一次函数与方程不等式方程

扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
函数方程和函数迭代问题
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer-.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口404 Not Found
404 Not Found函数与方程高三复习专用_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
文档贡献者
评价文档:
函数与方程高三复习专用
函​数​与​方​程​复​习​所​有​,
大小:2.03MB
登录百度文库,专享文档复制特权,财富值每天免费拿!
你可能喜欢函数_百度百科
关闭特色百科用户权威合作手机百科
收藏 查看 &
(function),名称出自数学家的著作《》。之所以如此翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从、的观点出发。
外文名function别&&&&称含数表达式y=f(x)应用学科、计算机科学等适用领域范围数学、金融、IT表示法列表法、图像法、解析法三要素自变量、因变量、对应法则 的,在一个变化过程中,有两个变量x、y,如果给定一个x值,相应的就确定唯一的一个y,那么就称y是x的函数,其中x是,y是,x的取值范围叫做这个函数的,相应y的取值范围叫做函数的。设A,B是的,如果按照某种确定的对应关系f,使对于A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称fA→B为从集合A到集合B的一个函数,记作y=f(x),xA。
其中x叫作自变量,x的取值范围A叫做函数的定义域;与x值相对应的y值叫做函数值,函数值的集合叫做函数的。
定义域,值域,对应法则称为函数的三要素。一般书写为 。若省略定义域,一般是指使函数有意义的。函数过程中的这些语句用于完成某些有意义的工作——通常是处理文本,控制输入或计算数值。通过在程序代码中引入函数名称和所需的参数,可在该程序中执行(或称)该函数。
类似过程,不过函数一般都有一个。它们都可在自己结构里面调用自己,称为。
大多数编程语言构建函数的方法里都含有函数(或称)。用含有数学关系的等式来表示两个变量之间的函数关系的方法叫做解析式法。这种方法的优点是能简明、准确、清楚地表示出函数与自变量之间的数量关系;缺点是求对应值时往往要经过较复杂的运算,而且在实际问题中有的函数关系不一定能用表达式表示出来。用列表的方法来表示两个变量之间函数关系的方法叫做列表法。这种方法的优点是通过表格中已知自变量的值,可以直接读出与之对应的函数值;缺点是只能列出部分对应值,难以反映函数的全貌。  把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。这种表示函数关系的方法叫做图象法。这种方法的优点是通过函数图象可以直观、形象地把函数关系表示出来;缺点是从图象观察得到的数量关系是近似的。单射 满射 双射首先要理解,函数是发生在集合之间的一种对应关系。然后,要理解发生在A、B之间的不止且不止一个。最后,要重点理解函数的三要素。
函数的对应法则通常用表示,但大量的函数关系是无法用解析式表示的,可以用图像、表格及其他形式表示。在一个变化过程中,发生变化的量叫变量(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。
(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。
因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。
函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值。设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任何一个元素a,在集合B中都存在唯一的一个元素b与之对应,那么,这样的对应(包括集合A,B,以及A到集合B的对应关系f)叫做集合A到集合B的(Mapping),记作 。其中,b称为a在映射f下的象,记作:b=f(a); a称为b关于映射f的。集合A中所有元素的象的集合记作f(A)。
则有:定义在非空数集之间的映射称为函数。(函数的自变量是一种特殊的原象,是特殊的象)函数与和存在联系()。令函数值等于零,从几何角度看,对应的自变量的值就是图像与X轴的交点的横坐标;从代数角度看,对应的自变量是。另外,把函数的(无表达式的函数除外)中的“=”换成“&”或“&”,再把“Y”换成其它,函数就变成了不等式,可以求自变量的范围。如果X到Y的二元关系 ,对于每个 ,都有唯一的 ,使得 ,则称f为X到Y的函数,记做: 。
当 时,称f为n元函数。
值域和定义域重合
单值性:取区间任意两变量x1,x2,且x1&x2,如果对应的y1&y2,则函数在此区间单调递增,反之,单调递减输入值的集合X被称为f的定义域;可能的输出值的集合Y被称为f的值域。函数的值域是指定义域中全部元素通过映射f得到的实际输出值的集合。注意,把对应域称作值域是不正确的,函数的值域是函数的对应域的子集。
计算机科学中,参数和返回值的数据类型分别确定了的定义域和对应域。因此定义域和对应域是函数一开始就确定的强制进行约束。另一方面,值域是和实际的实现有关。狄利克雷函数
