缩颈是如何产生的?缩颈发生在橡胶拉伸曲线线上哪个线段

拉伸试验_百度百科
关闭特色百科用户权威合作手机百科
收藏 查看&拉伸试验本词条缺少信息栏,补充相关内容使词条更完整,还能快速升级,赶紧来吧!
拉伸是指在承受轴向拉伸下测定材料特性的试验方法。利用拉伸试验得到的可以确定材料的极限、伸长率、弹性模量、比例极限、面积缩减量、拉伸强度、屈服点、屈服强度和其它拉伸性能指标。从高温下进行的拉伸试验可以得到蠕变数据。金属拉伸试验的可参见ASTM E-8标准。塑料拉伸试验的方法参见ASTM D-638标准、D-2289标准(高应变率)和D-882标准(薄片材)。ASTM D-2343标准规定了适用于玻璃纤维的拉伸方法;ASTM D-897标准中规定了适用于粘结剂的拉伸试验方法;ASTM D-412标准中规定了硬的拉伸试验方法。
1.准备试件。用刻线机在原始标距 内刻划圆周线(或用小钢冲打小冲点),将标距内分为等长的10格。用游标卡尺在试件原始标距内的两端及中间处两个相互垂直的方向上各测一次直径,取其算术平均值作为该处截面的直径,然后选用三处截面直径的最小值来计算试件的原始截面面积A。(取三位有效数字)。
2.调整试验机。根据低碳钢的抗拉强度σb和原始横截面面积估算试件的最大载荷,配置相应的摆锤,选择合适的测力度盘。开动试验机,使工作台上升10mm左右,以消除工作台系统自重的影响。调整主动指针对准零点,从动指针与主动指针靠拢,调整好自动绘图装置。
3.装夹试件。先将试件装夹在上夹头内,再将下夹头移动到合适的夹持位置,最后夹紧试件下端。
4.检查与试车。请实验指导教师检查以上步骤完成情况。开动试验机,预加少量载荷(载荷对应的应力不能超过材料的),然后到零,以检查试验机工作是否正常。
5.进行试验。开动试验机,缓慢而均匀地加载,仔细观察测力指针转动和绘图装置绘出 图的情况。注意捕捉屈服荷载值,将其记录下来用以计算屈服点应力值σS,屈服阶段注意观察滑移现象。过了屈服阶段,加载速度可以快些。将要达到最大值时,注意观察“缩颈”现象。试件断后立即停车,记录最大荷载值。
6.取下试件和记录纸。
7.用游标卡尺测量断后标距。
8.用游标卡尺测量缩颈处最小直径d1。1.准备试件。除不必刻线或打小冲点外,其余都同低碳钢。
2.调整试验机和自动绘图装置,装好试件,对以上工作进行检查(与低碳钢拉伸试验时的步骤相同)。
3.进行实验。开动试验机,缓慢均匀地加载,直至试件被拉断。关闭试验机,记录拉断时的最大荷载值,取下试件和记录纸。
(四)结束实验。
请指导教师检查试验记录。将试验设备、工具复原,清理试验场地。最后整理数据,完成试验报告。tensile test
测定材料在拉伸载荷作用下的一系列特性的试验,又称抗拉试验。它是的基本方法之一,主要用于检验材料是否符合规定的标准和研究材料的性能。拉伸试验可测定材料的一系列强度指标和塑性指标。强度通常是指材料在外力作用下抵抗产生弹性变形、和断裂的能力。材料在承受拉伸载荷时,当载荷不增加而仍继续发生明显塑性变形的现象叫做屈服。产生屈服时的应力,称屈服点或称,用σS(帕)表示。工程上有许多材料没有明显的屈服点,通常把材料产生的残余塑性变形为 0.2%时的应力值作为屈服强度,称条件屈服极限或条件屈服强度,用σ0.2 表示。材料在断裂前所达到的最大应力值,称抗拉强度或强度极限,用σb(帕)表示。
