最早制的天文望远镜镜用于星空观察的科学家是_______

荷兰人Hans Lippershey
透镜或反射镜
发明时间:
简介/望远镜
在日常生活中,光学望远镜通常是呈筒状的一种,它通过透镜的折射,或者通过凹反射镜的反射使光线聚焦直接成像,或者再经过一个放大目镜进行观察。日常生活中的光学望远镜又称“千里镜”。它主要包括业余天文望远镜,观剧望远镜和军用双筒望远镜。
原理/望远镜
望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。所以,望远镜是天文和地面观测中不可缺少的工具。它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统。根据望远镜原理一般分为三种。一种通过收集电磁波来观察遥远物体的仪器。在日常生活中,望远镜主要指光学望远镜,但是在现代天文学中,天文望远镜包括了射电望远镜,红外望远镜,X射线和伽马射线望远镜。天文望远镜的概念又进一步地延伸到了引力波,宇宙射线和暗物质的领域。或者再经过一个放大目镜进行观察。日常生活中的光学望远镜又称“千里镜”。它主要包括业余天文望远镜,观剧望远镜和军用双筒望远镜。常用的双筒望远镜还为减小体积和翻转倒像的目的,需要增加棱镜系统,棱镜系统按形的方式如果式不同可分为别汉棱镜系统(RoofPrism)(也就是斯密特。别汉屋脊棱镜系统)和系统(PorroPrism)(也称系统),两种系统的原理及应用是相似的。个人使用的小型手持式望远镜不宜使用过大倍率,一般以3~12倍为宜,倍数过大时,成像清晰度就会变差,同时抖动严重,超过12倍的望远镜一般使用三角架等方式加以固定。
发展历程/望远镜
望远镜17世纪初的一天,小镇的一家眼镜店的主人利伯希(HansLippershey),为检查磨制出来的透镜质量,把一块凸透镜和一块凹镜排成一条线,通过透镜看过去,发现远处的教堂塔尖好像变大拉近了,于是在无意中发现了望远镜的秘密。1608年他为自己制作的望远镜申请,并遵从当局的要求,造了一个双筒望远镜。据说小镇好几十个眼镜匠都声称发明了望远镜,不过一般都认为利伯希是望远镜的发明者。望远镜发明的消息很快在各国流传开了,意大利科学家得知这个消息之后,就自制了一个。第一架望远镜只能把物体放大3倍。一个月之后,他制作的第二架望远镜可以放大8倍,第三架望远镜可以放大到20倍。1609年10月他作出了能放大30倍的望远镜。伽里略用自制的望远镜观察夜空,第一次发现了月球表面高低不平,覆盖着山脉并有火山口的裂痕。此后又发现了木星的4个卫星、太阳的黑子运动,并作出了太阳在转动的结论。
与此同时,德国的天文学家开普勒也开始研究望远镜,他在《屈光学》里提出了另一种天文望远镜,这种望远镜由两个凸透镜组成,与伽利略的望远镜不同,比伽利略望远镜视野宽阔。但开普勒没有制造他所介绍的望远镜。沙伊纳于1613年─1617年间首次制作出了这种望远镜,他还遵照开普勒的建议制造了有第三个凸透镜的望远镜,把二个凸透镜做的望远镜的倒像变成了正像。沙伊纳做了8台望远镜,一台一台地观察太阳,无论哪一台都能看到相同形状的太阳黑子。因此,他打消了不少人认为黑子可能是透镜上的尘埃引起的错觉,证明了黑子确实是观察到的真实存在。在观察太阳时沙伊纳装上特殊遮光玻璃,伽利略则没有加此保护装置,结果伤了眼睛,最后几乎失明。荷兰的惠更斯为了减少折射望远镜的色差在1665年做了一台筒长近6米的望远镜,来探查土星的光环,后来又做了一台将近41米长的望远镜。1793年英国赫瑟尔(William&Herschel),制做了反射式望远镜,反射镜直径为130厘米,用铜锡合金制成,重达1吨。1845年英国的帕森(William&Parsons)制造的反射望远镜,反射镜直径为1.82米。1917年,胡克望远镜(Hooker&Telescope)在美国加利福尼亚的威尔逊山天文台建成。它的主反射镜口径为100英寸。正是使用这座望远镜,哈勃(Edwin&Hubble)发现了宇宙正在膨胀的惊人事实。1930年,德国人施密特(BernhardSchmidt)将折射望远镜和反射望远镜的优点(折射望远镜像差小但有色差而且尺寸越大越昂贵,反射望远镜没有色差、造价低廉且反射镜可以造得很大,但存在像差)结合起来,制成了第一台折反射望远镜。战后,反射式望远镜在天文观测中发展很快,1950年在帕洛玛山上安装了一台直径5.08米的海尔(Hale)反射式望远镜。1969年,在前苏联高加索北部的帕斯土霍夫山上安装了直径6米的反射镜。1990年,NASA将哈勃太空望远镜送入轨道,然而,由于镜面故障,直到1993年宇航员完成太空修复并更换了透镜后,哈勃望远镜才开始全面发挥作用。由于可以不受地球大气的干扰,哈勃望远镜的图像清晰度是地球上同类望远镜拍下图像的10倍。1993年,美国在夏威夷莫纳克亚山上建成了口径10米的“凯克望远镜”,其镜面由36块1.8米的反射镜拼合而成。2001年,设在智利的欧洲南方天文台研制完成了“甚大望远镜”(VLT),它由4架口径8米的望远镜组成,其聚光能力与一架16米的反射望远镜相当。日,智利将夷平赛罗亚马逊(Cerro&Amazones)山的山顶,用以安置世界上功率最大的望远镜“欧洲特大天文望远镜”(英文缩写E-ELT)。赛罗亚马逊山位于阿塔卡马(Atacama)沙漠,海拔3000米。E-ELT又称“世界最大的天空之眼”,宽近40米,重约2500吨,其亮度比现存望远镜高15倍,清晰度是哈勃望远镜的16倍。该望远镜造价8.79亿英镑(约合人民币93亿元),有望于2022年正式投入使用。一批正在筹建中的望远镜又开始对莫纳克亚山上的白色巨人兄弟发起了冲击。这些新的竞争参与者包括30米口径的“30米大望远镜”(Thirty&Meter&Telescope,简称TMT),20米口径的大麦哲伦望远镜(Giant&Magellan&Telescope,简称GMT)和100米口径的绝大望远镜(Overwhelming&Large&Telescope,简称OWL)。它们的倡议者指出,这些新的望远镜不仅可以提供像质远胜于哈勃望远镜照片的太空图片,而且能收集到更多的光,对100亿年前星系形成时初态恒星和宇宙气体的情况有更多的了解,并看清楚遥远恒星周围的行星。
主要分类/望远镜
