问个用定积分求极限限的题

问一道求极限的题第2题,求极限结果等于多少呀?
因为两个重要极限limx->00(1+1/x)^x=e所以((x+1)/x)^x=e所以(1/(x+1)^x=(1-x/(x+1)=1
为您推荐:
其他类似问题
是1,(1-1/(1+x))
扫描下载二维码大一高数求极限题!!求大神解答,求速度!大一高数求极限题!!求大神解答,求速度!如图问题都在题边写着-知识宝库
你可能对下面的信息感兴趣问个求极限的题_高等数学吧_百度贴吧
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&签到排名:今日本吧第个签到,本吧因你更精彩,明天继续来努力!
本吧签到人数:0成为超级会员,使用一键签到本月漏签0次!成为超级会员,赠送8张补签卡连续签到:天&&累计签到:天超级会员单次开通12个月以上,赠送连续签到卡3张
关注:188,282贴子:
问个求极限的题收藏
lim(x→π/3)sin(x-π/3)/(1-2cosx)
不要用求导的方法,我们还没学到,也不要用那啥法则。郁闷啊!老师几句话就说完了,同学们一个个的都说是,我没听明白啊!
高等数学 放心淘,超值淘,产品丰富,应有尽有,任你选购,畅享网购乐趣!淘宝网-淘,你喜欢!
三分之跟三?
呵呵…那就等你们老师做吧。这道题是要用洛必达法则做的,三分之跟三。
呵呵,会做了,不用罗比达法则也行。
登录百度帐号推荐应用
为兴趣而生,贴吧更懂你。或&img src=&/174aad22389bdf9c1ee61cae_b.png& data-rawwidth=&225& data-rawheight=&128& class=&content_image& width=&225&&xx考研老师说这个极限是等价不存在的,不等于1。&br&解释是这样说的:当x趋向于零时,sinx等价于x(等价无穷小),然后x是趋向于0但x不能等于0,x*sin(1/x)是可能取到0的,因为sin(1/x)是振荡的,此时分母取到零点,就说明函数在这一点是无定义的,违背了函数f(x)在x-&0时处处有定义的说法,所以这个极限是不存在的。&br&但是用MATLAB计算是等于1的&br&&img src=&/d670c42a661c_b.png& data-rawwidth=&296& data-rawheight=&188& class=&content_image& width=&296&&&img src=&/9dd3fcfcf894e_b.jpg& data-rawwidth=&334& data-rawheight=&60& class=&content_image& width=&334&&&img src=&/9ebee32a39c4890c71ee_b.jpg& data-rawwidth=&561& data-rawheight=&496& class=&origin_image zh-lightbox-thumb& width=&561& data-original=&/9ebee32a39c4890c71ee_r.jpg&&&img src=&/fef5c728cdadac38c46a4aed9c19635f_b.jpg& data-rawwidth=&566& data-rawheight=&496& class=&origin_image zh-lightbox-thumb& width=&566& data-original=&/fef5c728cdadac38c46a4aed9c19635f_r.jpg&&所以感到很困惑,到底是怎么样的?
xx考研老师说这个极限是等价不存在的,不等于1。解释是这样说的:当x趋向于零时,sinx等价于x(等价无穷小),然后x是趋向于0但x不能等于0,x*sin(1/x)是可能取到0的,因为sin(1/x)是振荡的,此时分母取到零点,就说明函数在这一点是无定义的,违背了函数f(x)在x-&0时处处有定义的说法,所以这个极限是不存在的。但是用MATLAB计算是等于1的…
闲人一枚,试着用Mathematica做了一下:下面把图像尽量放大:下面把图像尽量放大:(好没有帮助的回答→_→)
谢邀。以前回答过这个问题:&a href=&/question//answer/& class=&internal&&当x趋向于0,sin(xsin1/x)/(xsin1/x)是否为1? - 余翔的回答&/a&,不过那个问题好像被举报了。下面是以前的回答,修订了一下错误。&br&&br&是的,不过更准确的应该是&img src=&///equation?tex=%5C%28%5Clim_%7Bx+%5Crightarrow+0%3Bx%5Cin+E%5Csetminus%5C%7B0%5C%7D%7D+%5Cfrac%7B%5Csin%28x%5Csin%5Cfrac%7B1%7D%7Bx%7D%29%29+%7D%7Bx%5Csin%5Cfrac%7B1%7D%7Bx%7D%7D+%3D1%5C%29& alt=&\(\lim_{x \rightarrow 0;x\in E\setminus\{0\}} \frac{\sin(x\sin\frac{1}{x})) }{x\sin\frac{1}{x}} =1\)& eeimg=&1&&。&br&首先需要知道极限&img src=&///equation?tex=%5C%28%5Clim_%7Bx+%5Crightarrow+0%7D+%5Cfrac%7B%5Csin%28x%5Csin%5Cfrac%7B1%7D%7Bx%7D%29%29+%7D%7Bx%5Csin%5Cfrac%7B1%7D%7Bx%7D%7D+%5C%29& alt=&\(\lim_{x \rightarrow 0} \frac{\sin(x\sin\frac{1}{x})) }{x\sin\frac{1}{x}} \)& eeimg=&1&&指的是什么?