拉伸试验塑性是指在载荷作用下产生塑性变形而不致破坏的能力,常用的塑性指标是延伸率和断面收缩率。延伸率又叫伸长率,是指材料试样受拉伸载荷折断后,总伸长度同原始长度比值的百分数,用δ表示。断面收缩率是指材料试样在受拉伸载荷拉断后,断面缩小的面积同原截面面积比值的百分数,用ψ表示。
条件屈服极限σ0.2、强度极限σb、伸长率 δ和断面收缩率ψ是拉伸试验经常要测定的四项性能指标。此外还可测定材料的弹性模量E、比例极限σp、弹性极限σe等。
试验方法 拉伸试验在上进行。试验机有机械式、液压式、电液或电子伺服式等型式。试样型式可以是材料全截面的,也可以加工成圆形或矩形的标准试样。钢筋、线材等一些实物样品一般不需要加工而保持其全截面进行试验。试样制备时应避免材料组织受冷、热加工的影响,并保证一定的光洁度。
试验时,试验机以规定的速率均匀地拉伸试样,试验机可自动绘制出拉伸曲线图。对于低碳钢等塑性好的材料,在试样拉伸到屈服点时,测力指针有明显的抖动,可分出上、下屈服点(和),在计算时,常取材料的 δ和ψ可将试验断裂后的试样拼合,测量其伸长和断面缩小而计算出来。由试验机绘出的拉伸,实际上是载荷-伸长曲线(见图),如将载荷坐标值和伸长坐标值分别除以试电子拉伸试验机样原截面积和试样标距,就可得到应力-应变曲线图。图中op部分呈直线,此时应力与应变成正比,其比值为弹性模量,Pp是呈正比时的最大载荷,p点应力为比例极限σp。继续加载时,曲线偏离op,直到 e点,这时如卸去载荷,试样仍可恢复到原始状态,若过e点试样便不能恢复原始状态。e点应力为弹性极限σe。工程上由于很难测得真正的σe,常取试样残余伸长达到原始标距的0.01%时的应力为弹性极限,以σ0.01 表示。继续加载荷,试样沿es曲线变形达到s点,此点应力为屈服点σS或残余伸长为 0.2%的条件屈服强度σ0.2。过s点继续增加载荷到拉断前的最大载荷b点,这时的载荷除以原始截面积即为强度极限σb。在 b点以后,试样继续伸长,而减小,承载能力开始下降,直到 k点断裂。断裂瞬间的载荷与断裂处的截面的比值称断裂强度。
图l为拉伸标准试样及拉断后试样,试样上予先标出标距长度。
图2为一般结构钢的拉伸(载荷一伸长)关系图
[注]:图中 L0=原始标距长度 F0=原始试样截面积 Ll=断后标距长度 Fl=断后截面积拉伸夹具本身就是一个锁紧机构。在结构上没有固定的模式, 根据不同的试样及试验力大小,在结构上差别很大.大试验力的试样一般采用斜面夹紧结构,随试验力的增加,夹紧力随之增加,台肩试样采用悬挂结构等,如果夹具按结构划分,可分为楔形类夹具(指采用斜面锁紧原理的夹具)、对夹类夹具(指采用单面或双面螺纹顶紧原理结构的夹具)、缠绕类夹具(指试样通过缠绕方式锁紧的夹具)、偏心类夹具指采用(偏心锁紧原理结构的夹具)、杠杆类夹具(指采用杠杆力放大原理结构的夹具)、台肩类夹具(指适用于台肩试样的夹具)、螺栓类夹具(指适用于螺栓、螺钉、螺柱等测试螺纹强度的夹具)、90°剥离类夹具(指适用于两试样进行垂具,直剥离的夹具)等。我们知道机械上的锁紧结构有:缧纹(即,螺钉,螺母)、斜面、偏心轮、等,夹具就是这些结构的组合体这些夹具的结构各有各的优缺点,例如:楔形夹具,初始夹紧力小,随试验力增加。夹紧力随之增加。对夹夹具,初始夹紧力大,随试验力增加。夹紧力随之减小。各向异性材料的单轴拉伸试验1、最大试验力:50N、100N到20KN
2、准确度等级:0.5级/1级
