已知点M(2,0)在抛物线切线C:x^2=2py上,过抛物线切线C上不同两点A,B分别作抛物线切线的切线相交于O点

当前位置:
>>>已知抛物线C的顶点在坐标原点,焦点在x轴上,抛物线C上的点M(2,..
已知抛物线C的顶点在坐标原点,焦点在x轴上,抛物线C上的点M(2,m)到焦点F的距离为3.(Ⅰ)求抛物线C的方程:(Ⅱ)过点(2,0)的直线l与抛物线C交于A、B两点,若|AB|=46,求直线l的方程.
题型:解答题难度:中档来源:不详
(Ⅰ)∵抛物线C的顶点在坐标原点,焦点在x轴上,抛物线C上的点M(2,m)到焦点F的距离为3,∴设抛物线的方程为y2=2px(p>0),M到准线的距离为3,即p2+2=3,解得p=2,∴抛物线C的方程为y2=4x.…(3分)(Ⅱ)设直线l的方程为y=k(x-2),设A(x1,y1),B(x2,y2),由y2=4x,y=k(x-2),得k2x2-(4k2+4)x+4k2=0,根据韦达定理,x1+x2=4(k2+1)k2,x1x2=4.∴|AB|2=(1+k2)|x1-x2|2=(1+k2)[(x1+x2)2-4x1x2]=(1+k2)[16(k4+2k2+1)k4-16]=16(1+k2)2k2+1k4=96整理得4k4-3k2-1=0,解得k=±1.∴直线l的方程为x-y-2=0或x+y-2=0.…(10分)
马上分享给同学
据魔方格专家权威分析,试题“已知抛物线C的顶点在坐标原点,焦点在x轴上,抛物线C上的点M(2,..”主要考查你对&&圆锥曲线综合&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
圆锥曲线综合
圆锥曲线的综合问题:
1、圆锥曲线的范围问题有两种常用方法: (1)寻找合理的不等式,常见有△>0和弦的中点在曲线内部; (2)所求量可表示为另一变量的函数,求函数的值域。 2、圆锥曲线的最值、定值及过定点等难点问题。直线与圆锥曲线的位置关系:
(1)从几何角度来看,直线和圆锥曲线有三种位置关系:相离、相切和相交,相离是直线和圆锥曲线没有公共点,相切是直线和圆锥曲线有唯一公共点,相交是直线与圆锥曲线有两个不同的公共点,并特别注意直线与双曲线、抛物线有唯一公共点时,并不一定是相切,如直线与双曲线的渐近线平行时,与双曲线有唯一公共点,但这时直线与双曲线相交;直线平行(重合)于抛物线的对称轴时,与抛物线有唯一公共点,但这时直线与抛物线相交,故直线与双曲线、抛物线有唯一公共点时可能是相切,也可能是相交,直线与这两种曲线相交,可能有两个交点,也可能有一个交点,从而不要以公共点的个数来判断直线与曲线的位置关系,但由位置关系可以确定公共点的个数.(2)从代数角度来看,可以根据直线方程和圆锥曲线方程组成的方程组解的个数确定位置关系.设直线l的方程与圆锥曲线方程联立得到ax2+bx+c=0.①若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行或重合.②若当Δ&0时,直线和圆锥曲线相交于不同两点,相交.当Δ=0时,直线和圆锥曲线相切于一点,相切.当Δ&0时,直线和圆锥曲线没有公共点,相离.
直线与圆锥曲线相交的弦长公式:
若直线l与圆锥曲线F(x,y)=0相交于A,B两点,求弦AB的长可用下列两种方法:(1)求交点法:把直线的方程与圆锥曲线的方程联立,解得点A,B的坐标,然后用两点间距离公式,便得到弦AB的长,一般来说,这种方法较为麻烦.(2)韦达定理法:不求交点坐标,可用韦达定理求解.若直线l的方程用y=kx+m或x=n表示.&
发现相似题
与“已知抛物线C的顶点在坐标原点,焦点在x轴上,抛物线C上的点M(2,..”考查相似的试题有:
410591836756490095392659800530393441当前位置:
>>>如图所示,抛物线y=ax2+bx-4a经过A(-l,0)、C(0,4)两点,与x轴交..
