帮助我们完善自身的知识体系。”
有些科学家曾猜测,这些射线是在宇宙形成之初发出的,大约就是大爆炸后几秒钟,也有科学家猜测这些射线是从黑洞中发出的。但无论是什么,赫瓦特认为了解这些射线的形成,都能帮助人们解释宇宙是如何形成和发展的。法国科学家泽维尔·贝尔图已经在这里工作很长时间了,他说,现在的物理学理论可能无法解释这些射线和亚原子微粒的形成。
科学家说:“如果你能用这些粒子,聚集成一个网球那么大的球,那么这个球所包含的能量将会比地球的内核能量还要大。”
1991年,美国科学家发现,亚原子微粒包含的能量不同寻常,比用爱因斯坦相对论计算出的能量要大出6倍。那时,人们就有了深入了解这种粒子的迫切愿望,后来科学家发现阿根廷海拔1200米的马拉圭平原是建立“宇宙子弹”接收站的绝佳地点。
现在分布在这片区域内、装满纯水的接收器,就像是高度灵敏的传感器,只要有射线扫过,它就能捕获其中的亚原子微粒粒子。预计到2006年,这种接收器的数量将达到1600个,接收的有效面积和精度将大大提高。这些都会为科学家研究“宇宙子弹”的来源和形成,透析宇宙中的种种奥秘提供帮助。
亚原子粒子 -
亚原子粒子亚原子粒子可分为两大类:和夸克。夸克没有被发现单独存在,而是两个或三个地在一起。夸克的是分数的。一切普通的物质都是由Ⅰ层面的粒子构成的。Ⅱ层面和Ⅲ层面似乎是Ⅰ层面的简单复制,其中的粒子是高度不稳定的。可能尚有未发现的层面。
还为了理解超对称,我们就得说说物质基本结构分析的另一个大线索:力。不管粒子动物园有多么纷坛复杂,其中看来只有四种基本的力:,(因与日常生活密切相关而广为人知),弱作用力和。中子和质子之间的强力,当然不可能是基本力,因为中子和质子本身就是复合物而不是基本粒子。当两个质子相互吸引时,我们实际上看到的,就是六种夸克相互作用的合力。夸克之间的力才是基本力。可以用描述的方式描述夸克之间的力,而夸克的色就相当于电荷。质子的对应物是所谓的“”,其作用就是我们先前说过的象仿使那样,不断地在夸克之间来回跳动,将夸克胶结在一起。物理学家们仿照电动力学,把这种由“颜色”产生出来的力场理论叫作色动力学。色动力作用要比电磁力作用复杂。这有两个原因。第一,夸克有三色,而电荷却只有一种,于是,与一种光子相对应的就是八种不同的胶子。第二,胶子也有颜色,因而彼此也有很强的相互作用,而光子不带电荷,彼此间又是那么不相干。
20多年前,某些富有远见的理论物理学家突然想到,大自然有四种基本力,这数目似乎太多了。很可能这四种基本力并不是真正独立的。在19世纪60年代提出了一个数学式,使电力和磁力统一于一个单一的电磁场理论。很可能还会有进一步的综合。
一种徘徊不去的难以解决的数学问题更推动了某些理论物理学家作如是想。除了最简单的作用之外,每当人们把量子论应用于所有的作用时,得到的结果总是无穷,因而也就是无意义的。而将量子论应用于电磁场时,有一种数学特技使人们能够绕开无穷,量子论因而也就一直能预测一切人们所能想象的电磁作用。但同一个数学特技对其他三种力却不灵。人们希望,通过某种方式把电磁力和其他三种基本力结合进一个单一的描述式,这一个单一的描述式所具有的数学温顺性会消解电磁力之外的其他三种力,使人们能够得出一个可以理解的算式。
亚原子粒子实现这一宏伟目标的第一步是和在1967年迈出的。他们成功地改造了电磁力和弱作用力的数学表达式,使这两种力被结合进一个统一的数学表达式之中。他们的理论表明,我们通常之所以把电磁力和弱作用力看成是不同的力(确实,二者在上显著不同),是因为在我们现行的实验中所利用的能量极低。当然,这里所说的“低”是相对而言:现在的可以给一次对撞足够大的能量,假如这能量不是加在一个质子上而是加在一个台球上的话,释放出来的能量就会为一个普通人家提供几百万年之需!不过,温伯格—萨拉姆理论有一种内含的能量单位,这种单位的能量只是到了现在才能由现有的技术达到。上面所说的现行实验所利用的能量“低”,也是与这种单位相对而言的。