3、试验力测量范围:0.2%到100%F.S/0.4到100%F.S
4、试验力示值准确度:±0.5%/±1%
5、试验力:±250000码
6、变形测量范围:1%—100%F.S
7、变形示值准确度:±0.5%
8、变形分辨率:±250000码
9、大变形测量范围:0到800mm
10、大变形示值准确度:±0.5%
11、大变形分辨率:0.003mm
12、位移示值准确度:±0.3%
13、、位移分辨率:0.00004mm
14、力速率控制调节范围:0.005-10%F.S/S
15、力速率控制精度:力控制速率小于0.05%,F.S/S时在±1%;力控制速率大于0.05%,F.S/S时在±0.3%;
16、伸长速率控制调节范围:0.005-10%F.S/S
17、伸长速率控制精度:变形控制速率小于0.05%,F.S/S时在±0.5%;变形控制速率大于0.05%,F.S/S时在±0.2%;
18、位移速率控制调节范围:0.001-1000mm/min
19、位移速率控制精度:±0.2%/±0.5%
20、恒力、恒变形、恒位移控制范围:0.3%—100%F.S
21、恒力、恒变形、恒位移控制精度:设定值小于10%,F.S时在±0.5%;设定大于10%,F.S时在±0.1.%;
22、有效拉伸空间:900mm
23、有效试验宽度:400mm。GB/T228.1-2010《金属材料拉伸试验方法》
新手上路我有疑问投诉建议参考资料 查看查看: 226|回复: 6
讨论一下拉伸曲线的颈缩现象是怎么回事?
签到天数: 501 天[LV.9]以坛为家II主题帖子积分
Do it right at the first time.
第一次就把事情做对。
签到天数: 501 天[LV.9]以坛为家II主题帖子积分
拉伸曲线.jpg (35.14 KB, 下载次数: 0)
11:52 上传
Do it right at the first time.
第一次就把事情做对。
签到天数: 1 天[LV.1]初来乍到主题帖子积分
颈缩是由于塑性变形引起的宏观变形,塑性变形会产生加工硬化,冷拔钢丝经过拉拔断面尺寸变小,如果金属不产生加工硬化并提高强度,那么钢丝就可能被拉断;塑性变形提高内能,使其化学活性提高,腐蚀速度增快
签到天数: 501 天[LV.9]以坛为家II主题帖子积分
有没有听说过真应力-真应变曲线呢?
真应力-真应变曲线.jpg (21.71 KB, 下载次数: 0)
14:59 上传
Do it right at the first time.
第一次就把事情做对。
签到天数: 501 天[LV.9]以坛为家II主题帖子积分
真应力应变曲线是将拉伸曲线求导后得到的。
应力-应变曲线中的应力和应变是以试样的初始尺寸进行计算的,事实上,在拉伸过程中试样的尺寸是在不断变化的,此时的真实应力S应该是瞬时载荷(P)除以试样的瞬时截面积(A),即:S=P/A;同样,真实应变e应该是瞬时伸长量除以瞬时长度de=dL/L。下图是真应力-真应变曲线,它不像应力-应变曲线那样在载荷达到最大值后转而下降,而是继续上升直至断裂,这说明金属在塑性变形过程中不断地发生加工硬化,从而外加应力必须不断增高,才能使变形继续进行,即使在出现缩颈之后,缩颈处的真实应力仍在升高,这就排除了应力-应变曲线中应力下降的假象。
Do it right at the first time.
