真空衰变什么时候发生会毁灭宇宙吗

查看: 2685|回复: 10
真空衰变与概率
本帖最后由 jindi 于
12:35 编辑
某书上这样写的:目前通常假定,宇宙的现有状态对应着真真空态,这就是说,是所有可能的能态中今天的空间是最低能量的真空态。但是,对于这一点我们有把握吗?科尔曼和德卢西亚考虑了一种令人恐惧的可能性,即现在的真空态实际上也许不是“真”真空,而是一种有相当长寿命的亚稳态,这也就是另一种伪真空,它一直在以一种伪装的安全感哄骗我们,因为它已经延续了几十亿年。我们知道许多量子系统,如铀核,它的半衰期为几十亿年。能够想象现在的真空态会属于这一类型吗?科尔曼和德卢西亚在文章中所提到的真空“衰变”涉及到一场大灾难的可能性,即现在的真空态也许会突然终止,把宇宙扔进一个更小更低的能态,同时给我们(以及所有别的事物)带来悲惨的的结局
  图 10-2 隧道效应 如果粒子陷入两座小山间的谷地中,它有很小的概率能通过借贷能量越过小山逃出去。实际上,这是在观察穿越势垒的隧道效应。一种熟悉的情况是某些元素原子核中的 α 粒子通过隧道效应穿越核力势垒并飞离原子核,这种现象称为 α 放射性。在这个例子中,“小山”由核力及电力产生,这里画的只是示意图。
  科尔曼和德卢西亚假设的关键是量子隧道效应这种现象。量子粒子被力的势垒所俘获的那种简单情况可以对上述效应作出最好的说明。假设这个粒子位于一个小山谷中,它被两侧的小山所束缚,图 10·2 说明了这种情况。当然,这不一定是真实的小山,例如它们可以是电子场或核力场,在没有取得越过小山(即克服力势垒)所必须的能量时,这个粒子看来会永远困在谷底。但是要记住,所有的量子粒子都服从海森伯不确定原理,它可以在很短的时间内“借贷”到能量。这就开辟了一种很有趣的可能性。如果这个粒子能够借到足够的能量以到达山顶,并在它必须偿还这份能量之前翻到山的另一侧,那么粒子就可以逃出这个陷阱了。实际上,它会借助隧道穿过势垒,好像它根本就没有在那里呆过一样。
  量子粒子“泄出”这类势阱的概率非常灵敏地取决于势垒的高度和宽度。势垒越高,粒子为达到山顶所必须借到的能量也越大。还有,根据不确定原理,借贷期也必须越短。因此,对于高势垒,只有当它们同时又是薄势垒时才能利用隧道效应,这样粒子才能很快地穿过它们,以便拒绝按时还清借来的能量。出于这个原因,在日常生活中隧道效应并不引人注意。要能出现有效的隧道作用,“每天”的势垒实在是太高也太宽了。原则上说,人类可以步行穿过砖墙,但出现这种奇迹的量子隧道作用概率极其微小。然而在原子尺度上,隧道作用很普遍。例如, α 放射性正是通过这种机制出现的: α 粒子从力图捕获它们的原子核中泄漏出来。隧道效应也被应用在半导体和其他一些电子产品上,如隧道二极管。 伪真空态和真真空态 也许有这样的情况:空间 A 现在所处的量子态不是最低能态,但尽管如此它还是准稳的,因为它对应着某种位置比较高的山谷。因此,应当存在极小的概率可以使这种量子态借助隧道效应衰变到真正稳定的基态 B 。这两种状态间的跃迁是通过宇宙泡的成核作用而出现的,并会释放出巨大的能量。