一般天文望远镜以构造来分类,可分为、及三大类。折射望远镜所谓折射望远镜是以会聚远方物体的光而现出实象的透镜为物镜的望远镜它会使从远方来的光折射集中在焦点,折射望远镜的好处就是使用方便,稍略了保养也不会看不清楚,因为镜筒内部由物镜和目镜封着,空气不会流动,所以比较安定,此外,由于光轴的错开所引起的像恶化的情形也比反射望远镜好,而口径不大透镜皆为球面,所以可以机械研磨大量生产,故价格较便宜。 分为两种类型:由凹透镜作目镜的称伽利略望远镜;由凸透镜作目镜的称开普勒望远镜。伽利略式望远镜的基本原理是首先远处的光线进入物镜的凸透镜,第1次成倒立、缩小的实像,相当于照相机;然后这个实像进入目镜的凹透镜,第2次成正立、放大的虚像,这相当于放大镜。因单透镜物镜色差和球差都相当严重,现代的折射望远镜常用两块或两块以上的透镜组作物镜。其中以双透镜物镜(普通消色差望远镜)应用最普遍。它由相距很近的一块冕牌玻璃制成的凸透镜和一块火石玻璃制成的凹透镜组成,对两个特定的波长完全消除位置色差,对其余波长的位置色差也可相应减弱。在满足一定设计条件时,还可消去部分球差和彗差。由于剩余色差和其他像差的影响,双透镜物镜的相对口径较小,一般为1/15-1/20,很少大于1/7,可用视场也不大。口径小于8厘米的双透镜物镜可将两块透镜胶合在一起,称双胶合物镜,留有一定间隙未胶合的称双分离物镜。为了增大相对口径和视场,可采用多透镜物镜组。对于来说,结构非常简单,光能损失少。镜筒短,很轻便。而且成正像,但倍数小视野窄,一般用于观剧镜和玩具望远镜。对于开普勒望远镜来说,需要在物镜后面添加棱镜组或透镜组来转像,使眼睛观察到的是正像。一般的折射望远镜都是采用开普勒结构。由于折射望远镜的成像质量在同样口径下比反射望远镜好,视场大,使用方便,易于维护,中小型天文望远镜及许多专用仪器多采用折射系统,但大型折射望远镜制造起来比反射望远镜困难得多,因为冶炼大口径的优质透镜非常困难,且存在玻璃对光线的吸收问题,并且主镜镜片会因为重力而发生形变,造成光学质量不佳,所以大口径望远镜都采用反射式伽利略型望远镜人类第一只望远镜,物镜是会聚透镜而目镜是发散透镜的望远镜。光线经过物镜折射所成的实像在目镜的后方(靠近人目的后方)焦点上,这像对目镜是一个虚像,因此经它折射后成一放大的正立虚像。伽利略望远镜的放大率等于物镜焦距与目镜焦距的比值。其优点是镜筒短而能成正像,但它的视野比较小。把两个放大倍数不高的伽利略望远镜并列一起、中间用一个螺栓钮可以同时调节其清晰程度的装置,称为“观剧镜”;因携带方便,常用以观看表演等。伽利略发明的望远镜在人类认识自然的历史中占有重要地位。它由一个凹透镜(目镜)和一个凸透镜(物镜)构成。其优点是结构简单,透过望远镜所看到的像与实际用眼睛直接看的一样是正立像,地表观物很方便但不能扩大视野,目前天文观测已不再使用此型设计。开普勒型望远镜原理由两个构成。由于两者之间有一个实像,可方便的安装分划板,并且各种性能优良,所以军用望远镜,小型天文望远镜等专业级的望远镜都采用此种结构。但这种结构成像是倒立的,所以要在中间增加正像系统。
正像系统分为两类:棱镜正像系统和透镜正像系统。我们常见的前宽后窄的典型双筒望远镜既采用了双直角棱望远镜镜正像系统。这种系统的优点是在正像的同时将光轴两次折叠,从而大大减小了望远镜的体积和重量。透镜正像系统采用一组复杂的透镜来将像倒转,成本较高,但俄罗斯20×50三节伸缩古典型单筒望远镜既采用设计精良的透镜正像系统。目镜是凸透镜可以把两枚以上的透镜放在一起成一组而扩大视野,并且能改善像差除却色差。市面上一般售卖的小型天文望远镜,多属折射望远镜。历史1611年,德国天文学家用两片双凸透镜分别作为物镜和目镜,使放大倍数有了明显的提高,以后人们将这种光学系统称为开普勒式望远镜。人们用的折射式望远镜还是这两种形式,天文望远镜一般是采用开普勒式。需要指出的是,由于当时的望远镜采用单个作为物镜,存在严重的色差,为了获得好的观测效果,需要用曲率非常小的透镜,这势必会造成镜身的加长。所以在很长的一段时间内,天文学家一直在梦想制作更长的望远镜,许多尝试均以失败告终。1757年,杜隆通过研究玻璃和水的折射和色散,建立了消色差透镜的理论基础,并用冕牌玻璃和火石玻璃制造了消色差透镜。从此,消色差折射望远镜完全取代了长镜身望远镜。但是,由于技术方面的限制,很难铸造较大的火石玻璃,在消色差望远镜的初期,最多只能磨制出10厘米的透镜。透镜镜片对紫外红外波段的辐射吸收很厉害。而巨大的光学玻璃浇制也十分困难,到1897年叶凯士1米口径望远镜建成,折射望远镜的发展达到了顶点,此后的这一百年中再也没有更大的折射望远镜出现。这主要是因为从技术上无法铸造出大块完美无缺的玻璃做透镜,并且,由于重力使大尺寸透镜的变形会非常明显,因而丧失明锐的焦点。反射望远镜反射望远镜是利用一块镀了金属(通常是铝)的凹面玻璃聚焦,由于在镜前,所以必须在物镜焦点之前用另一块镜将影像反射出镜筒外,再用目镜放大。 反射望远镜没有(因不用透过玻璃故无色散),但有其它各类的像差。如将反射凹面磨成拋物线形(Parabolic),则可消除球面差,但受彗形像差的影响严重,故边缘部份仍觉松散。现时一般中小型的反射望远镜有下列二种型式:牛顿式 (Newtonian)利用一块与光轴成45度平面镜(Flat or diagonal)作为副镜(Secondary)将影像反射至镜筒前侧。这种结构最为简单,影像反差较高,亦最多人选用,通常焦比在f4至f8之间。卡赛格林式或简称卡式 (Cassegrain)利用一块双曲面凸镜(Convex hyperboloid)作为副镜,在主镜焦点前将光线聚集,穿过主镜一个圆孔而聚焦在主镜之后。因为经过一次反射,所以镜筒可以缩短,但视场较窄,像散较牛顿式严重,同时有少许场曲(Curvature of field)。 由于反射式望远镜只要磨制一个光学面,所以以同一口径而论,价钱较折射镜为廉。爱好者,拥有150mm、200mm口径的为数不少,反射式望远镜同时可以自己磨制。 反射望远镜主要用于天体物理方面的工作。历史第一架反射式望远镜诞生于1668年,决定采用球面反射镜作为主镜。他用2.5厘米直径的金属,磨制成一块凹面反射镜,使经主镜反射后的会聚光经反射镜以90°角反射出镜筒后到达目镜。这种系统称为牛顿式反射望远镜。它的球面镜虽然会产生一定的象差,但用反射镜代替折射镜却是一个巨大的成功。在1663年提出一种方案:利用一面主镜,一面副镜,它们均为凹面镜,副镜置于主镜的焦点之外,并在主镜的中央留有小孔,使光线经主镜和副镜两次反射后从小孔中射出,到达目镜。这种设计的目的是要同时消除球差和色差,这就需要一个抛物面的主镜和一个椭球面的副镜,这在理论上是正确的,但当时的制造水平却无法达到这种要求,所以格雷戈里无法得到对他有用的镜子。1672年,法国人提出了反射式望远镜的第三种设计方案,结构与格雷戈里望远镜相似,不同的是副镜提前到主镜焦点之前,并为凸面镜,这就是现在最常用的卡赛格林式反射望远镜。这样使经副镜镜反射的光稍有些发散,降低了放大率,但是它消除了球差,这样制作望远镜还可以使焦距很短。卡塞格林式望远镜的主镜和副镜可以有多种不同的形式,光学性能也有所差异。