第一次就把事情做对。
签到天数: 1 天[LV.1]初来乍到主题帖子积分
塑性阶段是施加外力使位错线运动摆脱“柯氏气团”
签到天数: 1 天[LV.1]初来乍到主题帖子积分
Powered by通过修正拉伸位移曲线修正获得真应力真应变曲线_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
2页免费7页免费20页1下载券12页1下载券4页免费 5页免费6页免费3页免费1页免费5页免费
通过修正拉伸位移曲线修正获得真应力真应变曲线|
把文档贴到Blog、BBS或个人站等:
普通尺寸(450*500pix)
较大尺寸(630*500pix)
你可能喜欢第二章 轴向拉伸和压缩_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
文档贡献者贡献于
评价文档:
124页免费105页免费103页免费37页免费75页免费 11页免费17页免费13页免费10页免费9页免费
喜欢此文档的还喜欢37页1下载券15页免费6页免费
第二章 轴向拉伸和压缩|
把文档贴到Blog、BBS或个人站等:
普通尺寸(450*500pix)
较大尺寸(630*500pix)
大小:6.02MB
登录百度文库,专享文档复制特权,财富值每天免费拿!
你可能喜欢材料力学实验讲义:实验一
材料在轴向拉伸、压缩和扭转时的力学性能 - 北航实验报告的日志,人人网,北航实验报告的公共主页
。。转自北航没品段子:一天记者问北航优秀物理实验教师李朝荣,如果学霸和学渣同时不会做物理实验了,你会救谁?周围围观的学生都不乐意了,纷纷扰扰的说怎么问这么脑残的问题,明明谁都不救啊!这时候李老师说话了:救学霸!此话一出周围的学渣们顿时问候起李朝荣的爹妈来了,这不是脑残吗!怎么说,学霸能力也比学渣强,要救也救学渣啊。李朝荣看出了学渣们的疑惑,于是补充了一句:因为学渣会抱紧学霸的大腿!顿时周围的人为朝荣奶奶的机智所折服,掌声经久不息。
材料力学实验讲义:实验一
材料在轴向拉伸、压缩和扭转时的力学性能
实验一& 材料在轴向拉伸、压缩和扭转时的力学性能&预习要求:1、复习教材中有关材料在拉伸、压缩、扭转时力学性能的内容;2、预习本实验内容及微控电子万能试验机的原理和使用方法;&一、实验目的1、& 观察低碳钢在拉伸时的各种现象,并测定低碳钢在拉伸时的屈服极限 ,强度极限 ,延伸率δ和断面收缩率y;2、& 观察铸铁在轴向拉伸时的各种现象;3、& 观察低碳钢和铸铁在轴向压缩过程中的各种现象;4、& 观察低碳钢和铸铁在扭转时的各种现象;5、& 掌握微控电子万能试验机的操作方法。&二、实验设备与仪器1、微控电子万能试验机;2、扭转试验机;3、50T微控电液伺服万能试验机;4、游标卡尺。&三、试件试验表明,试件的尺寸和形状对试验结果有影响。为了便于比较各种材料的机械性能,国家标准中对试件的尺寸和形状有统一规定。根据国家标准(GB6397&86),将金属拉伸比例试件的尺寸列表如下:
圆试件直径
本实验的拉伸试件采用国家标准中规定的长比例试件(图一),试验段直径d0=10mm,标距l0=100mm.。本实验的压缩试件采用国家标准(GB7314-87)中规定的圆柱形试件h/d0=2, d0=15mm, h=30mm (图二)。
本实验的扭转试件按国家标准(GB6397-86)制做。
&&&&&&&&四、实验原理和方法(一)低碳钢的拉伸试验
实验时,首先将试件安装在试验机的上、下夹头内,并在实验段的标记处安装引伸仪,以测量试验段的变形。然后开动试验机,缓慢加载,同时,与试验机相联的微机会自动绘制出载荷&变形曲线(F&Dl曲线,见图三)或应力&应变曲线(s&e曲线,见图四)。随着载荷的逐渐增大,材料呈现出不同的力学性能:1、线性阶段在拉伸的初始阶段,s&e曲线为一直线,说明应力s与应变e成正比,即满足胡克定律。线性段的最高点称为材料的比例极限(sp),线性段的直线斜率即为材料的弹性模量E。若在此阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。