如图所示,抛物线y=ax2+bx-4a经过A(-l,0)、C(0,4)两点,与x轴交于另一点B。
(1)求抛物线的解析式;(2)已知点D(m,m+l)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;(3)在(2)的条件下,连结BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标。
题型:解答题难度:偏难来源:专项题
解:(1))∵抛物线y=ax2+bx-4a经过A(-1,0),C(0,4)两点∴解得∴抛物线的解析式为y=-x2+3x+4;(2))∵点D(m,m+1)在抛物线上∴m+l=-m2+3m+4,即m2-2m-3=0所以,m=-1或m=3∵点D在第一象限∴点D的坐标为(3,4)由(1)知OC=OB所以,∠CBA=45°设点D关于直线BC的对称点为点M∵C(0,4)∴CD∥AB,且CD=3∴∠MCB=∠DCB=45°∴M点在y轴上,且CM=CD=3∴OM=1∴M(0,1)即点D关于直线BC对称的点的坐标为(0,1);(3)作PF⊥AB于F,DE⊥BC于E由(1)有:OB=OC=4∴∠OBC=45°∵∠DBP=45°∴∠CBD=∠PBA∵C(0,4),D(3,4)∴CD∥OB且CD=3∴∠DCE=∠CB0=45°∴DE=CE=∵OB=OC=4∴BC=4∴BE=BC-CE=∴tan∠PBF=tan∠CBD=设PF=3t,则BF=5t∴OF=5t-4∴P(-5t+4,3t)∵P点在抛物线上∴3t=-(-5t+4)2+3(-5t+4)+4∴t=0(舍去)或t=∴P(-,)。
马上分享给同学
据魔方格专家权威分析,试题“如图所示,抛物线y=ax2+bx-4a经过A(-l,0)、C(0,4)两点,与x轴交..”主要考查你对&&求二次函数的解析式及二次函数的应用,垂直的判定与性质,直角三角形的性质及判定,轴对称&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
求二次函数的解析式及二次函数的应用垂直的判定与性质直角三角形的性质及判定轴对称
求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式; (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式。 二次函数的应用:(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h&0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
③交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a&0时,开口方向向上;a&0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题。二次函数的其他表达形式:①牛顿插值公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 二次函数表达式的右边通常为二次三项式。双根式y=a(x-x1)*(x-x2)若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。③三点式已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)与X轴交点的情况当△=b2-4ac&0时,函数图像与x轴有两个交点。(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。Δ=b2-4ac&0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。
1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。点拨:解∵顶点坐标为(-1,-2),故设二次函数解析式为y=a(x+1)2-2 (a≠0)。把点(1,10)代入上式,得10=a·(1+1)2-2。∴a=3。∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。②典型例题二:如果a&0,那么当 时,y有最小值且y最小=;如果a&0,那么,当时,y有最大值,且y最大=。告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。∴抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x-4)2-3。将(1,0)代入得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73。③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。垂线的定义:两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。 直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。 垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。 性质2:连结直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。 垂直的判定:垂线的定义。 直角三角形定义:有一个角为90°的三角形,叫做直角三角形。直角三角形可用Rt△表示,如直角三角形ABC写作Rt△ABC。 直角三角形性质:直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。性质5:如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)2=BD·DC。(2)(AB)2=BD·BC。(3)(AC)2=CD·BC。性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。性质7:如图,1/AB2+1/AC2=1/AD2性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。性质9:直角三角形直角上的角平分线与斜边的交点D 则&&& BD:DC=AB:AC直角三角形的判定方法:判定1:定义,有一个角为90°的三角形是直角三角形。判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。(勾股定理的逆定理)。判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)轴对称的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合 ,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等;(3)关于某直线对称的两个图形是全等图形。轴对称的判定:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。这样就得到了以下性质: 1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。 2.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 3.线段的垂直平分线上的点与这条线段的两个端点的距离相等。  4.对称轴是到线段两端距离相等的点的集合。
轴对称作用:可以通过对称轴的一边从而画出另一边。 可以通过画对称轴得出的两个图形全等。 扩展到轴对称的应用以及函数图像的意义。
轴对称的应用:关于平面直角坐标系的X,Y对称意义如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数。 相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变。
关于二次函数图像的对称轴公式(也叫做轴对称公式 )设二次函数的解析式是 y=ax2+bx+c 则二次函数的对称轴为直线 x=-b/2a,顶点横坐标为 -b/2a,顶点纵坐标为 (4ac-b2)/4a
在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。譬如,等腰三角形经常添设顶角平分线;矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;正方形,菱形问题经常添设对角线等等。另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中。
发现相似题
与“如图所示,抛物线y=ax2+bx-4a经过A(-l,0)、C(0,4)两点,与x轴交..”考查相似的试题有:
196007891995454073149415140875145276过抛物点x^2=2py(p&0)的焦点做斜率为1的直线与该抛物线交与A,B两点,A,B在x轴上的正投影分别为D,C,若梯形ABCD的面积喂12根号2,则P=
过抛物点x^2=2py(p&0)的焦点做斜率为1的直线与该抛物线交与A,B两点,A,B在x轴上的正投影分别为D,C,若梯形ABCD的面积喂12根号2,则P= 5
F(0,p/2)
则直线y-p/2=x-0
y=x+p/2
则x?=2px+p?
x?-2px-p?=0
x1+x2=2p
x1x2=-p?