在20世纪70年代,实验的证据慢慢积累起来,情况变得有利于温伯格—萨拉姆理论。1980年,他们为在统一力研究方面的工作获得了。1971年就已经证明,那令人头痛的无穷可以象所希望的那样,在一个统一式中被扫除,物理学家们开始谈论大自然的三种而不是四种基本力了。
那令人头痛的无穷之所以能被扫除,其主要原因是在统一力的理论中出现了更加抽象的对称群。人们早就知道,麦克斯韦优美的电磁理论之所以有力量,之所以优美,在很大程度上要归功于该理论的数学描述中所显示出来的平衡和对称。统一力的理论中又来了平衡,这平衡被称作,是一种抽象的平衡。但这种平衡能让人想起日常生活中的事。
亚原子粒子可以用攀登断崖的例子来说明规范对称。从崖底攀到崖顶要耗费能量。但是,由下往上攀登有两条途径。一条较短,是垂直着直接登上崖顶;再一条较长,是顺着较缓的坡道登上崖顶。这两条途径哪一条更有效率呢?(见图24)回答是:两条途径都要耗费相同的能量(在这里,我们对诸如摩擦之类不相关的复杂情况忽略未计)。实际上很容易证明,攀登崖顶所需的能量是与所选用的途径完全无关的。这,就是规范对称。
上面所举的例子说的是的一个规范对称,因为你要攀上崖顶,必须克服的是引力。规范对称适用于电场,也适用于与电场类似但更为复杂的磁场。
现已证明,的规范对称是与光子没有质量的特性密切相关的,同时,也是使统一力理论避开灾难性的无穷的一个关键性因素。温伯格和萨拉姆终于驯服了弱力,使之与合并起来。
物理学家们受到统一规范理论成功的鼓舞,把注意力转向了另一种核力——夸克间的。不久之后,就提出了色规范理论,接着,有人便试图将弱力和色动力统一到一个“大统一理论”(GUT)中去,办法是使用更大的规范对称将所有的其他对称包容在一个规范对称之中。目前,估价GUT的成就还为时尚早,但至少它所作的一个预测——经过无限长的时间之后,质子可能会很不稳定并自发地衰变——现在正有人进行检验。
亚原子粒子但是,仍是没有就范。无穷的难题报复性地缠住引力不放。现在,物理学家越来越倾向认为,只有在包含了某种超对称的一种超统
夸克與輕子的-大統一結構圖&一理论中,这一难题才会获得解决。一大群数学家和物理学家正在为创制一个这样的理论而奔忙。这一理论的目标,是那不可抗拒的统一场理论的梦想——一个单一的力场,涵盖大自然的所有的力:引力,电磁力,弱作用力和强作用力。但是,这还远远不够。量子粒子和作用于这些粒子之间的力表明,任何一种力的理论同时也是一个粒子的理论。那么,也应当能完全描述一切夸克和轻子,解释为什么在表1中有三个层面
超統一場(圖一)&的粒子。
超統一場(圖二)
&有人说,要是真能达到这个令人目眩的目标,也就是达到了基本物理学的顶点,因为象超统一理论这样的一个理论能够解释一切物质的行为和结构——当然,是以一种还原论的方式进行解释。有了超统一理论,我们就能够用一个方程式,用一种宇宙的总公式把大自然的一切秘密都写下来。这样的一个成就会证实人们长久以来所宠爱的信仰——宇宙是按照一个单一的、质朴的,具有惊人的优美的数学原理运行的。约翰·惠勒下面的话,就表达了人们要达到这一最终目标的迫切心情:“总有一天,有一扇门肯定会开启,显露出这个世界的闪闪发光的中心机制,既质朴,又优美。”
GUT大統一場圖
我们离这智慧的极乐世界还有多远呢?理论物理学家们现在正把他们的希望押在一套理论上。这套理论的名称叫超引力。这套理论的关键是一种奇异的超对称,这超对称被描述为时空的平方根。它的意思是,假如两个超对称运算式相乘,你就会得到一个普通的几何对称运算,如空间中的移动。
亞原子粒子-來源圖一
亞原子粒子-來源圖二&
宇宙大暴脹中的-亞原子粒子