函数,将不同的变量映射到不同的值。即:若 和 ,则仅当 时有 。
函数,其值域即为其对映域。即:对映射f的对映域中之任意y,都存在至少一个x满足 y=f(x)。
函数,既是单射的又是满射的。也叫一一对应。双射函数经常被用于表明集合X和Y是的,即有一样的基数。如果在两个集合之间可以建立一个一一对应,则说这两个集合等势。元素xX在f的象就是f(x),他们所取的式值为0。函数f的图象是平面上点对(x,f(x))的集合,其中x取定义域上所有成员的。函数图象可以帮助理解证明一些定理。
如果X和Y都是连续的线,则函数的图象有很直观表示注意两个集合X和Y的二元关系有两个定义:一是三元组(X,Y,G),其中G是关系的图;二是索性以关系的图定义。用第二个定义则函数f等于其图象。
当k&0时,直线从左到右递增,k越大,直线与Y轴夹角越小,反之越大。
当k&0时,直线从左到右递减,k越大,直线与Y轴夹角越大,反之越小。
若函数y=f(u)的定义域是B﹐函数u=g(x)的定义域是A﹐则复合函数y=f[g(x)]的定义域是
D={x|x∈A,且g(x)∈B}十七世纪在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。1637年前后在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到后期、建立时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。
1673年,莱布尼兹首次使用“function”(函数)表示“”,后来他用该词表示曲线上的、、等曲线上点的有关。与此同时,牛顿在微积分的讨论中,使用 “”来表示变量间的关系。1718年约翰·柏努利在函数概念的基础上对函数概念进行了定义:“由任一变量和常数的任一形式所构成的量。”他的意思是凡变量x和常量构成的式子都叫做x的函数,并强调函数要用公式来表示。
1748年,在其《无穷分析引论》一书中把函数定义为:“一个变量的函数是由该变量的一些数或常量与任何一种方式构成的解析表达式。”他把约翰·给出的函数定义称为,并进一步把它区分为函数和,还考虑了“随意函数”。不难看出,欧拉给出的函数定义比约翰·贝努利的定义更普遍、更具有广泛意义。
1755年,欧拉给出了另一个定义:“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。”1821年,从定义变量起给出了定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。”在柯西的定义中,首先出现了一词,同时指出对函数来说不一定要有解析表达式。不过他仍然认为可以用多个来表示,这是一个很大的局限。
1822年发现某些函数可以用曲线表示,也可以用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新层次。
1837年突破了这一局限,认为怎样去建立x与y之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的x值,y都有一个确定的值,那么y叫做x的函数。”这个定义避免了函数定义中对依赖关系的描述,以清晰的方式被所有数学家接受。这就是人们常说的经典函数定义。
等到创立的集合论在数学中占有重要地位之后,用“集合”和“对应”的概念给出了近代函数定义,通过集合概念把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的极限,变量可以是数,也可以是其它对象。1914年(F.Hausdorff)在《集合论纲要》中用不明确的概念“序偶”来定义函数,其避开了意义不明确的“变量”、“对应”概念。(Kuratowski)于1921年用来定义“序偶”使豪斯道夫的定义很严谨了。
1930 年新的现代函数定义为“若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为。x称为,元素y称为。设函数f(x)的定义域为D,数集X包含于D。如果存在数K1,使得f(x)≤K1对任一x∈X都成立,则称函数f(x)在X上有上界,而K1称为函数f(x)在X上的一个上界。如果存在数K2,使得f(x)≥K2对任一x∈X都成立,则称函数f(x)在X上有下界,而K2称为函数f(x)在X上的一个下界。如果存在M,使得|f(x)|≤M对任一x∈X都成立,则称函数f(x)在X上有界,如果这样的M不存在,就称函数f(x)在X上无界。
函数f(x)在X上有界的充分必要条件是它在X上既有又有。设函数f(x)的为D,I于D。如果对于区间上任意两点x1及x2,当x1&x2时,恒有f(x1)&f(x2),则称函数f(x)在区间I上是单调的;如果对于区间I上任意两点x1及x2,当x1&x2时,恒有f(x1)&f(x2),则称函数f(x)在区间I上是单调的。单调递增和单调递减的函数统称为。设f(x)为一个实变量实值函数,若下列的方程对所有实数x都成立:f( -x) =- f(x) 则f(x)为。
几何上,一个奇函数关于对称,亦即其图像在绕原点做180度旋转后不会改变。
奇函数的例子有x、(x)、(x)和(x)。
设f(x)为一实变量实值函数,若下列的方程对所有实数x都成立:,则f(x)为偶函数。
几何上,一个偶函数关于y轴对称,亦即其图在对y轴映射后不会改变。
偶函数的例子有|x|、x^2、(x)和(sec)(x)。