由于卡塞格林式望远镜焦距长而镜身短,放大倍率也大,所得图象清晰;既有卡塞格林焦点,可用来研究小视场内的天体,又可配置牛顿焦点,用以拍摄大面积的天体。因此,卡塞格林式望远镜得到了非常广泛的应用。1918年末,口径为254厘米的胡克望远镜投入使用,这是由主持建造的。天文学家用这架望远镜第一次揭示了银河系的真实大小和我们在其中所处的位置,更为重要的是,哈勃的宇宙膨胀理论就是用胡克望远镜观测的结果。二十世纪二、三十年代,胡克望远镜的成功激发了天文学家建造更大反射式望远镜的热情。1948年,美国建造了口径为508厘米望远镜,为了纪念卓越的望远镜制造大师海尔,将它命名为海尔望远镜。从设计到制造完成海尔望远镜经历了二十多年,尽管它比胡克望远镜看得更远,分辨能力更强,但它并没有使人类对宇宙的有更新的认识。正如阿西摩夫所说:"海尔望远镜(1948年)就象半个世纪以前的叶凯士望远镜(1897年)一样,似乎预兆着一种特定类型的望远镜已经快发展到它的尽头了"。在1976年前苏联建造了一架600厘米的望远镜,但它发挥的作用还不如海尔望远镜,这也印证了阿西摩夫所说的话。反射式望远镜有许多优点,比如:没有色差,能在广泛的可见光范围内记录天体发出的信息,且相对于折射望远镜比较容易制作。但由于它也存在固有的不足:如口径越大,视场越小,物镜需要定期镀膜等。折反射望远镜折反射望远镜的物镜是由折射镜和反射镜组合而成。主镜是球面反射镜,副镜是一个透镜,用来矫正主镜的像差。此类望远镜视场大,光力强,适合观测,,以及巡天寻找新天体。比较著名的有,它在球面反射镜的球心位置处放置一施密特校正板。它是一个面是平面,另一个面是轻度变形的非球面,使光束的中心部分略有会聚,而外围部分略有发散,正好矫正球差和彗差。还有一种,在球面反射镜前面加一个弯月型透镜,选择合适的弯月透镜的参数和位置,可以同时校正球差和彗差。及这两种望远镜的衍生型,如超施密特望远镜,贝克―努恩照相机等。在折反射望远镜中,由反射镜成像,折射镜用于校正像差。它的特点是相对口径很大(甚至可大于1),光力强,视场广阔,像质优良。适于巡天摄影和观测星云、彗星、流星等天体。小型目视望远镜若采用折反射卡塞格林系统,镜筒可非常短小。历史折反射式望远镜最早出现于1814年。1931年,德国光学家施密特用一块别具一格的接近于平行板的非球面薄透镜作为改正镜,与球面反射镜配合,制成了可以消除球差和轴外象差的施密特式折反射望远镜,这种望远镜光力强、视场大、象差小,适合于拍摄大面积的天区照片,尤其是对暗弱星云的拍照效果非常突出。施密特望远镜已经成了天文观测的重要工具。1940年马克苏托夫用一个弯月形状透镜作为改正透镜,制造出另一种类型的折反射望远镜,它的两个表面是两个曲率不同的球面,相差不大,但曲率和厚度都很大。它的所有表面均为球面,比施密特式望远镜的改正板容易磨制,镜筒也比较短,但视场比施密特式望远镜小,对玻璃的要求也高一些。由于折反射式望远镜能兼顾折射和反射两种望远镜的优点,非常适合业余的天文观测和天文摄影,并且得到了广大天文爱好者的喜爱。马克苏托夫望远镜一种折反射望远镜﹐1940年初为光学家马克苏托夫所发明﹐因此得名。荷兰光学家包沃尔斯也几乎于同时独立地发明了类似的系统﹐所以有时也称为马克苏托夫-包沃尔斯系统。马克苏托夫望远镜的和施密特望远镜类似﹐是由一个凹球面反射镜和加在前面的一块改正球差的透镜组成的。改正透镜是球面的﹐它的两个表面的曲率半径相差不大﹐但有相当大的曲率和厚度﹐透镜呈弯月形﹐所以﹐这种系统有时也称为弯月镜系统。适当选择透镜两面的曲率半径和厚度﹐可以使弯月透镜产生足以补偿凹球面镜的球差﹐同时又满足消色差条件。在整个系统中适当调节弯月透镜与球面镜之间的距离﹐就能够对彗差进行校正。马克苏托夫望远镜光学系统的像散很小﹐但场曲比较大﹐所以必须采用和焦面相符合的曲面底片。弯月透镜第二面的中央部分可磨成曲率半径更长的球面(也可以是一个胶合上去的镜片)﹐构成具有所需相对口径的马克苏托夫-卡塞格林系统﹐也可直接将弯月镜中央部分镀铝构成马克苏托夫-卡塞格林系统。马克苏托夫望远镜的主要优点﹕系统中的所有表面都是球面的﹐容易制造﹔在同样的口径和焦距的情况下﹐镜筒的长度比施密特望远镜的短。缺点是﹕和相同的施密特望远镜比较﹐视场稍小﹔弯月形透镜的厚度较大﹐一般约为口径的1/10﹐对使用的光学玻璃有较高的要求﹐因此﹐限制了口径的增大。目前﹐最大的马克苏托夫望远镜在苏联阿巴斯图马尼天文台﹐弯月透镜口径为70厘米﹐球面镜直径为98厘米﹐为210厘米。
改良介绍/望远镜
射电望远镜射电望远镜射电望远镜是观测和研究来自天体的射电波的基本设备,它包括:收集射电波的定向天线,放大射电信号的高灵敏度接收机,信息记录,处理和显示系统等等。射电望远镜的基本原理和光学反射望远镜相似,投射来的被一精确镜面反射后,同相到达公共焦点。用旋转抛物面作镜面易于实现同相聚集。因此,射电望远镜的天线大多是抛物面。 射电观测是在很宽的频率范围内进行,检测和信息处理的射电技术又较光学波希灵活多样,所以,射电望远镜种类更多,分类方法多种多样。例如按接收天线的形状可分为抛物面、抛物柱面、球面、抛物面截带、喇、螺旋、行波、天线等射电望远镜;根据天线总体结构的不同,射电望远镜可分为连续孔径和非连续孔径两大类,前者的主要代表是采用单盘抛物面天线的经典式射电望远镜,后者是以干涉技术为基础的各种组合天线系统;按方向束形状可分为铅、、多束等射电望远镜;按观测目的可分为测绘、定位、定标、偏振、频谱、日象等射电望远镜;按工作类型又可分为全功率、扫频、快速成像等类型的。20世纪60年代产生了两种新型的非连续孔径射电望远镜——甚长基线干涉仪和综合孔径射电望远镜,前者具有极高的空间分辨率,后者能获得清晰的射电图像。世界上最大的可跟踪型经典式射电望远镜其抛物面天线直径长达100米,安装在德国马克斯·普朗克射电天文研究所;世界上最大的非连续孔径射电望远镜是甚大天线阵,安装在美国国立射电天文台。表征射电望远镜性能的基本指标是空间分辨率和灵敏度,前者反映区分两个天球上彼此靠近的射电点源的能力,后者反映探测微弱射电源的能力。射电望远镜通常要求具有高空间分辨率和高灵敏度。1931年,在美国新泽西州的贝尔实验室里,负责专门搜索和鉴别电话干扰信号的美国人KG·杨斯基发现:有一种每隔23小时56分04秒出现最大值的无线电干扰。经过仔细分析,他在1932年发表的文章中断言:这是来自银河中射电辐射。由此,杨斯基开创了用射电波研究天体的新纪元。当时他使用的是长30.5米、高3.66米的旋转天线阵,在14.6米波长取得了30度宽的“扇形”方向束。此后,射电望远镜的历史便是不断提高分辨率和灵敏度的历史。空间望远镜在地球大气外进行天文观测的大望远镜。由于避开了大气的影响和不会因重力而产生畸变,因而可以大大提高观测能力及分辨本领,甚至还可使一些光学望远镜兼作近红外 、近紫外观测。