亚原子粒子乍看之下,这种抽象似乎没有什么大用处,但仔细分析就可以看到,超对称与一个粒子可能具有的最基本的属性之一——旋转——有着密切的关系。人们发现,所有的夸克和轻子都以一种颇为神秘的方式旋转。我们现在且不去管它如何旋转。我们要关心的是,那些“信使”粒子——胶子、光子、还有引力和弱力的相应的粒子——或者是不旋转,或者是以一种正常的而不是神秘的方式旋转。超对称的意义就在于,它把以神秘的方式进行旋转的粒子和其他的粒子联系了起来,正如同位旋对称把质子和中子联系起来一样。于是,超对称的运作能把一个旋转的粒子变成一个不旋转的粒子。当然,这里所说的“运作”指的是数学步骤。实际上,把一个旋转的粒子变成一个不旋转的粒子是不可能的,正如你不能把你的左手变成右手一样。
通过把引力理论置于超对称的构架之中,引力的信使粒子(称作引力子)就获得了以一种“好玩的”方式旋转的同伴粒子(称作gravitinos),以及其他的粒子。这么多种类的粒子进入超引力理论,这就有力地表明,那可怕的无穷难题被压下去了,而且,到目前为止利用这一理论进行的一切具体运算得出的结果都是有穷的。
在最为人们看好的一种超引力理论中,整个的粒子大家族的成员总数不超过70。这种理论所包含的许多粒子都能够被认定就是现实世界中已知的粒子。不能被认定的粒子则是可能存在但现在尚未发现的粒子。这一理论是否将迄今为止被认作基本粒子的一切粒子都包括进去了?是否实际上可能会有更多的基本粒子?对此,人们的意见尚不统一。有的理论物理学家认为,夸克的数目太多,现在是进一步深入研究,搞明白这么多的夸克是否是由更小的物质单位构成的时候了。对此看法,有人提出了反对意见,认为物质的结构没有比夸克更低的层面了,夸克的世界已经是原子核的大了模糊不清的东西,在这一尺度上谈论什么东西存在于什么东西“之内”就变得无意义了。因此,关于是否还有更基本的物质单位的研究工作仍在进行。
我希望,我对物理学家们正在进行的揭示物质终极结构的工作所做的简略介绍,至少能让大家多少对现代物理学研究有点认识。物理学家对待其研究对象的态度近乎敬畏,因为他们总是受一种信仰的支配,这就是,大自然是由数学的优美和质朴统治的;通过深入探究物质的结构,大自然的统一性将会显明出来。迄今为止的一切经验表明,所探寻的系统越小,所发现的原理就越一般。按照这一经验来看,被我们偶然发现的世界的复杂性,在很大程度上纯是我们的物质取样系统的能量相对较低的结果。人们相信,随着取样系统的能量越来越高,大自然的统一性和质朴性也会变得越来越显明。这也就是为什么这么多的人力物力被投入建造超高能粒子加速器的缘故。人们想通过超高能粒子加速器闯进那质朴的状态去探寻究竟。
亚原子粒子然而,曾经有过那么一个时期,当时,这种质朴的状态被大自然探寻过。那时,宇宙在大爆炸中诞生还没有一秒,当时的温度高达1027度,正好可以用作探寻原初质朴状态所需的能量。这一段时间,物理学家们称之为大统一时代,因为当时的物理正是受基本力的大统一理论的过程支配的。我们在第三章里所提到的至关重要的非平衡就是在当时确立的,而有了那种非平衡,才导致了物质稍稍多于反物质。后来,随着宇宙的冷却,原初的统一力也分化为三种不同的力——电磁力,弱作用力,强作用力。这些力都是我们在相对冷却下来的宇宙中所看到的。
今天的复杂的物理,是由原初大爆炸火焰构成的质朴的物理冷却而成的。这种看法,倒是美妙而吸引人。大自然的最终原理,也就是惠勒所孜孜以求的“闪光的中心机制”,我们因能量不足而难以窥见。假如人们追踪到大统一时代以前的那些时期,追到离时间起始处更近、温度更高的地方,就可以找到超引力了。超引力所代表的,就是存在的起始,在起始之处,时间和空间同基本力都结为一体。大多数物理学家认为,时空的概念在超引力时代之内是不能用的。实际上,有迹象显示,时间和空间也应被看作是两种场,这两种场本身也是先几何元素组成的“冷却”而成的。因而,在这超引力的时代中,大自然的四种力是浑沌一体的,而时空则尚未成一个象样子的形。当时的宇宙只是一堆超质朴的元件,是一些上帝用以造出时间、空间和物质的原料。