  现在回到有关真空衰变的问题上来。科尔曼和德卢西亚推测,组成真空的量子场也许会经受像图 10-3 所表示的那种力场的作用(这里是一种比喻)。现在的真空态对应着从谷底 A 。但是,真真空对应着谷底 B ,它比 A 还要低。真空要想从较高的能态 A 向较低的能态 B 衰变,但是使 A 和 B 隔离开来的那座小山把它挡住了(注意:这些小山和山谷代表了力和场的配置——它们同实际空间中的特征并不一一对应)。现在,虽然小山妨碍了衰变,但考虑到隧道效应的话,它并没有完全阻止衰变的发生:系统可以借助隧道从谷 A 穿到谷 B 。发生这种现象所需的时间将取决于这种跃迁的概率有多大。上面已经解释过,这种概率对小山的高度和宽度十分敏感。这两个量的数值完全有可能造成这样的情况:也许要经过几十亿年后跃迁才会突然发生。在这种情况下,宇宙也许正生存在借来的时间上,挂在谷 A 的上方,但它会有一定的机会在某个任意时刻借助隧道进入谷 B 。科尔曼和德卢西亚用数学方法对真空衰变进行了模拟,以找到这种现象出现的方式。他们发现,衰变开始出现时的空间位置是随机的,它表现为一个“真”真空小泡,四周被不稳定的“伪”真空所包围。这个小泡一旦成核,就很快地膨胀,膨胀速度迅速趋近光速。越来越大的伪真空区域被它所吞没,同时转变成真真空。在第三章中我曾讨论过,这两种状态的能量差也许会达到非常大的程度,它集中在泡壁上,并扫过整个宇宙,同时也把它在前进道路上所遇到的一切事物统统毁灭掉。
我觉得奇怪的是,宇宙这么大,会包含多少原子大小的空间啊,大概是1后面跟几千个0吧,而且宇宙年龄130多亿年了,这期间有一个原子大小的空间发生小概率跃迁,就会使宇宙毁灭,有什么亚稳态的小概率能这么小,至今没有产生成核的真真空泡?如果真的这么小概率,亿亿亿。。。。分之一,那就只是理论可能,一点不理想就可以干扰它的出现,即便是量子理论也不例外(根据某些科学家关于概率论的最新研究是这样的,概率极小的东西牵扯到统计学上的弱因果关系,需要极为苛刻、理想的条件才能实现,现实中的一点扰动就会破坏)
唉,这种事情如果真会发生,那我们只能坐以待毙,什么办法也没有。
顺便说一下,这种膨胀可以超光速的,就像宇宙大爆炸一样。
关于真空泡的理论,或许是多宇宙理论中的,即:我们的宇宙是处于母宇宙中的一个泡泡。但是我们的宇宙如果只是单独一个,并没有母宇宙的,也会发生这事吗
黑洞蒸发的原因就是因为“伪真空”,真空中会自动产生正,反粒子。
发生三种情况:
1正反粒子互相泯灭
2正粒子落入黑洞
3反粒子落入黑洞
4正,反粒子落入黑洞
第三种常发生,使黑洞质量减少
如果宇宙都是伪真空,那么宇宙的总能量不再为零了啊,时间简史说物质是正能量,引力是负能量,宇宙总能量为零,宇宙的产生是彻底的免费午餐。如果都是伪真空的话,这不就和时间简史矛盾了嘛
本帖最后由 jindi 于
14:50 编辑
编辑本段]什么是“真空衰变”
  量子跃迁即处于高能级上的量子向低能级的跃迁过程。
[编辑本段]真空衰变的理论基础
  量子理论的基本原则是沃纳·海森堡( Werner Heisenberg ) 的测不准原理。根据这一原理,量子物体的所有属性都不具有完全确定的值。例如,一个光子或一个电子不可能同时具有确定的位置和确定的动量。对一确定的时刻,它也不可能有确定的能量。这里我们关心的是能量不确定性。尽管在宏观世界里能量是守恒的(它既不能创造也不会消失),但是在亚原子量子领域里这个定律就失效了。能量可随时自发出现无法预言的变化。所考虑的时间间隔越短,这种量子随机涨落就越大。实际上,粒子可以从我们不知道的某个地方借来能量,只要这份能量马上归还就行。海森伯测不准原理的准确数学形式要求大宗的能量借贷必须很快归还,而少量的借贷则可保留较长的时间。