因为&img src=&///equation?tex=x& alt=&x& eeimg=&1&&并不能取所有的实数,有些点必须排除。要使得函数&img src=&///equation?tex=%5Ctextstyle+%5Cfrac%7B%5Csin%28x%5Csin%5Cfrac%7B1%7D%7Bx%7D%29%29+%7D%7Bx%5Csin%5Cfrac%7B1%7D%7Bx%7D%7D+& alt=&\textstyle \frac{\sin(x\sin\frac{1}{x})) }{x\sin\frac{1}{x}} & eeimg=&1&&有意义,分母&img src=&///equation?tex=%5Ctextstyle+x%5Csin%5Cfrac%7B1%7D%7Bx%7D+%5Cneq+0& alt=&\textstyle x\sin\frac{1}{x} \neq 0& eeimg=&1&&,于是&img src=&///equation?tex=%5Ctextstyle+x%5Cneq0%2C%5Cpm%5Cfrac%7B1%7D%7B%5Cpi%7D%2C%5Cpm%5Cfrac%7B1%7D%7B2%5Cpi%7D%2C%5Cdots& alt=&\textstyle x\neq0,\pm\frac{1}{\pi},\pm\frac{1}{2\pi},\dots& eeimg=&1&&&br&设集合&img src=&///equation?tex=%5Ctextstyle+E%3A%3D%5C%7Bx%5Cin%5Cmathbf%7BR%7D%3Ax%5Cneq0%2C%5Cpm%5Cfrac%7B1%7D%7B%5Cpi%7D%2C%5Cpm%5Cfrac%7B1%7D%7B2%5Cpi%7D+%2C%5Ccdots%5C%7D& alt=&\textstyle E:=\{x\in\mathbf{R}:x\neq0,\pm\frac{1}{\pi},\pm\frac{1}{2\pi} ,\cdots\}& eeimg=&1&&,那么函数&img src=&///equation?tex=%5Ctextstyle+x%5Cmapsto+%5Cfrac%7B%5Csin%28x%5Csin%5Cfrac%7B1%7D%7Bx%7D%29%29+%7D%7Bx%5Csin%5Cfrac%7B1%7D%7Bx%7D%7D+& alt=&\textstyle x\mapsto \frac{\sin(x\sin\frac{1}{x})) }{x\sin\frac{1}{x}} & eeimg=&1&&的&b&定义域&/b&为&img src=&///equation?tex=E& alt=&E& eeimg=&1&&。极限&img src=&///equation?tex=%5Ctextstyle+%5Clim_%7Bx+%5Crightarrow+0%7D+%5Cfrac%7B%5Csin%28x%5Csin%5Cfrac%7B1%7D%7Bx%7D%29%29+%7D%7Bx%5Csin%5Cfrac%7B1%7D%7Bx%7D%7D+& alt=&\textstyle \lim_{x \rightarrow 0} \frac{\sin(x\sin\frac{1}{x})) }{x\sin\frac{1}{x}} & eeimg=&1&&指的是&img src=&///equation?tex=%5Ctextstyle+%5Clim_%7Bx+%5Crightarrow+0%3Bx%5Cin+E%5Cbackslash%5C%7B0%5C%7D%7D+%5Cfrac%7B%5Csin%28x%5Csin%5Cfrac%7B1%7D%7Bx%7D%29%29+%7D%7Bx%5Csin%5Cfrac%7B1%7D%7Bx%7D%7D+& alt=&\textstyle \lim_{x \rightarrow 0;x\in E\backslash\{0\}} \frac{\sin(x\sin\frac{1}{x})) }{x\sin\frac{1}{x}} & eeimg=&1&&(注意&img src=&///equation?tex=0& alt=&0& eeimg=&1&&是&img src=&///equation?tex=E& alt=&E& eeimg=&1&&的极限点,因此这个极限是定义良好的,由于&img src=&///equation?tex=E& alt=&E& eeimg=&1&&不包含&img src=&///equation?tex=0& alt=&0& eeimg=&1&&,所以&img src=&///equation?tex=E%5Csetminus%5C%7B0%5C%7D& alt=&E\setminus\{0\}& eeimg=&1&&和&img src=&///equation?tex=E& alt=&E& eeimg=&1&&没有区别,但更一般的情形会有区别)。&br&&br&先回顾一下函数极限的定义&br&&b&定义.