但在制造上也有许多新的严格要求,如对镜面加工精度要在0.01微米之内,各部件和机械结构要能承受发射时的振动、超重,但本身又要求尽量轻巧,以降低发射成本。第一架空间望远镜又称,于日由美国发现号航天飞机送上离地面600千米的轨道。其整体呈圆柱型,长13米,直径4米,前端是望远镜部分,后半是辅助器械,总重约11吨。该望远镜的有效口径为2.4米,焦距57.6米,观测波长从紫外的120纳米到红外的1200纳米,造价15亿美元。原设计的分辨率为0.005,为地面大望远镜的100倍。但由于制造中的一个小疏忽,直至上天后才发现该仪器有较大的球差,以致严重影响了观测的质量。~13日,美国奋进号航天飞机载着7名宇航员成功地为“哈勃”更换了11个部件,完成了修复工作,开创了人类在太空修复大型航天器的历史。修复成功的哈勃望远镜在10年内将不断提供有关宇宙深处的信息。1991年4月美国又发射了第二架空间望远镜,这是一个观测γ射线的装置,总重17吨,功耗1.52瓦,信号传输率为17000比特/秒,上面载有4组探测器,角分辨率为5′~10′。其寿命2年左右。双子望远镜是以美国为主的一项国际设备(其中,美国占50%,英国占25%,q占15%,占5%,阿根廷占2.5%,巴西占2.5%),由美国大学天文联盟(AURA)负责实施。它由两个8米望远镜组成,一个放在,一个放在,以进行全天系统观测。其主镜采用主动光学控制,副镜作倾斜镜快速改正,还将通过自适应光学系统使红外区接近衍射极限。太阳望远镜双子望远镜 是太阳周围一圈薄薄的、暗弱的外层大气,它的结构复杂,只有在发生的短暂时间内,才能欣赏到,因为 天空的光总是从四面八方散射或漫射到望远镜内。 1930年第一架由法国天文学家李奥研制的日冕仪诞生了,这种仪器能够有效地遮掉太阳,散射光极小,因此可以在太阳光普照的任何日子里,成功地拍摄日冕照片。从此以后,世界观测日冕逐渐兴起。日冕仪只是太阳望远镜的一种,20世纪以来,由于实际观测的需要,出现了各种太阳望远镜,如色球望远镜、太阳塔、和真空太阳望远镜等。红外望远镜(infrared telescope)接收天体的的望远镜。外形结构与光学镜大同小异,有的可兼作红外观测和光学观测。但作红外观测时其终端设备与光学观测截然不同,需采用调制技术来抑制背景干扰,并要用干涉法来提高其分辨本领。红外观测成像也与光学图像大相径庭。由于地球大气对红外线仅有7个狭窄的“窗口”,所以红外望远镜常置于高山区域。世界上较好的地面红外望远镜大多集中安装在美国夏威夷的莫纳克亚,是世界红外天文的研究中心。1991年建成的凯克望远镜是最大的红外望远镜,它的口径为10米,可兼作光学、红外两用。此外还可把红外望远镜装于高空气球上,气球上的红外望远镜的最大口径为1米,但效果却可与地面一些口径更大的红外望远镜相当。数码望远镜红外望远镜被主流科技媒体评为“百项科技创新”之一,由于结构简单,成像清晰,能够用较小的机身长度实现超长焦的效果,在加上先进的数码功能,可以实现较为清晰拍照录像功能,在大大拓宽了望远镜的应用领域,可以广泛的应用在侦查、观鸟、电力、野生动物保护等等。 数码望远镜还具备拍照、录像、图像传输等功能,传统望远镜长时间的观察,可导致眼睛不适,但是数码望远镜的使用者可以很方便地通过液晶显示屏观看放大,如果觉得显示屏较小不能满足要求,可以直接通过tv接口连接到电视或者是上,甚至可以直接通过usb连接线连到电脑上,实现在线录制或者图像传输,当然视频的流畅程度和颜色远不及自然颜色,即使如此,数码望远镜做为一种高端的望远镜,同样提供舒适的直接观测功能!数码望远镜具备的拍照功能,可以保存人生历程中经历的众多难忘瞬间,在美国,此款产品广受体育运动教练员、球探、猎鸟人、野生动物观察员、狩猎爱好者以及任何一个摄影、摄像爱好者的青睐。在中国,这一领域的佼佼者,当属watchto系列的远程拍摄设备,尤其是WT-20A系列和30B系列,目前国内很多公安、军警、野生动物保护已经利用数码望远镜的优势,应用到工作中了,尤其是公安部门,他们可以轻松的远程拍照取证。高达5.1百万像素coms传感器的内置数码照相机结合在一起的。可以快速并简单的从静态高照片()拍照转换到可30秒连续摄相。这能确保使您捕捉到最佳效果。照片和录象存储在内存中,或sd卡中,并可以通过可折叠的液晶显示屏查看、删除、通过电视机查看,或不需安装其他软件将照片下载到计算机中。光学部分目前主要流行的倍率是35倍和60倍,并且可以进行高低倍的切换!( Windows 2000, XP或Mac无需驱动。Windows 98/98SE需要安装驱动)。硬X射线调制望远镜2015年,作为空间天文领域的重要研究手段,我国在天文卫星发射上将实现零的突破。由中国科学院院士、我国著名高能天体物理学家研制的一种新型的天文望远镜——硬X射线调制望远镜(HXMT)将正式升空,成为我国的第一颗。“按照计划,将在2014年完成HXMT的全部建设,2015年将它送入近地轨道。”中国科学院高能物理研究所研究员、HXMT卫星首席科学家助理在接受《》记者采访时说,“天文卫星一般按照探测波段分为射电、紫外、γ射线和X射线天文卫星。正在建设的硬X射线调制望远镜(HXMT)就属于X射线天文卫星。空间天文发展历史上,最早也是从X射线领域突破的。”“从功能上,天文卫星可以分为专用和天文台级两种。专用天文望远镜是针对特定的科研目标设计建设的,而天文台级的天文望远镜搭载的仪器就比较多,功能更加强大,可涉及的科学研究范围也更加广。”HXMT属于专用的天文卫星,规模比天文台级小。与其他专用天文卫星相比,HXMT属于中型专用天文卫星。上天後,它将主要承担对黑洞研究,以及与黑洞有关的,比如的研究。”在宇宙中,有很多极端的天体,比如黑洞,及其发生的一些极端的物理过程是在地面上无法进行试验和观测的。因此,天文卫星就成了其中最重要的研究手段之一。至今,拥有天文卫星的国家和地区可以分为三个梯队,第一梯队由独领风骚,第二梯队包括、欧洲地区一些国家,以及日本、俄罗斯,中国与巴西、印度、韩国及台湾地区属于第三梯队。其中印度是第三梯队中技术最强的,预计一到两年内就会发射他们的天文卫星,而巴西也计划在2014年发射。
常见参数/望远镜