  能量的不确定性会引出一些奇怪的效应,诸如光子那样的粒子可以突然从虚无中生成,不过过后它又马上再度消失,出现这种现象的概率便是上述奇怪效应中的一种。这种粒子依靠借来的能量,因而也是依靠借来的时间得以生存。我们看不到它们是因为它们只是闪电般地一现即没,但是又确实在原子系统的特性中留下它们曾存在过的痕迹,而这些痕迹是可以测量的。事实上,通常认为的真空确实充满着川流不息的一群群这类瞬时存在的粒子,它们不仅有光子,还有电子、质子相别的所有粒子。为了把这种瞬时粒子与我们比较熟悉的永久粒子相区别,前者称为“虚”粒子,而后者则称为“实”粒子。
  除瞬时性外,虚粒子与实粒子是完全相同的。实际上,如果用某种方法从外界补充足够的能量偿还海森伯能量借贷的话,那么虚粒子就有可能升格为实粒子,而且与其他同种实粒子没有任何区别。例如,一个虚电子在典型情况下只能存在大约 10^-21 秒。 在它短促的生存期中,虚电子并非静止不动,它在消失之前可以走过 10^-11 厘米的距离(作为比较,原子的直径约为 10^-8 厘米)。如果这个虚电子在这么短的时间内得到能量(譬如说从电磁场),它就未必会消失,而是可以作为一个完全普通的电子继续存在。
  尽管看不见这些虚粒子,但它们实实在在存在于真空之中。这不仅因为真空包含一个潜在的永久性粒子库,还因为尽管它们以半真半虚的形式出现,这些幽灵般的量子实体依然会留下它们的活动痕迹,而且可以探测到。例如虚光子的效应之一是使原子的能级发生极少量的偏移。它们也能使电子磁矩发生同样细微的变化。这些细微然而却很重要的变化已用光谱技术精确地测量到。
  考虑到亚原子粒子一般不自由移动,但要受到各种与粒子种类有关的力的作用,对上述简单的量子真空图象要作些修正。这种种力也在相应的虚粒子之间发生作用。因此,也许存在不止一种真空态。许多可能的“量子态”的存在是量子物理的普遍特征。最为熟知的是原子的各种能级。这里,一个绕原子核转动的电子可以有某些非常确定的能态,而这些能态又对应着确定的能量。最低的能级称为基态,它是稳定的。较高的能级称为激发态,它们是不稳定的。如果一个电子闯入一个较高的能态,它会向下跃迁返回基态,而跃迁的途径可以不止一种。这种激发态有很确定的“衰变”半衰期。
[编辑本段]“真”真空与“伪”真空
类似的原理适用于真空。它可以有一种或多种激发态。这些激发态有各不相同的能量,不过它们的实际表象完全相同,即都是真空。最低的能态,也就是基态,有时称为“真”真空,以反映它是稳定态这一事实,大体上对应今天宇宙的真空区域。激发真空则称为“伪”真空态。
  应当说,伪真空态仍然是一种纯理论的观念,其性质在很大程度上取决于所用的特定理论。但是,伪真空态很自然地出现在现今所有试图统一各种自然力的理论中。现在已确认的基本力看来有 4 种:日常生活所熟悉的引力和电磁力,以及两种短程核力——弱力和强力。这份清单过去还要长些。例如,电和磁就曾被看作是截然不同的东西。
  电与磁的统一过程开始于 19 世纪初。当时,汉斯·克里斯琴·奥斯特( Hans Christian Oersted )发现电流产生磁场,而迈克尔·法拉第( Michel Faraday )则发现运动的磁铁会产生电流。很清楚,电与磁是有内在联系的。但是,直到 19 世纪 50 年代,詹姆斯·克拉克·麦克斯韦( James Clerk Maxwell )才指示了这种联系的细节。麦克斯韦通过一组数学方程精确描述这些“电磁”现象,并预言电磁波的存在。不久,人们便意识到光也是这种波的一个例子,而且还应当存在其他形式的波,如射电波和 X 射线。因此,表面上两种不同的自然力——电力和磁力——原来是单一电磁力的两种表现,它有着自身特有的一些现象。