偶函数不可能是个双射映射。设函数f(x)的定义域为D。如果存在一个正数T,使得对于任一x∈D有(x士T)∈D,且f(x+T)=f(x),则称f(x)为,T称为f(x)的周期,通常我们说周期函数的周期是指。周期函数的定义域 D 为至少一边的无界,若D为有界的,则该函数不具周期性。
并非每个周期函数都有最小正周期,例如()函数。在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。
设f是一个从的子集射到 的函数:。f在中的某个c处是连续的当且仅当以下的两个条件满足:
f在点c上有定义。c是中的一个,并且无论自变量x在中以什么方式接近c,f(x) 的都存在且等于f(c)。我们称函数到处连续或处处连续,或者简单的连续,如果它在其定义域中的任意点处都连续。更一般地,我们说一个函数在它定义域的上是连续的当它在这个子集的每一点处都连续。
不用极限的概念,也可以用下面所谓的方法来定义实值函数的连续性。
仍然考虑函数。假设c是f的定义域中的元素。函数f被称为是在c点连续以下条件成立:
对于任意的正实数,存在一个δ& 0 使得对于任意中的δ,只要xc - & x & c + δ,就有成立。设函数f(x)在I上连续。如果对于I上的两点x1≠x2,恒有f((x1+x2)/2)≥(f(x1)+f(x2))/2,(f((x1+x2)/2)&(f(x1)+f(x2))/2)那么称f(x)是区间I上的(严格);如果恒有f((x1+x2)/2)≤(f(x1)+f(x2))/2,(f((x1+x2)/2)&(f(x1)+f(x2))/2)那么称f(x)是区间上的(严格)。实函数(Real function),指和均为的函数。实函数的特性之一是可以在坐标上画出图形。
虚函数是中的一个重要的概念。当从父类中继承的时候,虚函数和被继承的函数具有相同的签名。但是在运行过程中,运行系统将根据对象的类型,自动地选择适当的具体实现运行。虚函数是面向对象编程实现多态的基本手段。依y=f(x),μ=φ(x)的性决定。即“增增得增,减减得增,增减得减”,可以简化为“同增异减”
判断复合函数的单调性的步骤如下:(1)求复合;(2)将复合函数分解为若干
个常见函数(一次、二次、幂、指、对函数);(3)判断每个常见函数的单调性;(4)将中间
变量的取值范围转化为自变量的取值范围;(5)求出复合函数的单调性。
例如:讨论函数y=0.8^(x?-4x+3)的单调性。
解:函数定义域为R。
令u=x?-4x+3,y=0.8^u。
指数函数y=0.8^u在(-∞,+∞)上是减函数,
u=x?-4x+3在(-∞,2]上是减函数,在[2,+∞)上是增函数,
由同增异减
∴函数y=0.8^(x?-4x+3)在(-∞,2]上是增函数,在[2,+∞)上是减函数。
利用复合函数求参数取值范围
求参数的取值范围是一类重要问题,解题关键是建立关于这
个参数的不等式组,必须
将已知的所有条件加以转化。设y=f(x),的最小正周期为T1,μ=φ(x)的最小正周期为T2,则y=f(μ)的最小正周期为T1*T2,任一周期可表示为k*T1*T2(k属于N+)
周期函数性质:
(1)若T(T≠0)是f(x)的周期,则-T也是f(x)的周期。
(2)若T(T≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。
(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。
(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的倍。
(5)T*是f(x)的最小正周期,且T1、T2分别是f(x)的两个周期,则T1/T2∈Q(Q是有理数集)
(6)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。
(7)周期函数f(x)的定义域M必定是双方无界的集合。中文数学书上使用的“函数”一词是转译词.是我国清代数学家李善兰在翻译《代数学》(1859年)一书时,把“function”译成“函数”的.  中国古代“函”字与“含”字通用,都有着“”的意思.李善兰给出的定义是:“凡式中含天,为天之函数.”中国古代用、地、人、物4个字来表示4个不同的或变量.这个定义的含义是:“凡是公式中含有变量x,则该式子叫做x的函数.”所以“函数”是指公式里含有变量的意思.我们所说的方程的确切定义是指含有未知数的。但是一词在我国早期的数学专著《九章算术》中,意思指的是包含多个未知量的联,即所说的。在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b (k为一次项系数,k≠0,b为常数),那么我们就说y是x的一次函数,其中x是,y是。特别的,当b=0时,称y是x的。一般地,形如y=kx+b(k≠0,b是常数),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,即正比例函数(自变量和因变量成正比例)所以说正比例函数是一种特殊的一次函数。
还有,若自变量最高次数为1,则这个函数就是一次函数。
在某一个变化过程中,设有两个变量x和y,如果可以写成y=f(x),(即x经过某种运算得到y),即每一个x都有唯一一个y与之对应,那么我们就说y是x的函数,其中x是,y随X的变化而变化。当x取一个值时,y有且只有一个值与x对应。如果有2个及以上个值与x对应时,就不是函数。函数常用的表示方法:、、。1.在时,x与y的商一定(x≠0)。在时,x与y的积一定。