望远镜1、放大倍数:一般用目镜视角与物镜入射角之比作为望远镜放大倍数的标示,但通常用物镜焦距与目镜焦距之比计算,表示景物被望远镜拉近的程度,比如一具10倍放大倍数的望远镜表示用此望远镜观察距观察者1000米处的景物的效果,距观察者不使用望远镜而直接在100米处肉眼观察该景物的效果是一样的。 2、视场角(视场范围):用1000米处产品可视景物范围标示,如126M/1000M,表示距观察者1000米处,望远镜可观察到126米范围的视场。3、入瞳4、出瞳直径:是粗略描述成像亮度的。在弱光环境下,越大的出瞳直径,可以带来更清晰的图像。人类的瞳孔,在正常生理情况下,最大不会超过7mm,所以大于7mm的出瞳直径,无意就是一种光线上的浪费。这一参数,不能完全反应望远镜的好坏,因为这个参数,只要符合制造规格,即可达到数值上的要求。出瞳直径越大却有另一番好处:越大的出瞳直径,越适宜在颠簸地环境下使用,观测画面会比较稳定,所以像7X50这类规格的望远镜,多适用于海上使用。该数值可以用物镜直径除以放大倍率得出。5、分辨率:分辨率(resolution,港台称之为解释度)就是屏幕图像的精密度,是指显示器所能显示的像素的多少。由于屏幕上的点、线和面都是由像素组成的,显示器可显示的像素越多,画面就越精细,同样的屏幕区域内能显示的信息也越多,所以分辨率是个非常重要的性能指标之一。6、黄昏系数:由蔡司光学公司发表。反映了不同口径和放大倍率的望远镜在暗光条件下的观察效能。计算方法:望远镜的倍率和口径的乘积求开平方。7、有效口径和相对口径:物镜中心到焦点的距离叫做物镜的焦距,用符号F表示。物镜的直径没有被框子和光阑挡住的部分叫做物镜的有效口径,用符号D表示。天文望远镜的性能主要就是以这两个数据为标志。8、集光力:在暗处时,人眼的瞳孔直径一般约为7mm。因此,就把望远镜物镜的有效面积相对于瞳孔面积的倍数叫做集光力。即:集光力=(D*D)/(7*7),其中D用毫米作单位。
英文简称/望远镜
英文字母的型号,有时候在不同的望远望远镜镜厂牌里有不同的意义,大致上容易辨识的是以下这些:(1)&CF:中央调焦(2)&ZCF:传统波罗棱镜左右展开型、中央调焦(3)&ZWCF:比第(2)项多一个「超广角」(W)(4)&CR:迷彩色橡胶外壳(5)&BR:黑色橡胶防震外壳(6)&BCF:黑色、中央调焦(7)&BCR:偏黑色迷彩橡胶外壳(8)&IR:铝合金轻巧外壳(9)&IF:左右眼个别调焦(10)&WP:内充氮气防水型(11)&RA:外附橡胶防震保护(12)&D:德式棱镜、屋顶棱镜(直筒式)(13)&HP:高眼点(14)&SP:超高解析度(15)&ED:超低色差镜片(16)&AS:非(17)&ZOOM:可变倍率伸缩镜头(18)&WF:广角视野
个中之最/望远镜
最大的望远镜望远镜的大小,主要是用望远镜的口径来衡量的。为了对天体作更仔细的研究和观测,为了发现更暗弱的天体,多年来人们一直在增大望远镜的口径上下功夫。但是,对不同的望远镜在口径上有不同的要求。现在世界上最大的反射望远镜,是1975年苏联建成的一台6米望远镜。它超过了30年来一直称为“世界之最”的美国的5米反射望远镜。它的转动部分总重达800吨,也比美国的重200吨。1978年,美国一台组合后口径相当于4.5米的多镜面望远镜试运转。这台望远镜由6个相同的、口径各为1.8米的卡塞格林望远镜组成。6个望远镜绕中心轴排成六角形,六束会聚光各经一块平面镜射向一个六面光束合成器,再把六束光聚在一个共同焦点上,多镜面望远镜的优点是:口径大,镜筒短,占地小,造价低。目前口径最大的光学望远镜是10米口径的凯克望远镜。现在世界上最大的折射望远镜,是在德国陶登堡天文台安装的,改正口径1.35米,主镜口径2米。德国这台折射镜也超过了美国最大的施米特望远镜。美国在望远镜上的两个“世界之最”被人相继夺走了。世界上最早的望远镜是1609年意大利科学家伽利略制造出来的。因此,又称伽利略望远镜。这是一台折射望远镜。他用一块凸透镜作物镜,一块凹镜作目镜,因此观测到的是正像。伽利略在谈到这架世界上第一台望远镜时说:“现在多谢有了望远镜,我们已经能够使天体离我们比离亚里斯多德近三四十倍,因此能够辨别出天体上许多事情来,都是亚里士多德所没有看见的;别的不谈,单是这些太阳系黑子就是他绝对看不到的。所以我们要比亚里士多德更有把握对待天体和太阳。”哈勃空间望远镜第一座太空望远镜(Hubble Space Telescope,HST),是人类第一座太空望远镜,总长度超过13米,质量为11吨多,运行在地球大气层外缘离地面约600公里的轨道上。它大约每100分钟环绕地球一周。哈勃望远镜是由美国国家航空航天局和欧洲航天局合作,于1990年发射入轨的。哈勃望远镜是以天文学家爱德文·哈勃的名字命名的。按计划,它将在2013年被詹姆斯所取代。哈勃望远镜的角分辨率达到小于0.1秒,每天可以获取3到5G字节的数据。由于运行在外层空间,哈勃望远镜获得的图像不受大气层扰动折射的影响,并且可以获得通常被大气层吸收的红外光谱的图像。哈勃望远镜的数据由太空望远镜研究所的天文学家和科学家分析处理。该研究所属于位于美国巴尔第摩市的约翰霍普金斯大学。&光学性能望远镜倍率(宜介乎于8倍至10倍) 望远镜上均标示着10 x 42,8 x 30等字样,前者代表倍率,后者代表物镜直径。使用10倍的望远镜看一只站于100公尺的鸟,就如用肉眼在10公尺看一样近。由于倍率逾大,视角愈小,搜寻目标较为困难,亦较易因双手颤抖而影响清晰度。光线非常充足时,10倍较8倍清楚;光线不足时,8倍反而比10倍更能看到细节,故不应盲目追求高倍率.口径(宜介乎30mm至42mm)愈大愈好,物镜直径影响进光量。尤其在明暗对比强烈、晨昏、多云的情况下,口径愈大,进光量愈高,眼睛便可看到更多的细节;但同时望远镜便愈重,长时间观望较易造成疲倦。宜按个人体能选择较大口径。视野(愈大愈好)指的是在1000米起时可以看到的范围,视野宽度宜高于104米即6度。视野愈大,搜寻目标愈快愈易。但视野愈大时,边缘扭曲变形及模糊的情况愈严重,像差的修正会愈复杂困难,所需技术及成本亦愈高。色彩保真度(愈自然愈好)高质素望远镜须忠实反映景物原色及。有些生产厂商为增加望远镜的亮度,刻意增减某段光波,导致失真现象,使景物偏蓝或偏红。透光率和镀膜的关系密不可分,并直接影响色彩保真度。全部的光学玻璃高透光率和全表面多层镀膜,亮度比较高,颜色还原准确。一般厂商不会全部公布所有数据(很难做到),有些厂商会公布局部光学玻璃的透光率或镀膜,以此误导消费者。 使用性能景深对观鸟的人来说,是个比较矛盾的参数,景深大,则不需要频繁调焦,用起来比较方便,但对于观察林鸟来说,前景和背景不容易虚化,鸟儿不容易突出。而景深小,虽然观察林鸟时前景和背景虚化明显,鸟儿主题突出,但距离一变就要重新调焦,手指要始终搭在调焦轮上,比较累。这个要看个人喜好了,没有什么固定标准。密封性望远往往都在户外进行,观察环境多变,最好选能防浸水(水压防水)的望远镜,这样才能使镜子内部保持密封和稳定,不起雾不长霉。舒适性舒适性因人而异。一般来说,对于表面包胶的望远镜,不但防震效果好,而且握持起来也更舒适;镜身重量决定了长时间使用和携带是否方便;通常,大家会选择耐用性能高的望远镜。品牌选择最好的望远镜除了光学质量、制造工艺和使用性能外,更多的是眼睛与心灵的感受。