若m伽2的2次方x的3次方y减治法求a的n次方方减...

(X的M减5次方Y的N次方)乘(X的3次方Y的负2次方)=X的5次方Y,求M=? N=?_百度知道
(X的M减5次方Y的N次方)乘(X的3次方Y的负2次方)=X的5次方Y,求M=? N=?
提问者采纳
提问者评价
按照你说的,真的成功了,好开心,谢谢你!
其他类似问题
n次方的相关知识
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁若X的3次方=-8,y的绝对值=3,且(m-2)的2次方+(n+1)的2次方=0,求(x+y-n)的m次方的值。
若X的3次方=-8,y的绝对值=3,且(m-2)的2次方+(n+1)的2次方=0,求(x+y-n)的m次方的值。 5
&答案为4或者16
x?=-8→x=-2
丨y丨=3
(m-2)?+(n+1)?=0→m=2,n=-1
由以上推出(x+y-n)的m次方就是(-2±3+1)?=4或者16
y的绝对值等负3.
看来你上课不认真啊,永远是正数。
对啊,因为不确定y到底是3还是-3,所以有答案有两个
的感言:赞!很赞!非常赞!从来没有这么赞过!
等待您来回答
编程领域专家混合气体BOLTZMANN方程组的两组解的平均作为二粒子混合气体BBGGKY方程组列的解
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
混合气体BOLTZMANN方程组的两组解的平均作为二粒子混合气体BBGGKY方程组列的解
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer-4.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
域的特征是交换代数中的基本概念。 一个域就是满足加、减、乘、除 四则运算的集合。 比如有理数域, 有理函数域, 代数数域、伽罗华域等等。
任何域必定包含元素0和1. 和我们所熟悉的有理数域不同, 有些域中,若干个1相加有可能等于零。 假设p是最小的正整数, 使得p个1相加等于0, 那么p就称为域的特征。 特别的, 如果任何多个1相加都不会是0, 那么特征p就定义为0.
& & 可以证明, 如果域的特征p&0, 则p一定是素数。特征大于零的域有很多, 比如模p的剩余类域(也就是p的剩余系):{0,1,2,...,p-1}
& &特征为p(&0)的域F中元素满足Frobenius条件:(x+y)^p=x^p+y^p, x,y∈F
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
一、定义与定义式:
& && &&&自变量x和因变量y有如下关系:
& && && && & y=kx+b
& && &&&则此时称y是x的一次函数。
& && &&&特别地,当b=0时,y是x的正比例函数。
& && &&&即:y=kx (k为常数,k≠0)
二、一次函数的性质:
& && & 1.y的变化值与对应的x的变化值成正比例,比值为k
& && &&&即:y=kx+b (k为任意不为零的实数 b取任何实数)
& && &&&2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
& && &&&1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)
& && &&&2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
& && &&&3.k,b与函数图像所在象限:
& && &&&当k>0时,直线必通过一、三象限,y随x的增大而增大;
& && &&&当k<0时,直线必通过二、四象限,y随x的增大而减小。
& && &&&当b>0时,直线必通过一、二象限;
& && &&&当b=0时,直线通过原点
& && &&&当b<0时,直线必通过三、四象限。
& && &&&特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
& && &&&这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:
& && &&&已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
& && &&&(1)设一次函数的表达式(也叫解析式)为y=kx+b。
& && &&&(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b …… ① 和 y2=kx2+b …… ②
& && &&&(3)解这个二元一次方程,得到k,b的值。
& && &&&(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:
& && &&&1.当时间t一定,距离s是速度v的一次函数。s=vt。
& && &&&2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
六、常用公式:(不全,希望有人补充)
& && &&&1.求函数图像的k值:(y1-y2)/(x1-x2)
& && &&&2.求与x轴平行线段的中点:|x1-x2|/2
& && &&&3.求与y轴平行线段的中点:|y1-y2|/2
& && &&&4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2&&(注:根号下(x1-x2)与(y1-y2)的平方和)
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
达(Viete,Francois,seigneurdeLa Bigotiere)是法国十六世纪最有影响的数学家之一。第一个引进系统的代数符号,并对方程论做了改进。
韦达定理(Weda's Theorem): 一元二次方程ax^2+bx+c (a≠0 且△=b^2-4ac≥0)中
设两个根为X1和X2
则X1+X2= -b/a
韦达定理在更高次方程中也是可以使用的。一般的,对一个n次方程∑AiX^i=0