  最近几十年来,这种统一过程有了更深入的发展。根据现在的认识,电磁力和弱核力是有联系的,是单一“电弱”力的组成部分。许多物理学家相信、作为所谓大统一理论的一部分,将来也会证明强力与电弱力有联系。不仅如此,所有 4 种力可能在某种足够深的层次上合成为单一的超力。
  企图统一电弱力和强力的一些大统一理论预言了一种最有前途的暴胀力。这些理论的一个关键特征是,伪真空态的能量大得惊人:典型情况是,1 立方厘米的空间含有 10^87 焦耳的能量!甚至一个原子的体积也会拥有 10^62 焦耳的能量。一个受激原子却只具有 10^-18 焦耳左右的能量,两者相比,后者简直是微乎其微。因此,要激发真空,需要极大的能量,而在今天的宇宙中我们不企望会找到这种状态。另一方面,一旦有了大爆炸的极端条件,这些数字就比较说得通了。
  与伪真空联系在一起的巨大能量具有强大的引力效应。这是因为能量具有质量,这一点爱因斯坦已经为我们指出了,所以它可以像正常物质一样受引力吸引。量子真空的巨大能量拥有巨大的吸引力:1 立方厘米伪真空的质量重达 10^64 吨,这比今天整个可观测宇宙的质量(约 10^48 )还大!这种异常的引力对暴胀的产生毫无用处,后者要求某种反引力过程。但是,巨大的伪真空能量是和同等巨大的伪真空压力联系在一起的,而正是这种压力起着奇妙的作用。通常,我们并不把压力看作为引力源,但这种压力却是一种引力源。在一般物体中,物体压力的引力效应与物体质量的引力效应相比是微不足道的。例如,人体重量中只有不到十亿分之一是由地球内部压力产生的,不过,这种效应确实存在,而且在一个压力极其巨大的系统中,压力引力可以与质量引力相比拟。
  在伪真空的情况下,既有巨大的能量,又有与之相仿的巨大压力,它的相互争夺对引力的支配权,但是,关键的性质在于压力是负的。伪真空起的作用不是排斥而是吸引。现在,负压力产生负引力效应,这就是所谓的反引力。因此,伪真空的引力作用归结为它的能量的巨大吸引效应和它的负压力的巨大排斥效应之间的竞争。最终压力获得了胜利,其净效应是产生一种非常大的排斥力,它可以在一刹那间把宇宙冲开。就是这种庞大的暴胀推力,使宇宙的尺度以极快的速度即每 10^-34 秒增大一倍。
  就内禀性质来说,伪真空是不稳定的。像所有的激发量子态一样,它要发生衰变以回到基态——真真空。在几十个滴答之后,它就可能衰变。作为一种量子过程,它必然表现出上面讨论过的无法避免的不可预测性和随机涨落,这些性质都与海森伯不确定原理有关。这意味着衰变的发生就整个空间而言不是均匀的,而是会有涨落。某些理论家认为,这些涨落可能就是宇宙背景辐射探测卫星观测到的强度起伏的缘由。
  在伪真空衰变后,宇宙重新恢复它正常的减速膨胀,由暴胀进入爆炸。封闭在伪真空中的能量得以释放,并以热的形式出现。由暴胀产生的巨大膨胀使宇宙冷却,直到温度十分接近绝对零度,然后暴胀的突然结束再次把宇宙加热到 10^28 度的极高温度。今天,这个巨大的热库已几乎完全消失,残留下来的就是宇宙背景热辐射。作为真空能量释放的副产品,量子真空中的许多虚粒子获得其中的一部分能量,并转变成实粒子。这些粒子的遗骸留存至今,成为组成你、我、银河系和整个可观测宇宙的 10^48 吨物质。
[编辑本段]真空衰变的本质
  真空是不稳定的,处于高能级上的量子总要向低能级跃迁,这就是真空衰变的本质。