描述了物理学关于基本力研究的新近进展。这些进展已使人们以全新的观点看待大自然。这种观点的影响在物理学家和天文学家中间迅速扩大。现在,人们已开始把宇宙看成是由质朴的东西冷却而生成的复杂的东西,颇象是浑然无形的海洋冻成了姿态各异的浮冰。科学家们有一种感觉,这就是宇宙学的研究课题和人们对物质当中的基本力的研究正在为宇宙提供一个统一的描述。在这种描述中,物质的极微结构与宇宙的总体结构紧密联系在一起,两种结构都以一种微妙而复杂的方式影响着彼此的发展。
亚原子粒子所描述的的一系列成功,无疑代表了以还原论理论为其基础的现代物理学思想的一个胜利。物理学家们试图把物质还原为最终的构件——轻子、夸克、信使粒子——从而得以瞥见那基本的定律。而正是那基本的定律控制着形成物质的结构和行为的力量,从而能够解释宇宙的很多基本特点。
尽管如此,以这种方式追寻某种已被感觉到的终极真理是远远不够的。我们在前面的几章里看到,还原论不能够解释很多明显的具有整体性特征的现象。例如,我们不能用夸克来理解意识,活的细胞,甚至也不能以之理解诸如龙卷风之类的无生命的系统。否则,一定会闹出笑话的。
当一个物理学家说,质子是由夸克“组成的”时,他的本意并非如此。比如,我们说一个动物是由细胞组成的,或一个图书馆是由书组成的时,我们的意思是说我们可以拿来一个细胞或一本书,或从那较大的系统那里随便拿来什么东西,进行孤立的研究。但夸克却不是这样。就我们所知,不可能真地拆开质子拿出夸克来。
然而,拆开有着辉煌的历史。拆开原子现在已成了家常便饭;敲开较难,但在高能的冲击下也会分裂。这或许意味着用高速粒子轰击质子或中子,将会把质子或中子粉碎为夸克。然而,实际情况却不是这么回事。一个极小的高速电子会穿过质子的内部,将其中的一个夸克猛烈地弹开,从而使我们确信质子内部的什么地方确有夸克。但是,若打击质子的不是小小的电子,而是一个大锤,即另一个质子,那么,我们就不会在质子的碎片中看见夸克,而只能看见更多的强子(质子、介子等等)。换言之,夸克从不孤立地出现。大自然似乎只准许夸克以集体的面目出现,出现的时候总是2个2个或3个3个地在一起。
因此,当物理学家说质子是由夸克组成的时,他的意思并不是说这些神秘的夸克可以单独地显现出来。他只是指一个描述层面,这一层面比质子层面更基本。管辖夸克的数学法则要比管辖质子的更质朴,更基本。从某种意义上说,质子是合成的,不是基本的;但质子由夸克的合成与图书馆由图书的合成不是一码事。
这是因为,没有哪种亚原子粒子(不管是夸克还是什么别的基本粒子)是货真价实的粒子。实际上,亚原子粒子可能连“东西”都算不上。这就使我们又一次认识到,所谓物质是某某粒子的集合这种描述,实际上必须被看作是由数学所确定的描述层次。物理学家对物质结构的精确描述只能通过抽象的高等数学来进行,而人们只有认识到这一背景,才能明白还原论所说的“由…组成”的真正含义。
亚原子粒子海森堡的测不准原理的一个方面,很好地说明了量子因素给研究“什么是由什么组成的”这一课题带来的困难。但这次的二象性,不是波粒之间的二象性,也不是运动与位置的二象性,而是能量与时间之间的二象性。能量与时间这两个概念处于一种神秘莫测的对立关系之中:你知道了一个就不知道另一个。因而,哪怕在一个很短的时间内观察一个系统,其能量也有可能发生巨大的起伏。在日常的世界里,能量总是守恒的。是经典物理学的柱石。但在量子微观世界里,能量可能以自发的、不可预测的方式不知从哪里冒出来,或消失在哪里。