&/b&(函数在一点处的极限) 设&img src=&///equation?tex=X& alt=&X& eeimg=&1&&是&img src=&///equation?tex=%5Cmathbf%7BR%7D& alt=&\mathbf{R}& eeimg=&1&&子集,&img src=&///equation?tex=f%3AX%5Cto%5Cmathbf%7BR%7D& alt=&f:X\to\mathbf{R}& eeimg=&1&&是函数,并设&img src=&///equation?tex=E& alt=&E& eeimg=&1&&是&img src=&///equation?tex=X& alt=&X& eeimg=&1&&的子集,&img src=&///equation?tex=x_0& alt=&x_0& eeimg=&1&&是&img src=&///equation?tex=E& alt=&E& eeimg=&1&&的&a href=&///?target=https%3A//en.wikipedia.org/wiki/Limit_point& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&极限点&i class=&icon-external&&&/i&&/a&,而&img src=&///equation?tex=L& alt=&L& eeimg=&1&&是实数,我们说&img src=&///equation?tex=f& alt=&f& eeimg=&1&&在&img src=&///equation?tex=x_0& alt=&x_0& eeimg=&1&&处沿着&b&&img src=&///equation?tex=E& alt=&E& eeimg=&1&&收敛&/b&到&img src=&///equation?tex=L& alt=&L& eeimg=&1&&,写作&br&&img src=&///equation?tex=%5Clim_%7Bx+%5Crightarrow+x_0%3Bx%5Cin+E%5Csetminus%5C%7Bx_0%5C%7D%7D%7Bf%28x%29%7D+%3DL& alt=&\lim_{x \rightarrow x_0;x\in E\setminus\{x_0\}}{f(x)} =L& eeimg=&1&&&br&当且仅当对于每个&img src=&///equation?tex=%5Cvarepsilon%3E0& alt=&\varepsilon&0& eeimg=&1&&,都存在&img src=&///equation?tex=%5Cdelta%3E0& alt=&\delta&0& eeimg=&1&&,对于一切&img src=&///equation?tex=x%5Cin+E%5Cbackslash%5C%7Bx_0%5C%7D& alt=&x\in E\backslash\{x_0\}& eeimg=&1&&,当&img src=&///equation?tex=%7Cx-x_0%7C%5Cleq+%5Cdelta& alt=&|x-x_0|\leq \delta& eeimg=&1&&时,&img src=&///equation?tex=%7Cf%28x%29-L%7C%5Cleq+%5Cvarepsilon& alt=&|f(x)-L|\leq \varepsilon& eeimg=&1&&。&br&&br&&b&注. &/b&我们只考虑&img src=&///equation?tex=x_0& alt=&x_0& eeimg=&1&&是&img src=&///equation?tex=E& alt=&E& eeimg=&1&&的极限点时,函数在&img src=&///equation?tex=x_0& alt=&x_0& eeimg=&1&&处的极限,当&img src=&///equation?tex=x_0& alt=&x_0& eeimg=&1&&不是极限点时,不值得定义极限的概念(为什么?)。很多情况我们从上面的记号中略去集合&img src=&///equation?tex=E%5Csetminus%5C%7Bx_0%5C%7D& alt=&E\setminus\{x_0\}& eeimg=&1&&,也就是说,我们只说&img src=&///equation?tex=f& alt=&f& eeimg=&1&&在&img src=&///equation?tex=x_0& alt=&x_0& eeimg=&1&&处收敛到&img src=&///equation?tex=L& alt=&L& eeimg=&1&&,或者&img src=&///equation?tex=%5Ctextstyle+%5Clim_%7Bx+%5Crightarrow+x_0%7D%7Bf%28x%29%7D+%3DL& alt=&\textstyle \lim_{x \rightarrow x_0}{f(x)} =L& eeimg=&1&&,但去掉集合&img src=&///equation?tex=E%5Csetminus%5C%7Bx_0%5C%7D& alt=&E\setminus\{x_0\}& eeimg=&1&&有点危险,比如对于&a href=&///?target=http%3A///DirichletFunction.html& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&Dirichlet Function &i class=&icon-external&&&/i&&/a&&br&&img src=&///equation?tex=D%28x%29%3A%3D%5Cbegin%7Bcases%7D%0A1%2C+%26%5C+x%5Cin%5Cmathbf%7BQ%7D%5Ccap%5B0%2C1%5D%3B%5C%5C%0A0%2C%26%5C+x%5Cin+%5B0%2C1%5D+%5Csetminus%5Cmathbf%7BQ%7D+.%0A%5Cend%7Bcases%7D& alt=&D(x):=\begin{cases}
1, &\ x\in\mathbf{Q}\cap[0,1];\\
0,&\ x\in [0,1] \setminus\mathbf{Q} .