  1980年,物理学家西德尼·科尔曼(Sidney Colemam)和弗兰克·德卢西亚(Frank De Luccia)发表了一篇新奇的文章,它以平淡无奇的标题“引力效应和真空衰变”刊登在《物理评论》杂志上。他们所指的真空不仅仅是空无一物的空间,而且是量子物理的真空态。在第三章我已经解释过,在我们看来也许是空无一物的真空,实际上怎样沸腾着极短暂的量子活动,幽灵般的虚粒子出现、传播又再次消失,就像是一场随便闹着玩的游戏。前面已经提到过这种真空状态也许不是唯一的,可以存在多种量子状态,每一种看上去都像是空无一物,但却不同程度地经历着量子活动,与此相联系的就有不同的能量。
  高能态往往要向低能态衰变,这是量子物理学中一条完全确证的原理。例如,一个原子可以取一定范围内的若干种激发态,但这些激发态都是不稳定的,原子会力图向最低能态即“基”态衰变,这个基态才是稳定的。同样,一种激发真空态也会力图向最低能态即“真”真空态衰变。……
  目前通常假定,宇宙的现有状态对应着真真空态。这就是说,在所有可能的能态中今天的空间是最低能量的真空态。但是,对于这一点我们有把握吗?科尔曼和德卢西亚考虑了一种令人恐惧的可能性,即现在的真空态实际上也许不是“真”真空而是一种有相当长寿命的亚稳态,这也就是另一种伪真空,它一直在以一种伪装的安全感哄骗我们,因为它已经延续了几十亿年。我们知道许多量子系统。如铀核,它的半衰期为几十亿年。能够想象现在的真空态会属于这一类型吗?科尔曼和德卢西亚在文章中所提到的真空“衰变”涉及到一场大灾难的可能性,即现在的真空态也许会突然终止,把宇宙扔进一个更小更低的能态,同时给我们(以及所有别的事物)带来悲惨的结局。
[编辑本段]真空衰变的物理描述
  科尔曼和德卢西亚用数学方法对真空衰变进行了模拟,以找到这种现象出现的方式。他们发现,衰变开始出现时的空间位置是随机的,它表现为一个“真”真空小泡,四周被不稳定的“伪”真空所包围。这个小泡一旦成核,就很快的膨胀,膨胀速度迅速趋进光速。越来越大的伪真空区域被它所吞灭,同时转变成真真空。在第三章中我曾讨论过,这两种状态的能量差也许会达到非常大的程度,它集中在泡壁上,并扫过整个宇宙,同时也把它在前进道路上所遇到的一切事物统统毁灭掉。
[编辑本段]真空衰变中的引力效应
  一个经典的场论具有两个稳定的基态,其中一个是绝对的能量最低态。如果把这个场论量子化以后,那么能量相对较高的基态可以看成一个伪真空,由于量 子隧穿,这个伪真空是不稳定的。这个伪真空会衰变到真正的真空,如果考虑引力在这个过程中的作用,我们会发现跟我们当初想象的不一样,引力的效应通常是不 可以被忽略的,尤其是在衰变结束的时候,会变的非常重要。这个重要的工作是 S. Coleman 和 F. D. Luccia 完成的。
  伪真空的衰变非常类似于统计力学中的结核相变过程。衰变过程开始时,伪真空的背景中产生了真空(我们把真实的真空称为真空)的泡泡,就像水沸腾的时候产生了 许多气泡一样,在这里这是一个量子隧穿过程。当真空泡泡物质化以后,它的膨胀速度渐近趋向于光速,整个伪真空被覆盖成为真正的真空。当然在半经典极限下, 单位时间单位体积内,发生这种隧穿过程的几率是被指数压低的。
 特纳和威尔扎克的论文在《自然》杂志上发表后不久,皮特·赫特 ( Piet Hut )和马丁·里斯( Martin Rees )唤醒了一个可怕的幽灵:一个使宇宙遭到破坏的真空泡得以成核也许是被粒子物理学家本身在无意之中所触发的!问题在于,亚原子粒子的甚高能碰撞有可能仅在一瞬间内,就会在一个非常小的空间区域中创造出促使真空发生衰变的一些条件。一旦这种跃迁发生,哪怕是发生在微观尺度上,也无法阻止新形成的真空泡在瞬息内膨胀到天文尺度。是否我们应查禁下一代粒子加速器呢?