所以(x1-x2)?=(x1+x2)?-4x1x2=8p?
所以|x1-x2|=√(8p?)
显然梯形的高=|x1-x2|=√(8p?)
所以两底的和=y1+y2
=x1+p/2+x2+p/2
=(x1+x2)+p
=3p
所以面积=3p*√(8p?)÷2=12√2
p?=4
p=2
提问者 的感言:O(∩_∩)O谢谢
其他回答 (3)
设y=x+p/2,联立抛物线,消去y,(1)
又倾斜角45°,梯形的高=y2-y1, 所以S=(y2-y1)(y1+y2)/2=(y2^2-y1^2)/2(2)
韦达定理联立解出P
&
AB所在直线为y=x+p\2,代入抛物线方程,得到x^2\2p -x -p\2=0
由韦达定理,记该二次方程的两解为x1,x2
就有x1+x2=2p&&&&&& x1*x2=-p^2
AB长=√(K^2+1)*√{(x1+x2)^2-4 x1 x2}=4p,斜率K=1
CD长=√{(x1+x2)^2-4 x1 x2}=√8&p
该四边形面积=(AD长+BC长)*CD长\2
有抛物线几何定义,则AD+BC=AB
得到方程2p*√8 p=12√2
即p=√3
F(0,p/2),直线:y=x+p/2,A(x1,y1),B(x2,y2),D(x1,0),C(x2,0)
直线与抛物线联立,得到:
x^2-2px-p^2=0
x1+x2=2p,x1x2= -p^2,(x2-x1)^2=(x1+x2)^2-4x1x2=4p^2+4p^2=8p^2,【x1-x2】=2√2p
y1+y2=x1+x2+p=3p
梯形ABCD的面积S=(上底+下底)*高/2=(y1+y2)*【x2-x1】/2=3p*2√2p/2=3√2p^2=12√2
所以,p^2=4,p=2
&
【】表示绝对值
等待您来回答
数学领域专家& 抛物线的简单性质知识点 & “如图,直线l:y=kx+b与抛物线x2=...”习题详情
175位同学学习过此题,做题成功率88.5%
如图,直线l:y=kx+b与抛物线x2=2py(常数p>0)相交于不同的两点A(x1,y1)、B(x2,y2),且|x2-x1|=h(h为定值),线段AB的中点为D,与直线l:y=kx+b平行的切线的切点为C(不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点为切点).(1)用k、b表示出C点、D点的坐标,并证明CD垂直于x轴;(2)求△ABC的面积,证明△ABC的面积与k、b无关,只与h有关;(3)小张所在的兴趣小组完成上面两个小题后,小张连AC、BC,再作与AC、BC平行的切线,切点分别为E、F,小张马上写出了△ACE、△BCF的面积,由此小张求出了直线l与抛物线围成的面积,你认为小张能做到吗?请你说出理由. 
本题难度:一般
题型:解答题&|&来源:2014-虹口区二模
分析与解答
习题“如图,直线l:y=kx+b与抛物线x2=2py(常数p>0)相交于不同的两点A(x1,y1)、B(x2,y2),且|x2-x1|=h(h为定值),线段AB的中点为D,与直线l:y=kx+b平行的切线的切点为C(...”的分析与解答如下所示:
(1)直线l:y=kx+b代入抛物线x2=2py,求出D的坐标,设切线方程为y=kx+m,代入抛物线方程,求出C的坐标,即可证明结论;(2)利用韦达定理,表示出三角形面积,即可得出结论;(3)分别求出a1=S△ABC=h316p,a2=S△ACE+S△BCF=14oh316p,按上面构造三角形的方法,无限的进行下去,即可得出结论.