\end{cases}& eeimg=&1&&&br&极限&img src=&///equation?tex=%5Ctextstyle+%5Clim_%7Bx+%5Crightarrow+0%3Bx%5Cin+%5B0%2C1%5D%5Csetminus%5C%7B0%5C%7D%7D+D%28x%29& alt=&\textstyle \lim_{x \rightarrow 0;x\in [0,1]\setminus\{0\}} D(x)& eeimg=&1&&不存在,但极限&br&&img src=&///equation?tex=%5Ctextstyle+%5Clim_%7Bx+%5Crightarrow+0%3Bx%5Cin+%5Cmathbf%7BQ%7D%5Ccap%5B0%2C1%5D%5Csetminus%5C%7B0%5C%7D%7D+D%28x%29%3D1& alt=&\textstyle \lim_{x \rightarrow 0;x\in \mathbf{Q}\cap[0,1]\setminus\{0\}} D(x)=1& eeimg=&1&&,&img src=&///equation?tex=%5Ctextstyle+%5Clim_%7Bx+%5Crightarrow+0%3Bx%5Cin+%28%5B0%2C1%5D%5Csetminus+%5Cmathbf%7BQ%7D%29%5Csetminus%5C%7B0%5C%7D%7D+D%28x%29%3D0& alt=&\textstyle \lim_{x \rightarrow 0;x\in ([0,1]\setminus \mathbf{Q})\setminus\{0\}} D(x)=0& eeimg=&1&&&br&都存在&br&&br&函数极限可以用序列极限刻画,因为我们有下面命题&br&&b&命题.&/b& 设&img src=&///equation?tex=X& alt=&X& eeimg=&1&&是&img src=&///equation?tex=%5Cmathbf%7BR%7D& alt=&\mathbf{R}& eeimg=&1&&的子集,&img src=&///equation?tex=f%3AX%5Cto%5Cmathbf%7BR%7D& alt=&f:X\to\mathbf{R}& eeimg=&1&&是函数,并设&img src=&///equation?tex=E& alt=&E& eeimg=&1&&是&img src=&///equation?tex=X& alt=&X& eeimg=&1&&的子集,&img src=&///equation?tex=x_0& alt=&x_0& eeimg=&1&&是&img src=&///equation?tex=E& alt=&E& eeimg=&1&&的&b&极限点&/b&,而&img src=&///equation?tex=L& alt=&L& eeimg=&1&&是实数,那么下述两个命题是逻辑上等价的:&br&&ul&&li&&img src=&///equation?tex=f& alt=&f& eeimg=&1&&在&img src=&///equation?tex=x_0& alt=&x_0& eeimg=&1&&处沿着&img src=&///equation?tex=E& alt=&E& eeimg=&1&&收敛到&img src=&///equation?tex=L& alt=&L& eeimg=&1&&&br&&/li&&li&对于每个完全由&img src=&///equation?tex=E%5Cbackslash%5C%7Bx_0%5C%7D& alt=&E\backslash\{x_0\}& eeimg=&1&&的元素组成,并且收敛到&img src=&///equation?tex=x_0& alt=&x_0& eeimg=&1&&的序列&img src=&///equation?tex=%28a_n%29_%7Bn%3D0%7D%5E%7B%5Cinfty%7D& alt=&(a_n)_{n=0}^{\infty}& eeimg=&1&&,序列&img src=&///equation?tex=%28f%28a_n%29%29_%7Bn%3D0%7D%5E%7B%5Cinfty%7D& alt=&(f(a_n))_{n=0}^{\infty}& eeimg=&1&&收敛到&img src=&///equation?tex=L& alt=&L& eeimg=&1&&&br&&/li&&/ul&&br&现在采用序列来证明极限&img src=&///equation?tex=%5C%28%5Clim_%7Bx+%5Crightarrow+0%3Bx%5Cin+E%5Csetminus%5C%7B0%5C%7D%7D+%5Cfrac%7B%5Csin%28x%5Csin%5Cfrac%7B1%7D%7Bx%7D%29%29+%7D%7Bx%5Csin%5Cfrac%7B1%7D%7Bx%7D%7D+%3D1%5C%29& alt=&\(\lim_{x \rightarrow 0;x\in E\setminus\{0\}} \frac{\sin(x\sin\frac{1}{x})) }{x\sin\frac{1}{x}} =1\)& eeimg=&1&&。