  赫特和里斯也在《自然》杂志上发表一项备受欢迎的积极证明。他们指出,宇宙线的能量早已超过我们在粒子加速器内所能获得的能量,而这些宇宙线几十亿年来一直在轰击地球大气中的原子核,却丝毫没有触发真空衰变。另一方面,随着加速器的改进,能量提高了大约几百倍,我们也许有能力产生出更大能量的撞击,它将超过任何宇宙线撞击地球时产生的能量。然而,现实问题不是真空泡的成核现象是否会在地球上出现,而是它是否会在大爆炸以后的某个时刻已经出现在可观测宇宙中的某个地方。赫特和里斯指出,两束宇宙线出现迎面碰撞的机会非常小。他们的计算得出,在宇宙的历史中,必定发生过能量比现有加速器大几十亿倍的碰撞事件。所以,我们还不需要制定一项权威性的规定。
&他们的计算得出,在宇宙的历史中,必定发生过能量比现有加速器大几十亿倍的碰撞事件。&发生过几次呢?如果只发生过一两次,或许是概率原因,并没有触发衰变
如果能量比现有加速器大几十亿倍的碰撞事件只发生过一次,那么能量大几十万倍的碰撞是不是就发生了万次,因为一亿等于万万,而且能量低一点的碰撞更容易发生
谁能详细叙述一下《自然》上的这段内容
真空涨落中的虚粒子对带什么能量?
如果认为一个具有正能量,一个具有负能量,那么能量守恒仍然成立?涨落过程中并不存在任何能量的“借贷”?能量与时间的不确定关系对于“真空”系统来说不成立?
如果认为两个都具有正的能量,这貌似不是霍金辐射采取的观点?
Powered by当前位置 & &
& 霍金:上帝粒子或将毁灭整个宇宙
霍金:上帝粒子或将毁灭整个宇宙
10:32:26&&作者:
编辑:小呆 &&)
让小伙伴们也看看:
文章观点支持
当前平均分:0(0 次打分)
[09-04][08-30][08-30][08-29][08-25][08-24][08-24][08-20][08-19][08-19]
登录驱动之家
没有帐号?
用合作网站帐户直接登录真空衰变能毁灭宇宙吗_作业帮
真空衰变能毁灭宇宙吗
真空衰变能毁灭宇宙吗
我想这个讨论起源於Stephen Hawking的新书Starmus,书上提及"希格场(Higgs potential)有个令人担心的特性,即是它是待在一个 100 GeV 的准稳定能态(meta state),一旦有真空衰变到更低的能量,整个宇宙将经历此新真空态以光速膨胀到各个地方".题目的这个问题应该是报章媒体断章取义的说法.直接回答此问题,科学家们认为"不会!" 但 Hawking说的没错.这是因为最近几年在欧洲的LHC对撞机发现了希格子(Higgs boson)粒子,此为主宰了粒子拥有质量的机制(标准模型裏每个粒子最初都没有质量).然而,希格场和希格子在这里是两回事.在higgs boson发现後,科学家大概相信我们身在准稳定态的宇宙,但如果真要发生此真空衰变,应该在宇宙大爆炸早期时(inflation period,约大爆炸後的不到10^-35 秒)发生,但到目前我们也还处在这个准稳定态.
真真空,里面的微观粒子是和我们这宇宙不同的,就算真真空只有夸克大小,也能发生能级跃迁,真真空以光速抗散,毁灭整个宇宙,这称为真空衰变真空衰变毁灭宇宙是真的吗_作业帮
真空衰变毁灭宇宙是真的吗
真空衰变毁灭宇宙是真的吗
我想这个讨论起源於Stephen Hawking的新书Starmus,书上提及"希格场(Higgs potential)有个令人担心的特性,即是它是待在一个 100 GeV 的准稳定能态(meta state),一旦有真空衰变到更低的能量,整个宇宙将经历此新真空态以光速膨胀到各个地方".题目的这个问题应该是报章媒体断章取义的说法.直接回答此问题,科学家们认为"不会!" 但 Hawking说的没错.这是因为最近几年在欧洲的LHC对撞机发现了希格子(Higgs boson)粒子,此为主宰了粒子拥有质量的机制(标准模型裏每个粒子最初都没有质量).然而,希格场和希格子在这里是两回事.在higgs boson发现後,科学家大概相信我们身在准稳定态的宇宙,但如果真要发生此真空衰变,应该在宇宙大爆炸早期时(inflation period,约大爆炸後的不到10^-35 秒)发生,但到目前我们也还处在这个准稳定态.}

我要回帖

更多关于 毁灭宇宙游戏机 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信