当考虑到著名的E=mc2的公式时,量子的起伏就变成了复杂的结构。爱因斯坦的公式说的是,能量和是相等的,或者,能量能够创造物质。这已在前几章里讨论过了。不过,那几章里所说的能量来自外部。这里,我们想讨论一下,在没有外部能量输入的情况下,物质粒子如何能从量子能量的起伏中被创造出来。海森堡的原理颇象个能量库。能量可以短期借用,只要迅速归还就行。借用期越短,可借用的量就越大。
比如在微观世界中,一次突然的可能使一个正负电子对在短期内出现又消失。这正负电子对的短暂存在,就是由式的借贷维持累加起来的效果,就使空无一物的空间有了某种变换的质地,尽管这是一种模糊的、不实在的质地。亚原子粒子就必须在这不停运动的海洋中游动。不仅电子和正电子,而且质子和反质子,中子和反中子,介子和反介子,总之,大自然的所有粒子都是这么动荡不安。
从量子的角度来看,一个电子不仅仅是一个电子。变换能量的花样在其周围闪烁着,不知什么时候突然促成了光子、质子、介子、甚至其他电子的出现。总之,亚原子世界的一切都附着在电子上,象是电子穿上了看不见摸不着的、转瞬即逝转瞬又来的一件大衣,或者说,象是幽灵一样的群蜂嗡嗡地围着中间的蜂巢飞翔,构成了蜂巢的覆盖物。当两个电子相互靠近时,它们的覆盖物也纠缠在一起,于是,相互作用就发生了。所谓的覆盖物,只不过是将先前被看作是力场的东西加以量子的表达罢了。
亚原子粒子我们永远也不能将电子跟其所带有的分离开来。当有人问“什么是电子”时,我们不能说电子就是那个小粒子;我们必须说电子是不可分离的一整串东西,包括跟它在一起的产生力的幽灵粒子。说到具有内部结构的强子,就更加模糊难辨了。一个质子不知为何总是带着夸克,而夸克又是由胶子连在一起的。这里也有一种怪圈:力由粒子产生,而被产生的力又产生力…。
而对光子这样的粒子来说,这种怪圈意味着光子可以展现出很多不同的面孔(faces)。通过借入能量,它可以暂时变成一个正负电子对,或一个正反质子对。已有人进行了实验,试图看到光子是如何变成正负电子对或正反质子对的。但是,人们又一次发现,要想从这种错综复杂的变化中分离出来“纯”光子是不可能的。
就大多数不稳定而且寿命又极短的粒子来说,已难以说清哪些是“实海森堡原理造成的正负电子对,其寿命也跟ψ粒子差不多。谁能说前者是实在的,后者只是个幽灵呢?
一些年前,一位叫的物理学家把世界中的这种闪烁不停的变幻比作一个民主政体。我们不可能抓住一个粒子,说它就是某某实体。我们必须把每一个粒子看成是在一个没有终结的怪圈中由所有的其他粒子组成的。没有哪一个粒子比其他任何粒子更基本。(这就是我们在第四章里简短地提到过的“拽靴襻”。)
我们将会看到,物质的本性在其量子论方面具有强烈的整体论的味道:物质的不同层面的描述是相互连锁的,一切东西都是由另外的一切东西组成的,然而一切东西同时又显示出结构的等级次序。物理学家们就是在这无所不包的整体性中追寻物质的终极成分,追寻终极的、统一的力。
亚原子粒子 -
http://www./zt/.htm
显示方式: |
粒子物理学分类树
高能物理学又称粒子物理学或基本粒子物理学,它是物理学的一个分支,研究构成物质和辐射的组元粒子及其相互作用的物理学科。
共有5个词条
万方数据期刊论文
万方数据期刊论文
万方数据期刊论文
为本词条添加和相关影像
互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于。
登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和专业认证智愿者沟通。
您也可以使用以下网站账号登录:
此词条还可添加&
编辑次数:18次
参与编辑人数:12位
最近更新时间: 14:16:43
贡献光荣榜
扫描二维码用手机浏览词条
保存二维码可印刷到宣传品
扫描二维码用手机浏览词条
保存二维码可印刷到宣传品}

我要回帖

更多关于 亚原子粒子 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信