设&img src=&///equation?tex=%5Ctextstyle+f%28x%29%3Dx%5Csin%5Cfrac%7B1%7D%7Bx%7D+& alt=&\textstyle f(x)=x\sin\frac{1}{x} & eeimg=&1&&,&img src=&///equation?tex=%5Ctextstyle+g%28x%29%3D%5Cfrac%7B%5Csin+x%7D%7Bx%7D& alt=&\textstyle g(x)=\frac{\sin x}{x}& eeimg=&1&&,根据这一命题,由于&img src=&///equation?tex=%5Ctextstyle+%5Clim_%7Bx+%5Crightarrow+0%3Bx%5Cin+E%5Cbackslash%5C%7B0%5C%7D%7D%7Bx%5Csin%5Cfrac%7B1%7D%7Bx%7D+%7D+%3D0& alt=&\textstyle \lim_{x \rightarrow 0;x\in E\backslash\{0\}}{x\sin\frac{1}{x} } =0& eeimg=&1&&,于是每个完全由&img src=&///equation?tex=E%5Cbackslash%5C%7B0%5C%7D& alt=&E\backslash\{0\}& eeimg=&1&&的元素组成,并且收敛到&img src=&///equation?tex=0& alt=&0& eeimg=&1&&的序列&img src=&///equation?tex=%28a_n%29_%7Bn%3D0%7D%5E%7B%5Cinfty%7D& alt=&(a_n)_{n=0}^{\infty}& eeimg=&1&&,即&img src=&///equation?tex=%5Ctextstyle+%5Clim_%7Bn+%5Crightarrow+%5Cinfty%7D%7Ba_n%7D+%3D0& alt=&\textstyle \lim_{n \rightarrow \infty}{a_n} =0& eeimg=&1&&,序列&img src=&///equation?tex=%28f%28a_n%29%29_%7Bn%3D0%7D%5E%7B%5Cinfty%7D& alt=&(f(a_n))_{n=0}^{\infty}& eeimg=&1&&收敛到&img src=&///equation?tex=0& alt=&0& eeimg=&1&&,且对于每个&img src=&///equation?tex=n& alt=&n& eeimg=&1&&,&img src=&///equation?tex=f%28a_n%29%5Cneq+0& alt=&f(a_n)\neq 0& eeimg=&1&&,因为&img src=&///equation?tex=a_n%5Cin+E%5Cbackslash%5C%7Bx_0%5C%7D& alt=&a_n\in E\backslash\{x_0\}& eeimg=&1&&。又因为&img src=&///equation?tex=%5Ctextstyle+%5Clim_%7Bx+%5Crightarrow+0%3Bx%5Cin+%5Cmathbf%7BR%7D%5Csetminus%5C%7B0%5C%7D%7D%7B%5Cfrac%7B%5Csin+x%7D%7Bx%7D+%7D+%3D1& alt=&\textstyle \lim_{x \rightarrow 0;x\in \mathbf{R}\setminus\{0\}}{\frac{\sin x}{x} } =1& eeimg=&1&&,而序列&img src=&///equation?tex=%28f%28a_n%29%29_%7Bn%3D0%7D%5E%7B%5Cinfty%7D& alt=&(f(a_n))_{n=0}^{\infty}& eeimg=&1&&收敛到&img src=&///equation?tex=0& alt=&0& eeimg=&1&&且每一项都不为&img src=&///equation?tex=0& alt=&0& eeimg=&1&&,即对每个&img src=&///equation?tex=n& alt=&n& eeimg=&1&&,&img src=&///equation?tex=f%28a_n%29%5Cin+%5Cmathbf%7BR%7D%5Cbackslash%5C%7B0%5C%7D& alt=&f(a_n)\in \mathbf{R}\backslash\{0\}& eeimg=&1&&,于是序列&img src=&///equation?tex=%28g%28f%28a_n%29+%29_%7Bn%3D0%7D%5E%7B%5Cinfty%7D& alt=&(g(f(a_n) )_{n=0}^{\infty}& eeimg=&1&&收敛到&img src=&///equation?tex=1& alt=&1& eeimg=&1&&,也就是序列&img src=&///equation?tex=%5Ctextstyle+%5Cleft%28%5Cfrac%7B%5Csin%28a_n%5Csin%5Cfrac%7B1%7D%7Ba_n%7D%29+%7D%7Ba_n%5Csin%5Cfrac%7B1%7D%7Ba_n%7D%7D+%5Cright%29_%7Bn%3D0%7D%5E%7B%5Cinfty%7D& alt=&\textstyle \left(\frac{\sin(a_n\sin\frac{1}{a_n}) }{a_n\sin\frac{1}{a_n}} \right)_{n=0}^{\infty}& eeimg=&1&&收敛到&img src=&///equation?tex=1%0A& alt=&1