在y=kx+b(k,b为常数,k≠0)中,当x增大m时,函数值y则增大km,反之,当x减少m时,函数值y则减少km。
2.当x=0时,b为一次函数图像与y轴交点的,该点的坐标为(0,b);当y=0时,一次函数图像与x轴相交于(﹣b/k)
3.当b=0时,一次函数变为正比例函数。当然正比例函数为特殊的一次函数。
4.在两个一次函数表达式中:
当两个一次函数表达式中的k相同,b也相同时,则这两个一次函数的图像重合;
当两个一次函数表达式中的k相同,b不相同时,则这两个一次函数的图像平行;
当两个一次函数表达式中的k不相同,b不相同时,则这两个一次函数的图像相交;
当两个一次函数表达式中的k不相同,b相同时,则这两个一次函数图像交于y轴上的同一点(0,b);
当两个一次函数表达式中的k互为负倒数时,则这两个一次函数图像互相垂直。
5.两个一次函数(y1=k1x+b1,y2=k2x+b2)相乘时(k≠0),得到的的新函数为二次函数,
该函数的为-(k2b1+k1b2)/(2k1k2);
当k1,k2正负相同时,二次函数开口向上;
当k1,k2正负相反时,二次函数开口向下。
二次函数与y轴交点为(0,b2b1)。
6.两个一次函数(y1=ax+b,y2=cx+d)之比,得到的新函数y3=(ax+b)/(cx+d)为反比例函数,渐近线为x=-b/a,y=c/a。(1)列表:表中给出一些自变量的值及其对应的函数值。
(2)描点:在中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
一般地,y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。
正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点画出即可。
(3)连线: 按照由小到大的顺序把描出的各点用连接起来。
一次函数y=kx+b(k≠0)图像是直线,特别地,b=0时图像过原点当平面直角坐
标系中两直线平行时,其函数解析式中k的值(即一次项系数)相等;
当平面直角坐标系中两直线垂直时,其函数解析式中k的值互为(即两个k值的乘积为-1)一次函数的1、从形式上看:一次函数y=kx+b, 一元一次方程ax+b=0 。
2、从内容上看:一次函数表示的是一对(x,y)之间的关系,它有无数对解;一元一次方程表示的是未知数x
的值,最多只有1个值 。
3、相互关系:一次函数与x轴交点的横坐标就是相应的的根。 例如:y=4x+8与x轴的交点是
(-2,0)、则一元一次方程4x+8=0的根是x=-2。解的方法:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;
从函数图像的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。
对应一次函数y=kx+b,它与x轴交点为(-b/k,0)。
当k&0时,不等式kx+b&0的解为:x&- b/k,不等式kx+b&0的解为:x&- b/k;
当k&0的解为:不等式kx+b&0的解为:x&- b/k,不等式kx+b&0的解为:x&- b/k。(1)以二元一次方程组ax+by=c的解为坐标的点组成的图像与一次函数
y=-a/bx+c/b的图像相同.
(2)二元一次方程组{a1x+b1y=c1,
a2x+b2y=c2的解可以看作是两个一次函数
y=-a1/b1x+c1/d1和y=-a2/b2x+c2/d2的图像的交点.把方程组中的两个二元一次方程改写成一次函数的形式,然后作出它们的图像,找出两图像的交点,即可知的解。
区别:二元一次方程有两个,而一次函数只是说未知数的次数为一次,并未限定几个变量,因此二元一次方程只是一次函数中的一种。
联系:(1)在平面直角坐标系中分别描绘出以二元一次方程的解为坐标的点,这些点都在相应的一次函数的图象上。如2x+y=5有无数组解,像x=1,y=3;x=2,y=1;…以这些解为坐标的点(1,3)(2,1)…都在一次函数y=-2x+5的图象上. (2)在一次函数图象上任取一点,它的坐标都适合相应的.如在一次函数y=-x+2的图象上任取一点(-3,3),则x=-3,y=3一定是二元一次方程x+y=2的一组解.
所以,以二元一次方程的解为坐标的所有点组成的图象与相应的一次函数的图象是相同的。
一、有交点:在同一平面直角坐标系中,两个一次函数图象的交点坐标就是相应的二元一次方程组的解。反过来,以的解为坐标的点,一定是相应的两个一次函数的图象的交点。
二、无交点:当二元一次方程组无解时,相应的两个一次函数在平面直角坐标系中的图象就没有交点,即两个一次函数图象平行。反过来,当两个一次函数图象平行时,相应的二元一次方程组就无解。如二元一次方程组3x-y=5,3x-y=-1无解,则一次函数y=3x-5与y=3x+1的图象平行,反之也成立。
三、作图法解方程:用作图的方法解二元一次方程组,一般有下列几个步骤:(1)将相应的二元一次方程改写成一次函数的解析式;(2)在同一平面直角坐标系内作出这两个一次函数的图象;(3)找出图象的交点坐标,即得二元一次方程组的解。
四、方程组确定解析式:在实际应用中,常常利用待定系数法构造二元一次方程组,从而确定一次函数的解析式。
例:某航空公司规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y(元)是行李质量x(kg)的一次函数。现知王芳带了30 kg的行李,买了50元行李票。李刚带了40kg的行李,买了100元行李票。那么,乘客最多可免费携带多少千克的行李?