德国、徕卡望远镜与奥地利施华洛世奇(SWAROVSKI)望远镜并称镜中之王,三者光学质量与价格相差无几,其价格也是镜中之王,但基于优秀顶级产品物有所值。此外,德国望远镜也是非常好的,但全金属镜身少,价格在国内市场太高。原装、、、、宾得、等品牌都还不错,但本土以外生产的望远镜就不行,在中国市场的产品多数是浙江、云南、广东一带EOM的产品,产品质量一般般。国产军用品和高档出口外贸品性价比最好。国产95式、62式、战神都是不错的产品。望远镜全金属镜身,古典造型深受广大军事迷和光学爱好者喜爱。但由于没有正规进货渠道、没有正常的售后服务,次品、等外品也涌入市场.材质1.全部塑料来做。 2.是塑料和金属的混合结构(主要部件是用金属的) 3.全部用金属来做。塑料的牢靠性肯定没有金属的好的,所以全金属结构的望远镜的耐用性是最好的。还有就是望远镜使用的什么样的棱镜也很重要的,一般用的比较多的棱镜有BAK4和BAK7,这两种玻璃的折射率不同,BAK4的折射率高,对于BAK4材质的porro棱镜来说,在不考虑吸收时能把入射光100%全反射,而BK7只能反射83%左右的入射光,所以BAK4的光效率高,但它的价格也贵,军用望远镜和部分优质民用镜都采用BAK4棱镜。判断棱镜材质最简单的办法是查看目镜后面出瞳的形状。
军用民用/望远镜
军用望远镜虽然基本原理与普通民用望远镜没有什么区别,但由于使用环境、观测对象不同,两者存在很多区别。军用望远镜的外壳采用金属而不用,以确保长期使用后不开裂、不变形。与之相比,普通民用望远镜在密封和用材方面要差些,有的不仅是塑料壳,甚至内部镜片也用塑料制造。首先,它们的光学系统各有不同。军用望远镜大多有分划板,夜间使用的其分划板还带灯光照明。军用望远镜的出瞳距离比较大,以便观测者佩带防毒面具。为防止时撞击头部,有的瞄准镜出瞳距离大到七八十毫米,还要备有软硬适度的眼罩和护额。军用望远镜在出厂前都要经过环境试验,一般包括振动试验、高温(十55℃)试验、低温(一45℃)试验、淋雨或浸水试验、气密试验。经过这些试验,产品性能仍能保证在规定范围内的才能出厂。有的产品镜体内还自带干燥器,出厂前抽出空气再灌入干燥空气或氮气,有效地防止日后内部镜片长霉生雾。由于这些区别,军用望远镜的设计制造要投入高得多的成本,所以其售价也比普通民用望远镜高。
购买建议/望远镜
1、光学素质和轻便的外形,往往是矛盾的,如果两者都想要,需要大幅度提高。2、每种规格和类型的望远镜都有适合它使用的特定环境才能达到完美的效果,没有哪个望远镜是万能的。3、roof棱镜望远镜体积在同规格的望远镜中是最小的,但光学素质往往比不上porro棱镜望远镜。4、望远镜的取决于很多外界因素,比如成本、利润、市场策略等,和望远镜的倍数没有太大的关系。5、望远镜的成像效果取决于很多因素,倍数只是众多因素中的一项,盲目追求倍数是不可取的。6、军用望远镜假货的可能性极高,正规军用望远镜基本都是的,而且价格不菲。7、不要购买大范围变倍的双筒望远镜,存在视场小,成像畸变严重,光轴容易偏移等许多问题。8、要知道一分价钱一分货,规格和参数相同的望远镜,实际效果可能相差很远,当然价格也会相差千里。9、尽量不要购买望远镜,它只适合地等高反射环境,一般环境下的成像昏暗,且偏色严重。10、从来没有什么红外夜视望远镜,但某些规格的望远镜比如7X50在微光环境下效果也很不错。11、望远镜选择尽量参考第三方网站和评测体验文章,可以最大限度的体现望远镜的优劣和特点。
使用建议/望远镜
望远镜是用来观察远方景物的一种仪器,在航海、户外活动等领域里都有着不可低估的作用。但有的人却会因使用不当而出现头晕眼花、等现象。正常使用望远镜应掌握如下要点:长期存放的望远镜启用时,要仔细检查一下,发现镜片有生霉、起雾现象的要擦拭干净;查看视度调整装置和调整瞳孔间隔的连接部分是否正常。装定视度分划。有的人两眼的视度不同,要分别调整、装定分划,使每只眼睛都能清楚地看到景物;调整瞳孔间隔,使两眼所见到的景物图象重叠在一起。观察时,姿态要自如,举镜应平稳。立姿用镜时,大臂略收,贴靠上体,避免两臂颤动。有条件时,可利用依托物支撑。保持正确的接额位置。不同型号的望远镜射出瞳孔距离不尽一致,接眼距离也不样。例如,62式8倍望远镜,当把接眼镜护圈和眼窝保持若接若离状态时,接额位置较为适宜,此时,射出瞳孔距离大致为八毫米。观察目标。根据目标的距离,调整距离分划。观察远距离目标,应按先在镜外观察后转入镜内、先概略后精确的顺序进行观察。为此,应熟悉正确使用不同分划所对应的密位数(这只对军用望远镜而言),以便迅速地辩认目标位置,提高观察效率,缩短用镜时间。在、强光、烟雾等不同天气条件下,要安装相应的滤光镜片,以减少白雪、强光对人眼的刺激,增加烟雾中景物的衬托度。白天使用带有红外感光屏的望远镜时,要把红外感光屏拔开,以避免因感光屏而引起的镜室发暗和视野变小,影响观察效果。平时要妥善保管,防止划伤镜面,保持清洁、干爽,避免受潮 。
保养建议/望远镜
1、保证望远镜存放在通风、干燥、洁净的地方,以防生霉,有条件的话可在望远镜周边放入干燥剂,并经常更换。 2、镜片上残留的脏点或污迹,要用专业擦镜布轻轻擦拭,以免刮花镜面,如需清洗镜面,应当用脱脂棉占上少许酒精,从镜面的中心顺着一个方向向镜面的边缘擦试,并不断更换脱脂棉球直到擦试干净为止。 3、望远镜属于,切勿对望远镜重摔、重压或做其他剧烈动作。 4、非专业人员不要试图自行拆卸望远镜及对望远镜内部进行清洁。 5、请匆碰撞尖锐的物品如:铁钉,针等。6、使用望远镜要注意防潮、防水。望远镜作为一种精密仪器尽量避免在恶劣条件下使用。镀膜的光线会破坏望远镜中呈现的影像。为了增强视觉影像,镜片及棱镜需要镀上一层偏光膜。一般情况下,目视望远镜的单层增透膜设计对波长5500埃的黄绿光增透效果最佳,因为人眼对于此一波段光最敏感。所以其对蓝红光的反射就多一些。镀多层膜的镜片呈淡淡的绿色或暗紫色,如相机镜头的镀膜。镀得太厚的单层膜看起来会呈现绿色。双筒镜上会有镜片镀膜的标示,表示这双筒镜的光学品质。其的种类如下:CoatedOptics(镀膜):是一种最低级的增透膜。它只表示至少在一个光学面上镀有单层增透膜,通常是在两个物镜和目镜的外表面上镀膜,而内部的镜片和棱镜都没有镀膜。FullyCoated(全表面镀膜):所有的镜片和棱镜都镀了单层膜,但如在目镜中使用了光学塑料镜片,则此塑料镜片可能并未镀膜。Multi-Coated(多层镀膜):至少在一个光学面上镀有多层增透膜,其它光学面可能镀了单层膜,也可能根本没镀膜;通常只在两个物镜和目镜的外表面上镀多层膜。FullyMulti-Coated(多层全光学面镀膜):所有的镜片和棱镜都镀有增透膜,一些厂商在所有的光学面都镀了多层膜,「而另外一些只在部份光学面镀多层膜,其它表面仍镀单层膜」。