& eeimg=&1&&,因此函数&img src=&///equation?tex=%5Ctextstyle+%5Cfrac%7B%5Csin%28x%5Csin%5Cfrac%7B1%7D%7Bx%7D%29%29+%7D%7Bx%5Csin%5Cfrac%7B1%7D%7Bx%7D%7D+& alt=&\textstyle \frac{\sin(x\sin\frac{1}{x})) }{x\sin\frac{1}{x}} & eeimg=&1&&在&img src=&///equation?tex=0& alt=&0& eeimg=&1&&处沿着&img src=&///equation?tex=E& alt=&E& eeimg=&1&&收敛到&img src=&///equation?tex=1& alt=&1& eeimg=&1&&,即&img src=&///equation?tex=%5Ctextstyle+%5Clim_%7Bx+%5Crightarrow+0%3Bx%5Cin+E%5Cbackslash%5C%7B0%5C%7D%7D+%5Cfrac%7B%5Csin%28x%5Csin%5Cfrac%7B1%7D%7Bx%7D%29%29+%7D%7Bx%5Csin%5Cfrac%7B1%7D%7Bx%7D%7D+%3D1& alt=&\textstyle \lim_{x \rightarrow 0;x\in E\backslash\{0\}} \frac{\sin(x\sin\frac{1}{x})) }{x\sin\frac{1}{x}} =1& eeimg=&1&&&br&&br&注意,下面命题&b&不成立&/b&&br&&b&命题. &/b&(&b&不成立)&/b&设&img src=&///equation?tex=X%2CY& alt=&X,Y& eeimg=&1&&是&img src=&///equation?tex=%5Cmathbf%7BR%7D& alt=&\mathbf{R}& eeimg=&1&&的子集,设&img src=&///equation?tex=x_0& alt=&x_0& eeimg=&1&&是&img src=&///equation?tex=X& alt=&X& eeimg=&1&&的极限点,&img src=&///equation?tex=y_0& alt=&y_0& eeimg=&1&&是&img src=&///equation?tex=Y& alt=&Y& eeimg=&1&&的极限点,设&img src=&///equation?tex=f%3AX%5Cto+Y& alt=&f:X\to Y& eeimg=&1&&是函数,使得&img src=&///equation?tex=%5Ctextstyle+%5Clim_%7Bx+%5Crightarrow+x_0%3Bx%5Cin+X%5Cbackslash%5C%7Bx_0%5C%7D%7D%7Bf%28x%29%7D+%3Dy_0& alt=&\textstyle \lim_{x \rightarrow x_0;x\in X\backslash\{x_0\}}{f(x)} =y_0& eeimg=&1&&&br&,设&img src=&///equation?tex=g%3AY%5Cto+%5Cmathbf%7BR%7D& alt=&g:Y\to \mathbf{R}& eeimg=&1&&是函数,使得&img src=&///equation?tex=%5Ctextstyle+%5Clim_%7By+%5Crightarrow+y_0%3Bx%5Cin+Y%5Cbackslash%5C%7By_0%5C%7D%7D%7Bg%28y%29%7D+%3Dz_0& alt=&\textstyle \lim_{y \rightarrow y_0;x\in Y\backslash\{y_0\}}{g(y)} =z_0& eeimg=&1&&,那么&img src=&///equation?tex=%5Ctextstyle+%5Clim_%7Bx+%5Crightarrow+x_0%3Bx%5Cin+X%5Cbackslash%5C%7Bx_0%5C%7D%7D%7Bg%28f%28x%29%29%7D+%3Dz_0& alt=&\textstyle \lim_{x \rightarrow x_0;x\in X\backslash\{x_0\}}{g(f(x))} =z_0& eeimg=&1&&&br&这个命题是&b&错误&/b&的,因此不能直接根据&img