解答:依题意,可设一次函数的解析式为y=kx+b。则可得二元一次方程组50=30k+b,100=40k+b。解得k=5,b=-100,即一次函数的是y=5x-100。当x=20时,y=0。所以乘客最多可免费携带20 kg的行李。
五、 待定系数法:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;
(2)将自变量x的值及与它对应的y的值代入所设的解析式,得到关于待定系数的方程或方程组;
(3)解方程或方程组,求出待定系数的值,进而写出函数解析式。
注意:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要
两组x,y的值。一般地,自变量x和因变量y之间存在如下关系:一般式:y=ax2+bx+c (a≠0,a、b、c为常数),则称y为x的二次函数。
顶点式: ;
交点式(与x轴):一般地,把形如y=ax2+bx+c(其中a,b,c是,a≠0,bc可以为0)的函数叫做二次函数(quadratic function),其中a称为二次项系数,b为一次项系数,c为常数项。x为,y为因变量。等号右边自变量的最高次数是2。图像是轴对称图形。
对称轴为直线 ,
顶点坐标 ,
交点式为 (仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线)
注意:“变量”不同于“”,不能说“二次函数是指自变量的最高次数为二次的多项式函数”。“”只是一个数(具体值未知,但是只取一个值),“变量”可在实数范围内任意取值。在方程中适用“未知数”的概念(、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别,如同函数不等于函数的关系。1.二次函数是,但抛物线不一定是二次函数。开口向上或者向下的抛物线才是二次函数。抛物线是轴对称图形。对称轴为直线x = -b/2a。对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为 ,当 时,P在y轴上;当 时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。当a&0时,抛物线向上开口;当a&0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab&0),对称轴在y轴左;当a与b异号时(即ab&0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数:Δ= b^2-4ac&0时,抛物线与x轴有2个交点。
Δ= b?-4ac=0时,抛物线与x轴有1个交点。
当Δ= b?-4ac&0时,抛物线与x轴没有交点。X的取值是, .
当a&0时,函数在 处取得最小值f(x)= ;在 上是减函数,在 上是增函数;抛物线的开口向上;函数的值域是 相反不变;.
7.定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)
①[(4ac-b^2)/4a,+∞);
②[t,+∞)  :偶函数  :无  :
①y=ax^2+bx+c[一般式]  ⑴a≠0  ⑵a&0,则抛物线开口朝上;a&0,则抛物线开口朝下;  ⑶极值点:(-b/2a,(4ac-b^2)/4a);  ⑷Δ=b^2-4ac,  Δ&0,图象与x轴交于两点:  ([-b+√Δ]/2a,0)和([-b-√Δ]/2a,0);  Δ=0,图象与x轴交于一点:  (-b/2a,0);  Δ&0,图象与x轴无交点;  ②y=a(x-h)^2+t[配方式]  此时,对应极值点为(h,t),其中h=-b/2a,t= );定义:形如y=ax?+bx?+cx+d(a≠0,b,c,d为常数)的函数叫做三次函数(cubics function)。 三次函数的是一条曲线——回归式抛物线(不同于普通抛物线)定义:形如y=ax^4+bx?+cx?+dx+e(a≠0,b,c,d,e为常数)的函数叫做四次函数。一般的,自变量x和因变量y存在如下关系:y=ax^5+bx^4+cx?+dx?+ex+f的函数,称y为x的五次函数。其中,a、b、c、d、e分别为五次、四次、三次、二次、一次项,f为,a≠0。在实际中,一般不使用此函数。一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= f(y). 若对于y在C中的任何一个值,通过x= f(y),x在A中都有唯一的值和它对应,那么,x= f(y)就表示y是自变量,x是自变量y的函数,这样的函数x= f(y)(y∈C)叫做函数y=f(x)(x∈A)的,记作x=f^-1(y).。反函数y=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域。⑴在函数x=f^-1(y)中,y是自变量,x是函数,但习惯上,我们一般用x表示自变量,用y 表示函数,为此我们常常对调函数x=f^-1(y)中的字母x,y,把它改写成y=f^-1(x),今后凡无特别说明,函数y=f(x)的反函数都采用这种经过改写的形式;
⑵反函数也是函数,因为它符合函数的定义。 从反函数的定义可知,对于任意一个函数y=f(x)来说,不一定有反函数,若函数y=f(x)有反函数y=f^-1(x),那么函数y=f^-1(x)的反函数就是y=f(x),这就是说,函数y=f(x)与y=f^-1(x)互为反函数;