它的根记作X1,X2…,Xn
∑Xi=(-1)^1*A(n-1)/A(n)
∑XiXj=(-1)^2*A(n-2)/A(n)
ΠXi=(-1)^n*A(0)/A(n)
其中∑是求和,Π是求积。
如果一元二次方程
在复数集中的根是,那么
法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
由代数基本定理可推得:任何一元 n 次方程
在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积:
其中是该方程的个根。两端比较系数即得韦达定理。
韦达定理在方程论中有着广泛的应用。
定理的证明
设&math&x_1&/math&,&math&x_2&/math&是一元二次方程&math&ax^2+bx+c=0&/math&的两个解,且不妨令&math&x_1 \ge x_2&/math&。根据求根公式,有
&math&x_1=\frac{-b + \sqrt {b^2-4ac}}&/math&,&math&x_2=\frac{-b - \sqrt {b^2-4ac}}&/math&
&math&x_1+x_2=\frac{-b + \sqrt {b^2-4ac} + \left (-b \right) - \sqrt {b^2-4ac}} =-\frac&/math&,
&math&x_1x_2=\frac{ \left (-b + \sqrt {b^2-4ac} \right) \left (-b - \sqrt {b^2-4ac} \right)}{\left (2a \right)^2} =\frac&/math&
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
英国数学家G.布尔为了研究思维规律(逻辑学、数理逻辑)于年提出的数学模型。此后R.戴德金把它作为一种特殊的格。所谓一个布尔代数,是指一个有序的四元组〈B,∨,∧,*〉,其中B是一个非空的集合,∨与∧是定义在B上的两个二元运算,*是定义在B上的一个一元运算,并且它们满足一定的条件。
布尔代数由于缺乏物理背景,所以研究缓慢,到了20世纪30~40年代才又有了新的进展,大约在 1935年, M.H.斯通首先指出布尔代数与环之间有明确的联系,他还得到了现在所谓的斯通表示定理:任意一个布尔代数一定同构于某个集上的一个集域;任意一个布尔代数也一定同构于某个拓扑空间的闭开代数等,这使布尔代数在理论上有了一定的发展。布尔代数在代数学(代数结构)、逻辑演算、集合论、拓扑空间理论、测度论、概率论、泛函分析等数学分支中均有应用;1967年后,在数理逻辑的分支之一的公理化集合论以及模型论的理论研究中也起着一定的作用。近几十年来,布尔代数在自动化技术、电子计算机的逻辑设计等工程技术领域中有重要的应用。
1835年,20岁的乔治·布尔开办了一所私人授课学校。为了给学生们开设必要的数学课程,他兴趣浓厚地读起了当时一些介绍数学知识的教科书。不久,他就感到惊讶,这些东西就是数学吗?实在令人难以置信。于是,这位只受过初步数学训练的青年自学了艰深的《天体力学》和很抽象的《分析力学》。由于他对代数关系的对称和美有很强的感觉,在孤独的研究中,他首先发现了不变量,并把这一成果写成论文发表。这篇高质量的论文发表后,布尔仍然留在小学教书,但是他开始和许多第一流的英国数学家交往或通信,其中有数学家、逻辑学家德·摩根。摩根在19世纪前半叶卷入了一场著名的争论,布尔知道摩根是对的,于是在1848 年出版了一本薄薄的小册子来为朋友辩护。这本书是他6年后更伟大的东西的预告,它一问世,立即激起了摩根的赞扬,肯定他开辟了新的、棘手的研究科目。布尔此时已经在研究逻辑代数,即布尔代数。他把逻辑简化成极为容易和简单的一种代数。在这种代数中,适当的材料上的“推理 ”,成了公式的初等运算的事情,这些公式比过去在中学代数第二年级课程中所运用的大多数公式要简单得多。这样,就使逻辑本身受数学的支配。为了使自己的研究工作趋于完善,布尔在此后6年的漫长时间里,又付出了不同寻常的努力。1854年,他发表了《思维规律》这部杰作,当时他已39岁,布尔代数问世了,数学史上树起了一座新的里程碑。几乎像所有的新生一样,布尔代数发明后没有受到人们的重视。欧洲大陆著名的数学家蔑视地称它为没有数学意义的,哲学上稀奇古怪的东西,他们怀疑英伦岛国的数学家能在数学上做出独特贡献。布尔在他的杰作出版后不久就去世了。20世纪初,罗素在《数学原理》中认为,“纯数学是布尔在一部他称之为《思维规律》的著作中发现的。”此说一出,立刻引起世人对布尔代数的注意。今天,布尔发明的逻辑代数已经发展成为纯数学的一个主要分支。
在离散数学中,布尔代数(有时叫布尔格)是有补分配格(可参考格的定义)可以按各种方式去认为元素是什么;最常见的是把它们当作一般化的真值。作为一个简单的例子,假设有三个条件是独立的为真或为假。布尔代数的元素可以接着精确指定那些为真;那么布尔代数自身将是所有八种可能性的一个搜集,和与之在一起的组合它们的方式。
有时也被称为布尔代数的一个相关主题是布尔逻辑,它可以被定义为是所有布尔代数所公有的东西。它由在布尔代数的元素间永远成立的关系组成,而不管你具体的那个布尔代数。因为逻辑门和某些电子电路的代数在形式上也是这样的,所以同在数理逻辑中一样,布尔逻辑也在工程和计算机科学中研究。
在布尔代数上的运算被称为AND(与)、OR(或)和NOT(非)。代数结构要是布尔代数,这些运算的行为就必须和两元素的布尔代数一样(这两个元素是TRUE(真)和FALSE(假))。
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
两个实数的乘积是1,则这两个数互为倒数(这里的“数”是“数字”的数,念四声;“倒”是倒车的倒,念第四声),比如说以下的几组数字就是互为倒数:
3与1/3& &5/3与3/5& &-0.5与-2& &
此外,1和-1的倒数是它本身,零没有倒数。
补充:在高等数学中,复数也有倒数,比如i的倒数是-i(i是虚数单位,i的平方是-1)
另外,还有“负倒数”的说法,就是乘积为负1的两个数互为“负倒数”。
从最后一个往前数,叫做倒数(此处“数”念三声(shǔ),是数东西,数星星的“数”),倒数第一名就是最后一名,如:
他学习太差了,才考了~第三。
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
①一个数能够被另一数整除,这个数就是另一数的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
②一个数除以另一数所得的商。如a÷b=c,就是说a是b的c倍,c是倍数。
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
一整数被另一整数整除,后者即是前者的因数,如1,2,4都为8的因数
A 除法里,如果被除数除以除数,所得的商都是自然数而没有余数,就说被除数是除数的倍数,除数是被除数的因数.
B 我们将一个合数分成几个质数相乘的形式,这样的几个质数叫做这个合数的质因数。
C 约数和因数的区别有三点:1数域不同。约数只能是自然数,而因数可以是任何数。2关系不同。约数是对两个自然数的整除关系而言,只要两个数是自然数,就能确定它们之间是否存在约数关系,如:40÷5=8,40能被5整除,5就是40的约数,12÷10=1.2,12不能被10整除,10不是12的约数。因数是两个或两个以上的数对它们的乘积关系而言的。如:8×0.2=1.6,8和0.2都是积1.6的因数,离开乘积算式就没有因数了。3大小关系不同。当数a是数b的约数时,a不能大于b,当a是b的因数时,a可以大于b,也可以小于b。例如,5是60的约数,5& 60,8是4.8的因数,8 &4.8
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a&0时,开口方向向上,a&0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]
交点式:y=a(x-x?)(x-x ?) [仅限于与x轴有交点A(x? ,0)和& &&&B(x?,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
                 ______
h=-b/2a& &k=(4ac-b^2)/4a& &x?,x?=(-b±√b^2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,
可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线
x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P ( -b/2a ,(4ac-b^2)/4a )
当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
                              _______
Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
以下是在北京四中远程教育上看到的好资料``!!
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
y=a(x-h)^2
y=a(x-h)^2+k
y=ax^2+bx+c
(-b/2a,[4ac-b^2]/4a)
  当h&0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
  当h&0时,则向左平行移动|h|个单位得到.
  当h&0,k&0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;
  当h&0,k&0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
  当h&0,k&0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;
  当h&0,k&0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
  因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
  2.抛物线y=ax^2+bx+c(a≠0)的图象:当a&0时,开口向上,当a&0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).
  3.抛物线y=ax^2+bx+c(a≠0),若a&0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a&0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.
  4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:
  (1)图象与y轴一定相交,交点坐标为(0,c);
  (2)当△=b^2-4ac&0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的两根.这两点间的距离AB=|x?-x?|
  当△=0.图象与x轴只有一个交点;
  当△&0.图象与x轴没有交点.当a&0时,图象落在x轴的上方,x为任何实数时,都有y&0;当a&0时,图象落在x轴的下方,x为任何实数时,都有y&0.
  5.抛物线y=ax^2+bx+c的最值:如果a&0(a&0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.
  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
  6.用待定系数法求二次函数的解析式
  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a≠0).
  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).
  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).