在国内比较常见的有宽带绿膜、装饰绿膜、红膜和蓝膜,还有紫膜和黄膜等:宽带绿膜:有些地方也称之为增透绿膜,目前是国内最好的镀膜之一,在不同的角度观测会呈现不同的色带&(这是多层镀膜的表现),成像好清晰度高,色彩还原度也不错。红膜:一般只用于红点上,这个比较通用,没有什么特点。蓝膜:是国内运用的最广泛的镀膜方式,较之宽带绿膜看出去略有些黄和暗,蓝膜也分层数,有的镀三层,好一些的五层,差的只有一层。装饰绿膜:这个非常缺德,颜色和增透绿膜很相似,但光学性能却不敢恭维,比较容易鉴别的方法是装饰绿膜反光很大,而宽带绿膜很淡。总而言之,好的镜片和镀膜看出去很淡,整体率可以在85-90%左右,如果在内部的镜片也用镀膜的镜片,那么整体的透光率可以达到93%左右(国内比较少见),不过国内即使用宽带绿膜的镜片目前也或多或少存在边缘略有些虚的现象。&为了达到更高的透光率,现在也有采用内部镜片镀膜的方式来提高光学性能,使得整体的透光率达到93-95%。一般辨别好镜子的方法很简单,镜头越暗,透光率越低,镜子就好些。
注意事项/望远镜
望远镜的用途在选购望远镜时应先考虑将在何种环境之下使用望远镜?将用来从事何种。 尺寸与重量若需长时间携带望远镜,轻巧的款式是不错的选择。使用者的眼距一般的望远镜多有可以调整眼距的装置可以方便使用者透过望远镜观看事物,但是戴着或多或少有些不方便;因此最好选择目镜上附有可翻折的软式橡胶环,可以调整正确的眼距,让视线更清楚。是否需要防水功能如果从事的户外活动会接近水边、需要长时间的纵走,或者天气多变化,最好选择具有防水及氮气填充的望远镜 一般望远镜均是设计于白天使用,因此望远镜的越大,可看到的东西更明晰,越适用于光线不佳的情形。
最新动态/望远镜
哈勃望远镜下的美丽星空为庆祝“2009国际天文年”,英国《新科学家》评选出了人类历史上最著名的望远镜。以下是这15架最著名的望远镜:1、伽利略折射望远镜伽利略是第一个认识到望远镜将可能用于天文研究的人。虽然伽利略没有发明望远镜,但他改进了前人的设计方案,并逐步增强其放大功能。图中的情景发生于1609年8月,正在向当时的威尼斯统治者演示他的望远镜。伽利略制作了一架口径4.2厘米,长约1.2米的望远镜。他是用平凸透镜作为物镜,凹透镜作为目镜,这种光学系统称为伽利略式望远镜。伽利略用这架望远镜指向天空,得到了一系列的重要发现,天文学从此进入了望远镜时代。折射望远镜的优点是焦距长,底片比例尺大,对镜筒弯曲不敏感,最适合于做天体测量方面的工作。但是它总是有残余的色差,同时对紫外、红外波段的辐射吸收很厉害。2、牛顿反射式望远镜反射式望远镜的原理并不是采用玻璃透镜使光线折射或弯曲,而是使用一个弯曲的镜面将光线反射到一个焦点之上。这种方法比使用透镜将物体放大的倍数要高数倍。牛顿经过多次磨制非球面的透镜均告失败后,决定采用球面反射镜作为主镜。他用2.5厘米直径的金属,磨制成一块凹面反射镜,并在主镜的焦点前面放置了一个与主镜成45o角的反射镜,使经主镜反望远镜射后的会聚光经反射镜以90o角反射出镜筒后到达目镜。反射望远镜的主要优点是不存在色差,当物镜采用抛物面时,还可消去球差图中显示的是牛顿首个反射式望远镜的复制品。3、赫歇尔望远镜18世纪晚期,德国音乐师和天文学家威廉-开始制造大型反射式望远镜。图中显示的是赫歇尔所制造的最大望远镜,镜面口径为1.2米。该望远镜非常笨重,需要四个人来操作。赫歇尔是制作反射式望远镜的大师,他早年为音乐师,因为爱好天文,从1773年开始磨制望远镜,一生中制作的望远镜达数百架。赫歇尔制作的望远镜是把物镜斜放在镜筒中,它使平行光经反射后汇聚于镜筒的一侧。在反射式望远镜发明后,反射材料一直是其发展的障碍:铸镜用的青铜易于腐蚀,不得不定期抛光,需要耗费大量财力和时间,而耐腐蚀性好的金属,比青铜密度高且十分昂贵。4、耶基斯折射望远镜耶基斯折射望远镜坐落于美国州的耶基斯天文台,主透镜建成于1895年,是当时世界上最大望远镜。十九世纪末,随着制造技术的提高,制造较大口径的折射望远镜成为可能,随之就出现了一个制造大口径折射望远镜的高潮。世界上现有的8架70厘米以上的折射望远镜有7架是在1885年到1897年期间建成的,其中最有代表性的是1897年建成的口径102厘米的叶凯士望远镜和1886年建成的口径91厘米的里克望远镜。但折射望远镜后来在发展上受到限制,主要是因为从技术上无法铸造出大块完美无缺的玻璃做透镜,并且由于重力使大尺寸透镜的变形会非常明显,因而丧失明锐的焦点。5、威尔逊山60英寸望远镜1908年,美国天文学家乔治-埃勒里-海耳主持建成了口径60英寸的反射望远镜,安装于。这是当时世界上最大的望远镜,光谱分析、视差测量、星云观测和测光等天文学领域成为世界领先的设备。虽然数年后胡克望远镜的口径超过了它,但在此后的数年中它依然是世界上最大的望远镜之一。1992年海耳望远镜上安装了一台早期的自适应光学设施,使它的分辨本领从0.5-1.0角秒提高到0.07角秒。6、胡克100英寸望远镜在富商约翰-胡克的赞助下,口径为100英寸的反射望远镜于1917年在威尔逊山天文台建成。在此后的30年间,它一直是世界上最大的望远镜。为了提供平稳的运行,这架望远镜的液压系统中使用液态的水银。1919年阿尔伯特-迈克尔逊为这架望远镜装了一个特殊装置:一架干涉仪,这是光学干涉装置首次在天文学上得到应用。迈克尔逊可以用这台仪器精确地测量恒星的大小和距离。亨利-诺里斯-罗素使用胡克望远镜的数据制定了他对恒星的分类。埃德温-哈勃使用这架100英寸望远镜完成了他的关键的计算。他确定许多所谓的“星云”实际上是银河系外的星系。在米尔顿-赫马森的帮助下他认识到星系的红移说明宇宙在膨胀。7、海耳200英寸望远镜对胡克100英寸望远镜并不十分满意。1928年,他决定在帕洛马山天文台再架设了一台口径为200英寸的巨型反射望远镜。新望远镜于1948年完工并投入使用。海耳1890年毕业于美国麻省理工学院。1892年任芝加哥大学天体物理学副教授,开始组织叶凯士天文台,任台长。1904年筹建威尔逊山太阳观象台,即后来的威尔逊山天文台。他任首任台长,直到1923年因病退休。1895年,海耳创办《天体物理学杂志》。1899年当选为新成立的美国天文学与天体物理学会副会长。海耳一生最主要的贡献体现在两个方面:对太阳的观测研究和制造巨型望远镜。8、喇叭天线喇叭天线位于美国州的,曾用来探测和发现宇宙微波背景辐射。喇叭天线建造于1959年。当喇叭长度一定时,若使喇叭张角逐渐增大,则口面尺寸与二次方相位差也同时加大,但增益并不和口面尺寸同步增加,而有一个其增益为最大值的口面尺寸,具有这样尺寸的喇叭就叫作最佳喇叭。喇叭天线的辐射场可利用惠更斯原理由口面场来计算。