⑶从映射的定义可知,函数y=f(x)是定义域A到值域C的映射,而它的反函数y=f^-1(x)是集合C到集合A的映射,因此,函数y=f(x)的定义域正好是它的反函数y=f^-1(x)的值域;函数y=f(x)的值域正好是它的反函数y=f^-1(x)的定义域(如下表):
函数y=f(x) 反函数y=f^-1(x)
值域 C A;
⑷上述定义用“逆”映射概念可叙述为:
若确定函数y=f(x)的映射f是函数的定义域到值域“上”的“一一映射”,那么由f的“逆”映射f^-1所确定的函数x=f^-1(x)就叫做函数y=f(x)的反函数. 反函数x=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域。
开始的两个例子:s=vt记为f(t)=vt,则它的反函数就可以写为f^-1(t)=t/v,同样y=2x+6记为f(x)=2x+6,则它的反函数为:f^-1(x)=x/2-3。
有时是反函数需要进行分类讨论,如:f(x)=X+1/X,需将X进行分类讨论:在X大于0时的情况,X小于0的情况,多是要注意的。一般分数函数的反函数的表示为y=ax+b/cx+d(a/c不等于b/d)--y=b-dx/cx+a。直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域,求反函数的步骤是这样的:
1.先求出原函数的值域,因为原函数的值域就是反函数的定义域
(我们知道函数的三要素是定义域,值域,对应法则,所以先求反函数的定义域是求反函数的第一步)
2.反解x,也就是用y来表示x
3.改写,交换位置,也就是把x改成y,把y改成x
4.写出反函数及其定义域
就关系而言,一般是双向的 ,函数也如此,设y=f(x)为已知的函数,若对每个y∈Y,有唯一的x∈X,使f(x)=y,这是一个由y找x的过程 ,即x成了y的函数,记为x=f -1(y)。则f -1为f的反函数。习惯上用x表示自变量,故这个函数仍记为y=f -1(x),例如 y=sinx与y=arcsinx 互为反函数。在同一中,y=f(x)与y=f -1(x)的图形关于直线y=x对称。若能由方程F(x,y)=0 确定y为x的函数y=f(x),即F(x,f(x))≡0,就称y是x的隐函数。
注意:此处为方程F(x,y )= 0 并非函数。
思考:隐函数是否为函数?
不是,因为在其变化的过程中并不满足“一对一”和“多对一”。设点(x1,x2,…,xn) ∈G&IRn,U&IR1 ,若对每一点(x1,x2,…,xn)∈G,由某规则f有唯一的 u∈U与之对应:f:G→U,u=f(x1,x2,…,xn),则称f为一个n元函数,G为定义域,U为值域。
基本初等函数及其图象、、、三角函数、称为基本初等函数。
①幂函数:y=x^μ(μ≠0,μ为任意实数)的定义域:当μ为时为定义域为(-∞,+∞),当μ为负整数时定义域为 (-∞,0)∪(0,+∞);当μ=a(a为整数),当a是奇数时值域为(-∞,+∞),当a是偶数时为值域为(0,+∞);μ=p/q,p,q互素,作为的进行讨论。
②指数函数:y=a^x(a&0 ,a≠1),定义域为(-∞,+∞),值域为(0 ,+∞),a&1 时是严格单调增加的函数(即当x2&x1时,) ,0③对数函数:y=logax(a&0),称a为底 ,定义域为(0,+∞),值域为(-∞,+∞) 。a&1 时是严格单调增加的,0&a&1时是严格单减的。不论a为何值,对数函数的图形均过点(1,0),对数函数与指数函数互为反函数。如图5。
以10为底的对数称为常用对数,简记为lgx 。在科学技术中普遍使用的是以e为底的对数,即&a&自然对数,记作lnx。
④三角函数:见表2。
正弦函数、如图6,图7所示。
⑤反三角函数:见表3。双曲正、如图8。
⑥:双曲正弦(ex-e-x),双曲余弦?(ex+e-x),双曲正切(ex-e-x)/(ex+e-x),双曲余切( ex+e-x)/(ex-e-x)。
x取定义域内任意数时,都有 y=C (C是常数),则函数y=C称为常函数,
其图象是平行于x轴的直线或直线的一部分。I、定义与定义式:自变量x和因变量y有如下关系: y=kx+b(k,b为常数,k≠0)则称y是x的一次函数。特别地,当b=0时,即y=kx时,y是x的正比例函数。
II、一次函数的性质: y的变化值与对应的x的变化值成正比例,比值为k 即y/x=k
III、一次函数的图象及性质:
1. 作法与图形:通过如下3个步骤
(1)列表(一般找4-6个点);
(2)描点;
(3)连线,可以作出的图象。(用直线连接)
2.性质:在一次函数图象上的任意一点P(x,y),都满足等式:y=kx+b。
3. k,b与函数图象所在象限。当k&0时,直线必通过一、三,y随x的增大而增大; 当k&0时,直线必通过二、四象限,y随x的增大而减小。当b&0时,直线必通过一、二象限当b&0时,直线必通过三、四象限。 特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图象这时,当k&0时,直线只通过一、三象限与原点。当k&0时,直线只通过二、四象限与原点。一般地,自变量x和因变量y之间存在如下关系: y=ax^2+bx+c (a≠0)(a,b,c为常数,a≠0,且a决定函数的开口方向,a&0时,开口方向向上,a&0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)则称y为x的二次函数。
表达式的右边通常为二次三项式。x是,y是x的函数。
二次函数的三种表达式