卸载后变形能完全消失的应力最大点称为材料的弹性极限(se)。一般对于钢等许多材料,其弹性极限与比例极限非常接近。2、屈服阶段超过比例极限之后,应力与应变不再成正比,当载荷增加到一定值时,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象称为屈服。使材料发生屈服的应力称为屈服应力或屈服极限(ss)。实验曲线在屈服阶段有两个特征点,上屈服点B和下屈服点B&(见图五),上屈服点对应于实验曲线上应力波动的起始点,下屈服点对应于实验曲线上应力完成首次波动之后的最低点。上屈服点受加载速率以及试件形状等的影响较大,而下屈服点B&则比较稳定,故工程上以B&点对应的应力作为材料的屈服极限ss。当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45o的斜纹。这是由于试件的45o斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。3、硬化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。当载荷卸到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。因此,如果将卸载后已有塑性变形的试样重新进行拉伸试验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。在硬化阶段应力应变曲线存在一最高点,该最高点对应的应力称为材料的强度极限(sb)。强度极限所对应的载荷为试件所能承受的最大载荷Pb。4、缩颈阶段试样拉伸达到强度极限sb之前,在标距范围内的变形是均匀的。当应力增大至强度极限sb之后,试样出现局部显著收缩,这一现象称为缩颈。缩颈出现后,使试件继续变形所需载荷减小,故应力应变曲线呈现下降趋势,直至最后在E点断裂。试样的断裂位置处于缩颈处,断口形状呈杯状,这说明引起试样破坏的原因不仅有拉应力,还有切应力,这是由于缩颈处附近试件截面形状的改变使横截面上各点的应力状态发生了变化。
(二)铸铁的拉伸试验铸铁的拉伸实验方法与低碳钢的拉伸实验相同,但是铸铁在拉伸时的力学性能明显不同于低碳钢,其应力&&应变曲线如图五所示。铸铁从开始受力直至断裂,变形始终很小,既不存在屈服阶段,也无颈缩现象。断口垂直于试样轴线,这说明引起试样破坏的原因是最大拉应力。&(三)低碳钢和铸铁的压缩实验实验时,首先将试件放置于试验机的平台上,然后开动试验机,缓慢加载,同时,与试验机相联的数据采集系统会自动绘制出载荷&变形曲线(F&Dl曲线)或应力&应变曲线(s&e曲线),低碳钢和铸铁受压缩时的应力应变曲线分别见图六和图七。
&&&&&&&&&&&低碳钢试件在压缩过程中,在加载开始段,从应力应变曲线可以看出,应力与应变成正比,即满足虎克定律。当载荷达到一定程度时,低碳钢试件发生明显的屈服现象。过了屈服阶段后,试件越压越扁,最终被压成腰鼓形,而不会发生断裂破坏。铸铁试件在压缩过程中,没有明显的线性阶段,也没有明显的屈服阶段。铸铁的压缩强度极限约为拉伸强度极限的3~4倍。铸铁试件断裂时断口方向与试件轴线约成55o。一般认为是由于切应力与摩擦力共同作用的结果。&(四)低碳钢和铸铁的扭转实验实验时,首先将试件安装在试验机的左、右夹头内,并在试件实验段表面沿轴线方向划一条直线,以观察试验段的变形。然后开动试验机,缓慢加载,同时,自动绘图装置绘制出扭矩&转角曲线(T&j曲线)。低碳钢试件受扭时,在加载开始段,从T&j曲线可以看出,扭矩与转角成正比,即满足扭转虎克定律。当载荷达到一定程度时,低碳钢试件发生明显的屈服现象,即扭矩不增加,而转角不断增大。过了屈服阶段后,试件抵抗变形的能力又有所加强,到最...
阅读(4787)|
你写完告诉我哈!
人人移动客户端下载}

我要回帖

更多关于 颈缩现象 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信