口面场则由喇叭的口面尺寸与传播波型所决定。可用几何绕射理论计算喇叭壁对辐射的影响,从而使计算方向图与实测值在直到远旁瓣处都能较好地吻合。9、甚大阵射电望远镜坐落于美国新墨西哥州索科洛,于1980年建成并投入使用。甚大阵由27面直径25米的抛物面天线组成,呈Y型排列。天文学家可以利用甚大阵来研究黑洞、星云等宇宙各种现象。甚大望远镜是一组光学望远镜阵列。它包括了4个8.2米的望远镜,阵列中每个都是一个大型望远镜,而且每一个都能独立工作,并具有捕获比人类肉眼观测到的光线弱40亿倍的光线,这比南非大望远镜能捕获的最弱光线还弱四倍。甚大阵望远镜能够把最多3个望远镜集中在一起形成独立单元,通过地下的镜片将光线组合成一个统一的光束,这使得望远镜系统能够观测到比单个望远镜分辨率高25倍的图像。10、哈勃太空望远镜哈勃太空望远镜发射于1990年4月。它位于地球大气层之上,因此它取得了其他所有地基望远镜从来没有取得的革命性突破。天文学家们利用它来测量宇宙的膨胀比率以及发生产生这种膨胀的暗能量和神秘力量。哈勃太空望远镜已到“晚年”。它在太空的十几年中,经历过数次大修。尽管每次大修以后,“哈勃”都面貌一新,特别是2001年科学家利用哥伦比亚航天飞机对它进行的第四次大修,为它安装测绘照相机,更换太阳能电池板,更换已工作11年的电力控制装置,并激活处于“休眠”状态的近红外照相机和多目标分光计,然而,大修仍掩盖不住它的老态,因为“哈勃”从上太空起就处于“带病坚持工作”状态。11、凯克系列望远镜凯克望远镜位于夏威夷莫纳克亚山,口径为10米。由于当今技术不可能实现单片望远镜镜面口径超过8.4米,因此凯克望远镜的镜面由36块六边形分片组合而成。凯内望远镜巨大的镜面使它使用起来非同一般,不只是因为它的大尺寸,还因为它是由36个直径为1.8米的六边形小镜片组成的。凯克望远镜开创了基于地面的望远镜的新时代。它的规模是美国加利富尼亚州帕落马山上的海耳望远镜的两倍,后者在前几十年内是世界上最大的望远镜。有人曾认为制造如此之大的望远镜是不可能的,但新科学技术把不可能变为了现实。12、斯隆2.5米望远镜“斯隆数字天空勘测计划”的2.5米望远镜位于美国新墨西哥州阿柏角天文台。该望远镜拥有一个相当复杂的数字相机,望远镜内部是30个电荷耦合器件(CCD)探测器。斯隆望远镜使用口径为2.5米的宽视场望远镜,测光系统配以分别位于u、g、r、i、z波段的五个滤镜对天体进行拍摄。这些照片经过处理之后生成天体的列表,包含被观测天体的各种参数,比如它们是点状的还是延展的,如果是后者,则该天体有可能是一个星系,以及它们在CCD上的亮度,这与其在不同波段的星等有关。另外,天文学家们还选出一些目标来进行光谱观测。13、威尔金森宇宙微波各向异性探测卫星美国宇航局于2001年7月发射了威尔金森宇宙微波各向异性探测卫星(WMAP),用来研究宇宙微波背景以及宇宙大爆炸遗留物的辐射问题。WMAP绘制了首张清晰的宇宙微波背景图,从而可以精确地测定宇宙的年龄为137亿年。WMAP的目标是找出宇宙微波背景辐射的温度之间的微小差异,以帮助测试有关宇宙产生的各种理论。它是COBE的继承者,是中级探索者卫星系列之一。WMAP以宇宙背景辐射的先躯研究者大卫-威尔金森命名。14、雨燕观测卫星“雨燕”(Swift)观测卫星发射于2004年,主要是用来研究。“雨燕”可在短短的一分钟内自动观测到伽玛暴现象。到目前为止,它已经发现了数百次伽玛暴现象。“雨燕”卫星实际上是一颗专门用于确定伽马射线暴起源、探索早期宇宙的国际多波段天文台。它主要由三部分组成,分别从伽马射线、X射线、紫外线和光波四个方面研究伽马射线暴和它的耀斑。在多年的运行中,“雨燕”卫星先后共10次捕捉到以极快角速度运行的伽马射线暴,其中,最短的伽马射线暴只持续了50毫秒。“雨燕”卫星可以检测到120亿光年以外单独的恒星参数。北京时间日消息,美国MSNBC网站公布了至2008年伟大的八具太空望远镜,这些近20年里先后进入太空的望远镜好比“太空之眼”,帮助人类对宇宙有了更清晰的认识。以下就是这八具太空望远镜。15.开普勒太空望远镜开普勒太空望远镜(Kepler&Mission)是美国国家航空航天局设计来发现环绕着其他之类地行星的太空望远镜。使用NASA发展的太空光度计,预计将花3.5年的时间,在绕行太阳的轨道上,观测10万颗恒星的光度,检测是否有行星凌星的现象(以凌日的方法检测行星)。为了尊崇德国天文学家约翰内斯·开普勒,这个任务被称为开普勒太空望远镜。开普勒是NASA低成本的发现计划聚焦在科学上的任务。NASA的艾美斯研究中心是这个任务的主管机关,提供主要的研究人员并负责地面系统的开发、任务的执行和科学资料的分析。美发明能植入眼中微型望远镜:可放大3倍放在指尖的VisionCare日,一种可植入眼中的微型望远镜在美国被批准使用,这款颇具创新性的产品能有效解决老年人的视力问题。 可植入微型望远镜专门为不可逆转的晚期黄斑变性患者所设计,这种疾病的患者的两眼中央视觉区会出现盲点。它将替代眼睛中自然生成的晶状体,提供几乎可以放大三倍的图像,接着,再将放大后的图像投射到视网膜的健康区域内。开发这款产品的VisionCare公司宣称,它将帮助晚期年龄相关性黄斑变性(AMD)的患者克服视力障碍,这种疾病是导致美国人视力丧失的主要原因。微型望远镜只能用于一只眼睛,因为另一只眼睛需要为周边视觉准备着。植入微型望远镜的患者需要一定的康复治疗,以帮助大脑重新将两个眼睛的图像合并变成一个图像。它是为75岁以上的由盲点引起的严重视力障碍患者所设计,临床试验发现,75%的患者在植入这种设备后,视力比以前都有所改善。美国食品与药品管理局(FDA)表示,微型望远镜的尺寸意味着,患者还需要在手术之后接受角膜移植。湿性年龄相关性黄斑变性(Wet AMD)是由眼睛周围血管的异常生长引起,可通过阻止血管内皮生长因子(VEGF)的生长进行治疗。VisionCare公司必须在对现有患者研究的基础上再实施另外两项研究,目前,该公司已开始对770名患者展开新的研究。据悉,可植入微型望远镜每个售价高达1.5万美元。
万方数据期刊论文
万方数据期刊论文
万方数据期刊论文
光学精密工程
&|&相关影像
互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于。
登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和专业认证智愿者沟通。
此词条还可添加&
编辑次数:81次
参与编辑人数:47位
最近更新时间: 16:49:04
贡献光荣榜}

我要回帖

更多关于 天文望远镜 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信