一般式:y=ax?+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k) 对于二次函数y=ax^2+bx+c 其顶点坐标为(-b/2a,(4ac-b^2)/(4a)]交点式:y=a(x-x1)(x-x 2) [仅限于与x轴有交点A(x1 ,0)和B(x2,0)的抛物线]其中x1,x2= (-b±√(b^2-4ac))/(2a) 注:在3种形式的互相转化中,有如下关系:______h=-b/(2a) k=(4ac-b^2)/(4a) x?,x?=(-b±√b^2-4ac)/2a
二次函数的图象
在平面直角坐标系中作出二次函数y=x^2的图象,可以看出,二次函数的图象是一条抛物线。
二次函数标准画法步骤
(在平面直角坐标系上)
(1)列表 (2)描点 (3)连线
抛物线的性质
1.抛物线是。对称轴为直线x = -b/2a( x=h)。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )
当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a&0时,抛物线向上开口;当a&0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab&0),对称轴在y轴左
当a与b异号时(即ab&0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c),c是纵截距。
6.抛物线与x轴交点个数
Δ= b^2-4ac&0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
Δ= b^2-4ac&0时,抛物线与x轴没有交点。X的取值是(x= -b±√b^2-4ac 的值的,乘上虚数i,整个式子除以2a)
当a&0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b^2/4a;在{x|x&-b/2a}上是减函数,在{x|x&-b/2a}上是;抛物线的开口向上;函数的值域是{x|x≥4ac-b^2/4a}相反不变
当b=0时,抛物线的对称轴是y轴,这时,函数是,解析式变形为y=ax^2+c(a≠0
二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0
此时,与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
y=ax^2 ;y=a(x-h)^2 ; y=a(x-h)^2+k ; y=ax^2+bx+c
对应顶点坐标
(0,0) ; (h,0) ; (h,k) ; (-b/2a,(4ac-b^2)/4a)
对应对称轴
x=0 ; x=h ; x=h ; x=-b/2a
当h&0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h&0时,则向左平行移动|h|个单位得到.
当h&0,k&0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象
当h&0,k&0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象
当h&0,k&0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象
当h&0,k&0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象
因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2.抛物线y=ax^2+bx+c(a≠0)的图象:当a&0时,开口向上,当a&0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).
3.抛物线y=ax^2+bx+c(a≠0),若a&0,当x ≤-b/2a时,y随x的增大而减小,函数是减函数;当x ≥-b/2a时,y随x的增大而增大,函数是增函数.若a&0,当x ≤-b/2a时,y随x的增大而增大,函数是增函数;当x ≥-b/2a时,y随x的增大而减小,函数是减函数.
4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac&0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的两根.这两点间的距离AB=|x?-x?| 另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点)
当△=0.图象与x轴只有一个交点
当△&0.图象与x轴没有交点.当a&0时,图象落在x轴的上方,x为任何实数时,都有y&0;当a&0时,图象落在x轴的下方,x为任何实数时,都有y&0.
5.抛物线y=ax^2+bx+c的最值:如果a&0(a&0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
6.用求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a≠0).
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x1)(x-x2)(a≠0).