src=&///equation?tex=%5Ctextstyle+%5Clim_%7Bx+%5Crightarrow+0%7D%7Bx%5Csin%5Cfrac%7B1%7D%7Bx%7D+%7D+%3D0& alt=&\textstyle \lim_{x \rightarrow 0}{x\sin\frac{1}{x} } =0& eeimg=&1&&和&img src=&///equation?tex=+%5Ctextstyle+%5Clim_%7Bx+%5Crightarrow+0%7D%7B%5Cfrac%7B%5Csin+x%7D%7Bx%7D+%7D+%3D1& alt=& \textstyle \lim_{x \rightarrow 0}{\frac{\sin x}{x} } =1& eeimg=&1&&来说明&img src=&///equation?tex=%5Ctextstyle+%5Clim_%7Bx+%5Crightarrow+0%7D+%5Cfrac%7B%5Csin%28x%5Csin%5Cfrac%7B1%7D%7Bx%7D%29%29+%7D%7Bx%5Csin%5Cfrac%7B1%7D%7Bx%7D%7D+%3D1& alt=&\textstyle \lim_{x \rightarrow 0} \frac{\sin(x\sin\frac{1}{x})) }{x\sin\frac{1}{x}} =1& eeimg=&1&&&br&&img src=&///equation?tex=%5Ctextstyle+%5Clim_%7Bx+%5Crightarrow+x_0%3Bx%5Cin+X%5Cbackslash%5C%7Bx_0%5C%7D%7D%7Bg%28f%28x%29%29%7D& alt=&\textstyle \lim_{x \rightarrow x_0;x\in X\backslash\{x_0\}}{g(f(x))}& eeimg=&1&&不一定等于&img src=&///equation?tex=z_0& alt=&z_0& eeimg=&1&&。但如果函数&img src=&///equation?tex=g& alt=&g& eeimg=&1&&在&img src=&///equation?tex=y_0& alt=&y_0& eeimg=&1&&处连续,这个命题是成立的。因此可以通过补充定义&img src=&///equation?tex=%5Ctfrac%7B%5Csin%28x%29%7D%7Bx%7D& alt=&\tfrac{\sin(x)}{x}& eeimg=&1&&在&img src=&///equation?tex=0& alt=&0& eeimg=&1&&处的值使得它连续,这样就可以使用上述命题说明&img src=&///equation?tex=%5C%28%5Clim_%7Bx+%5Crightarrow+0%3Bx%5Cin+E%5Csetminus%5C%7B0%5C%7D%7D+%5Cfrac%7B%5Csin%28x%5Csin%5Cfrac%7B1%7D%7Bx%7D%29%29+%7D%7Bx%5Csin%5Cfrac%7B1%7D%7Bx%7D%7D+%3D1%5C%29& alt=&\(\lim_{x \rightarrow 0;x\in E\setminus\{0\}} \frac{\sin(x\sin\frac{1}{x})) }{x\sin\frac{1}{x}} =1\)& eeimg=&1&&。&br&&br&因为对于每个完全由&img src=&///equation?tex=X%5Cbackslash%5C%7B0%5C%7D& alt=&X\backslash\{0\}& eeimg=&1&&的元素组成,并且收敛到&img src=&///equation?tex=x_0& alt=&x_0& eeimg=&1&&的序列&img src=&///equation?tex=%28a_n%29_%7Bn%3D0%7D%5E%7B%5Cinfty%7D& alt=&(a_n)_{n=0}^{\infty}& eeimg=&1&&,序列&img src=&///equation?tex=%28f%28a_n%29%29_%7Bn%3D0%7D%5E%7B%5Cinfty%7D& alt=&(f(a_n))_{n=0}^{\infty}& eeimg=&1&&收敛到&img src=&///equation?tex=y_0& alt=&y_0& eeimg=&1&&,但序列&img src=&///equation?tex=%28f%28a_n%29%29_%7Bn%3D0%7D%5E%7B%5Cinfty%7D& alt=&(f(a_n))_{n=0}^{\infty}& eeimg=&1&&可能有&b&无限&/b&多项等于&img src=&///equation?tex=y_0& alt=&y_0& eeimg=&1&&,而&img src=&///equation?tex=%5Ctextstyle+%5Clim_%7By+%5Crightarrow+y_0%3By%5Cin+Y%5Cbackslash%5C%7By_0%5C%7D%7D%7Bg%28y%29%7D+%3Dz_0& alt=&\textstyle \lim_{y \rightarrow y_0;y\in