解:(1)由直线l:y=kx+b与抛物线x2=2py,得x2-2pkx-2pb=0,∴x1+x2=2pk,x1x2=-2pb∴点D(pk,pk2+b)…(2分)设切线方程为y=kx+m,代入抛物线方程可得x2-2pkx-2pm=0,得△=4p2k2+8pm=0,m=pk22,切点的横坐标为pk,得C(pk,pk22)…(4分)由于C、D的横坐标相同,∴CD垂直于x轴.…(6分)(2)∵h2=|x2-x1|2=4p2k2+8pb,∴b=h2-4p2k28p.…(8分)∴S△ABC=12|CD||x2-x1|=h316p.…(11分)∴△ABC的面积与k、b无关,只与h有关.…(12分)(3)由(1)知CD垂直于x轴,|xC-xA|=|xB-xC|=h2,由(2)可得△ACE、△BCF的面积只与h2有关,将S△ABC=h316p中的h换成h2,可得S△ACE=S△BCF=18oh316p.…(14分)记a1=S△ABC=h316p,a2=S△ACE+S△BCF=14oh316p,按上面构造三角形的方法,无限的进行下去,可以将抛物线C与线段AB所围成的封闭图形的面积,看成无穷多个三角形的面积的和,即数列{an}的无穷项和,此数列公比为14,∴封闭图形的面积S=a11-14=43a1=h312p…(18分)
本题考查直线与抛物线的位置关系,考查韦达定理的运用,考查三角形面积的计算,考查学生分析解决问题的能力,属于中档题.
找到答案了,赞一个
如发现试题中存在任何错误,请及时纠错告诉我们,谢谢你的支持!
如图,直线l:y=kx+b与抛物线x2=2py(常数p>0)相交于不同的两点A(x1,y1)、B(x2,y2),且|x2-x1|=h(h为定值),线段AB的中点为D,与直线l:y=kx+b平行的切线的...
错误类型:
习题内容残缺不全
习题有文字标点错误
习题内容结构混乱
习题对应知识点不正确
分析解答残缺不全
分析解答有文字标点错误
分析解答结构混乱
习题类型错误
错误详情:
看完解答,记得给个难度评级哦!
还有不懂的地方?快去向名师提问吧!
经过分析,习题“如图,直线l:y=kx+b与抛物线x2=2py(常数p>0)相交于不同的两点A(x1,y1)、B(x2,y2),且|x2-x1|=h(h为定值),线段AB的中点为D,与直线l:y=kx+b平行的切线的切点为C(...”主要考察你对“抛物线的简单性质”
等考点的理解。
因为篇幅有限,只列出部分考点,详细请访问。
抛物线的简单性质
抛物线的简单性质.
与“如图,直线l:y=kx+b与抛物线x2=2py(常数p>0)相交于不同的两点A(x1,y1)、B(x2,y2),且|x2-x1|=h(h为定值),线段AB的中点为D,与直线l:y=kx+b平行的切线的切点为C(...”相似的题目:
抛物线y=2x2的焦点到准线的距离是&&&&.
抛物线y2=16x的焦点F的坐标为&&&&,点F到双曲线x2-3y2=12的渐近线的距离为&&&&.
抛物线x=ay2的准线方程是x=2,则a的值为&&&&.
“如图,直线l:y=kx+b与抛物线x2=...”的最新评论
该知识点好题
该知识点易错题
欢迎来到乐乐题库,查看习题“如图,直线l:y=kx+b与抛物线x2=2py(常数p>0)相交于不同的两点A(x1,y1)、B(x2,y2),且|x2-x1|=h(h为定值),线段AB的中点为D,与直线l:y=kx+b平行的切线的切点为C(不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点为切点).(1)用k、b表示出C点、D点的坐标,并证明CD垂直于x轴;(2)求△ABC的面积,证明△ABC的面积与k、b无关,只与h有关;(3)小张所在的兴趣小组完成上面两个小题后,小张连AC、BC,再作与AC、BC平行的切线,切点分别为E、F,小张马上写出了△ACE、△BCF的面积,由此小张求出了直线l与抛物线围成的面积,你认为小张能做到吗?请你说出理由.”的答案、考点梳理,并查找与习题“如图,直线l:y=kx+b与抛物线x2=2py(常数p>0)相交于不同的两点A(x1,y1)、B(x2,y2),且|x2-x1|=h(h为定值),线段AB的中点为D,与直线l:y=kx+b平行的切线的切点为C(不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点为切点).(1)用k、b表示出C点、D点的坐标,并证明CD垂直于x轴;(2)求△ABC的面积,证明△ABC的面积与k、b无关,只与h有关;(3)小张所在的兴趣小组完成上面两个小题后,小张连AC、BC,再作与AC、BC平行的切线,切点分别为E、F,小张马上写出了△ACE、△BCF的面积,由此小张求出了直线l与抛物线围成的面积,你认为小张能做到吗?请你说出理由.”相似的习题。}

我要回帖

更多关于 抛物线切线 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信