7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现三角函数是数学中属于初等函数中的的一类函数。它们的本质是的集合与一个比值的集合的变量之间的映射。通常的是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在中,但并不完全。把它们描述成的极限和微分方程的解,将其定义扩展到系。
由于三角函数的周期性,它并不具有单值函数意义上的反函数。
三角函数在复数中有较为重要的应用。在物理学中,三角函数(Trigonometric)也是常用的工具。
它有六种基本函数:
函数名:正弦 余弦正切 余切正割 余割
符号 sin cos tan cot sec csc
sin(A)=a/h
cos(A)=b/h
tan(A)=a/b
cot(A)=b/a
sec(A)=h/b
csc (A)=h/a
在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都有确定的值和它对应,y就是x的函数。这种关系一般用y=f(x)来表示幂函数的一般形式为y=x^a。
如果a取非零的有理数是比较容易理解的,不过初学者对于a取,则不太容易理解,在我们的课程里,不要求掌握如何理解指数为无理数的问题,因为这涉及到实数连续统的极为深刻的知识。因此我们只要接受它作为一个已知事实即可。
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的下而不能为,那么我们就可以知道:
排除了为0与负数两种可能,即对于x&0,则a可以是任意
排除了为0这种可能,即对于x&0和x&0的所有实数,q不能是
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:
如果a为任意实数,则函数的定义域为大于0的所有实数
如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况。
可以看到:
(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
(6)显然幂函数无界。复变函数是定义域为复数集合的函数。
复数的概念起源于求方程的根,在二次、三次的求根中就出现了负数开平方的情况。在很长时间里,人们对这不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。
以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是。是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。
复变函数论的发展简况
复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由的积分导出的两个。而比他更早时,法国数学家在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。
复变函数论的全面发展是在十九世纪,就象微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。
为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。
后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。
复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过来解决的。
比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。
复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、、和数论等学科,对它们的发展很有影响。
复变函数论的内容
复变函数论主要包括单值解析函数理论、理论、几何函数论、理论、广义解析函数等方面的内容。
如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,就是这样的函数。
复变函数也研究,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的,那么,函数在离曼曲面上就变成。
黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。关于黎曼曲面的研究还对另一门数学分支有比较大的影响,逐渐地趋向于讨论它的拓扑性质。
复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。处处不是零的所实现的就都是共形映象,共形映象也叫做保角变换。共形映象在流体力学、空气动力学、、理论等方面都得到了广泛的应用。
理论是复变函数论中一个重要的理论。留数也叫做,它的定义比较复杂。应用留数理论对于积分的计算比起计算方便。计算实变函数,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部上求留数的计算,当奇点是的时候,计算更加简洁。
把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。
广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,自2002年来这方面的理论发展十分迅速。
从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。2002年,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。介绍
一个较大的程序一般应分为若干个程序块,每一个模块用来实现一个特定的功能。所有的高级语言中都有子程序这个概念,用子程序实现模块的功能。在C语言中,子程序的作用是由一个主函数和若干个函数构成。由主函数调用其他函数,其他函数也可以互相调用。同一个函数可以被一个或多个函数调用任意多次。
在程序设计中,常将一些常用的功能模块编写成函数,放在函数库中供公共选用。要善于利用函数,以减少重复编写程序段的工作量。
许多中,可以将一段经常需要使用的代码封装起来,在需要使用时可以直接调用,所以,函数也可以说是许多代码的集合,这就是程序中的函数。比如在C语言中:
int max(int x,int y)//整数类型 最大(整数类型 x,整数类型 y)
return (x&y?x:y);//返回(x&y?x:y)
就是一段比较两数大小的函数,函数有参数与。C++程序设计中的函数可以分为两类:带参数的函数和不带参数的函数。这两种参数的声明、定义也不一样。
带有(一个)参数的函数的声明:
标示符+函数名+(类型标示符+参数)
// 程序代码
没有返回值且不带参数的函数的声明:
void+函数名()//无类型+函数名
// 程序代码
花括号内为。
如果没有返回值类型名为"void", 整数类型int 类型返回值为整数类型int,以此类推……
类型名有:void int long float int* long* float* ……
C++中函数的调用:函数必须声明后才可以被调用。调用格式为:函数名(实参)
调用时函数名后的小括号中的实参必须和声明函数时的函数括号中的形参个数相同。
有返回值的函数可以进行计算,也可以做为右值进行赋值。
#include &iostream&//#包含 &iostream.h&文件
using namespace //使用 命名 空间
int f1(int x,int y)//整数类型 f1(整数类型 x,整数类型 y)
 int z;//整数类型 z
 return x+y;//返回 x+y;
void main()//无类型 主函数()
 cout&&f1(50,660)&&endl//输出
main(中文:)
max(中文:求“最大数”的函数)
(中文全称:“格式输入”函数)
(中文全称:“格式输出”函数)
gets(中文全称:“标准输入流”函数)
C语言库函数
C语言为了方便用户编写程序,为用户开发了大量的库函数,其定义在.h文件中,用户可以调用这些函数实现强大的功能。所以对于用户来说,掌握这些函数的用法是提高编程水平的关键。定义
设 ,当x在 的定义域Dφ中变化时, 的值在 的定义域Df内变化,因此变量x与y之间通过变量μ形成的一种函数关系,记为
称为复合函数,其中x称为自变量,μ为中间变量,y为因变量(即函数)
任何两个函数都可以复合成一个复合函数,只有当 的值域Zφ和 的定义域Df的交集不为空集时,二者才可以复合成一个复合函数。
新手上路我有疑问投诉建议参考资料 查看}

我要回帖

更多关于 世界七大数学难题 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信