Y\backslash\{y_0\}}{g(y)} =z_0& eeimg=&1&&只能说明对于每个完全由&img src=&///equation?tex=Y%5Cbackslash%5C%7B0%5C%7D& alt=&Y\backslash\{0\}& eeimg=&1&&的元素组成,并且收敛到&img src=&///equation?tex=y_0& alt=&y_0& eeimg=&1&&的序列&img src=&///equation?tex=%28b_n%29_%7Bn%3D0%7D%5E%7B%5Cinfty%7D& alt=&(b_n)_{n=0}^{\infty}& eeimg=&1&&,序列&img src=&///equation?tex=%28g%28b_n%29%29_%7Bn%3D0%7D%5E%7B%5Cinfty%7D& alt=&(g(b_n))_{n=0}^{\infty}& eeimg=&1&&收敛到&img src=&///equation?tex=z_0& alt=&z_0& eeimg=&1&&,当序列&img src=&///equation?tex=%28f%28a_n%29%29_%7Bn%3D0%7D%5E%7B%5Cinfty%7D& alt=&(f(a_n))_{n=0}^{\infty}& eeimg=&1&&有无限多项等于&img src=&///equation?tex=y_0& alt=&y_0& eeimg=&1&&,我们不能推出序列&img src=&///equation?tex=%28g%28f%28a_n%29%29%29_%7Bn%3D0%7D%5E%7B%5Cinfty%7D& alt=&(g(f(a_n)))_{n=0}^{\infty}& eeimg=&1&&收敛到&img src=&///equation?tex=z_0& alt=&z_0& eeimg=&1&&,但下面两种情况可以&br&&ul&&li&对于每个收敛到&img src=&///equation?tex=x_0& alt=&x_0& eeimg=&1&&的序列&img src=&///equation?tex=%28a_n%29_%7Bn%3D0%7D%5E%7B%5Cinfty%7D& alt=&(a_n)_{n=0}^{\infty}& eeimg=&1&&,序列&img src=&///equation?tex=%28f%28a_n%29%29_%7Bn%3D0%7D%5E%7B%5Cinfty%7D& alt=&(f(a_n))_{n=0}^{\infty}& eeimg=&1&&只有有限多项等于&img src=&///equation?tex=y_0& alt=&y_0& eeimg=&1&&,那么就有&img src=&///equation?tex=%5Ctextstyle+%5Clim_%7Bx+%5Crightarrow+x_0%3Bx%5Cin+X%5Cbackslash%5C%7Bx_0%5C%7D%7D%7Bg%28f%28x%29%29%7D+%3Dz_0& alt=&\textstyle \lim_{x \rightarrow x_0;x\in X\backslash\{x_0\}}{g(f(x))} =z_0& eeimg=&1&&&br&&/li&&li&函数&img src=&///equation?tex=g%28y%29& alt=&g(y)& eeimg=&1&&在&img src=&///equation?tex=y_0& alt=&y_0& eeimg=&1&&处&b&连续&/b&时,我们也有&img src=&///equation?tex=%5Ctextstyle+%5Clim_%7Bx+%5Crightarrow+x_0%3Bx%5Cin+X%5Cbackslash%5C%7Bx_0%5C%7D%7D%7Bg%28f%28x%29%29%7D+%3Dz_0& alt=&\textstyle \lim_{x \rightarrow x_0;x\in X\backslash\{x_0\}}{g(f(x))} =z_0& eeimg=&1&&。&/li&&/ul&
谢邀。以前回答过这个问题:,不过那个问题好像被举报了。下面是以前的回答,修订了一下错误。 是的,不过更准确的应该是\(\lim_{x \rightarrow 0;x\in E\setminus\{0\}} \frac{\sin(x\sin\frac{1…
我觉得你老师的意思是,x_k=1/(kpi)的时候分母是0,式子没定义,而x_k是一个收敛到0的序列,所以极限不是well-defined的。&br&个人觉得这个解释make sense,但是问题本身属于没什么价值的细枝末节,没太多纠结的必要。
我觉得你老师的意思是,x_k=1/(kpi)的时候分母是0,式子没定义,而x_k是一个收敛到0的序列,所以极限不是well-defined的。 个人觉得这个解释make sense,但是问题本身属于没什么价值的细枝末节,没太多纠结的必要。
已有帐号?
无法登录?
社交帐号登录
白痴一只。}

我要回帖

更多关于 用定积分求极限 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信