  7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
安全素数(安全质数)是满足2p+1形式的一类数,在这里p也应是素数。(相反地,素数p叫做索菲热尔曼素数。)开始的几个安全素数是:
5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, , , , , ,
之所以叫它们是“安全”素数,是因为它们在加密算法中的运用,很容易理解:任何一个小于1050的素数都不是真正安全的,因为对于任何一个有着合适算法的现代计算机都能在适当的时间内判断出它的素性,但是这些小一点的安全素数在加密算法原理的教学中仍然还是很有用的。不过现在对于安全素数还没有像对费马素数与梅森素数一样的特别的素性检测方法。
除了5,还没有即是费马素数又是安全素数的数了。一个给定的费马素数F,一个小小的反证就可以证明(F-1)/2会是2的平方。
除了7,还没有即是梅森素数又是安全素数的数了。这个证明有点麻烦,不过仍然在基础代数的范畴内,p必须是素数,2p-1才有可能是素数,那么((2p - 1) - 1)/2 = 2p - 1 - 1,(梅森素数),因为只有当p=3时p-1才有可能是素数,即23-1=7。
第一类坎宁安链中所有的数除了最后一项都是索菲热尔曼素数,除了第一项都是安全素数,如果安全素数是以7结尾,那么它具有10n+7的形式。
取自&/wiki/%E5%AE%89%E5%85%A8%E7%B4%A0%E6%95%B0&
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
1.基本概念与性质
形如y=ax^3+bx^2+cx+d(a≠0,b,c,d为常数)的函数叫做三次函数。
三次函数的图像是一条曲线----回归式抛物线(不同于普通抛物线),具有比较特殊性。
函数y=f(x)=ax^3+px,其中p=(3ac-b^2)/(3a)的函数图像向上平移(2b^3+27da^2-9abc)/(27a^2)个单位,在向左平移b/(3a)个单位可得函数y=ax^3+bx^2+cx+d。
这里以f(x)=ax^3+px为例,其它复杂的三次函数皆可平移成此形式,且一般只会出现在应用方面,可忽略。
函数f(x)=ax^3+px的顶点最多有2个,这里只探讨偏右的一个。
*当ap≤0时,顶点坐标为[(-3ac)^(0.5)/(3a),2b(-3ac)^(0.5)/(9a)]
*当ap≥0时,顶点与伪顶点重合,为(0,0)
2.零点求法
求函数的零点可用盛金公式:盛金公式或传统解法
盛金公式与盛金判别法及盛金定理的运用从这里向您介绍
三次方程应用广泛。用根号解一元三次方程,虽然有著名的卡尔丹公式,并有相应的判别法,但使用卡尔丹公式解题比较复杂,缺乏直观性。范盛金推导出一套直接用a、b、c、d表达的较简明形式的一元三次方程的一般式新求根公式,并建立了新判别法。
一元三次方程aX3+bX2+cX+d=0,(a,b,c,d∈R,且a≠0)。
重根判别式:
A=b2-3ac;
B=bc-9ad;
C=c2-3bd,
总判别式:Δ=B2-4AC。
当A=B=0时,盛金公式①:
X1=X2=X3=-b/(3a)=-c/b=-3d/c。
当Δ=B2-4AC&0时,盛金公式②:
X1=(-b-(Y11/3+Y21/3))/(3a);
X2,3=(-2b+Y11/3+Y21/3±31/2 (Y11/3-Y21/3)i)/(6a);
其中Y1,2=Ab+3a (-B±(B2-4AC)1/2)/2,i2=-1。
当Δ=B2-4AC=0时,盛金公式③:
X1=-b/a+K;X2=X3=-K/2,  
其中K=B/A,(A≠0)。
当Δ=B2-4AC&0时,盛金公式④:
X1= (-b-2A1/2cos(θ/3) )/(3a);
X2,3= (-b+A1/2(cos(θ/3)±31/2sin(θ/3)))/(3a);
其中θ=arccosT,T= (2Ab-3aB)/(2A3/2),(A&0,-1&T&1)。
盛金判别法
①:当A=B=0时,方程有一个三重实根;
②:当Δ=B2-4AC&0时,方程有一个实根和一对共轭虚根;
③:当Δ=B2-4AC=0时,方程有三个实根,其中有一个两重根;
④:当Δ=B2-4AC&0时,方程有三个不相等的实根。
当b=0,c=0时,盛金公式①无意义;当A=0时,盛金公式③无意义;当A≤0时,盛金公式④无意义;当T<-1或T>1时,盛金公式④无意义。
当b=0,c=0时,盛金公式①是否成立?盛金公式③与盛金公式④是否存在A≤0的值?盛金公式④是否存在T<-1或T>1的值?盛金定理给出如下回答:
&&盛金定理1:当A=B=0时,若b=0,则必定有c=d=0(此时,方程有一个三重实根0,盛金公式①仍成立)。
&&盛金定理2:当A=B=0时,若b≠0,则必定有c≠0(此时,适用盛金公式①解题)。
&&盛金定理3:当A=B=0时,则必定有C=0(此时,适用盛金公式①解题)。
&&盛金定理4:当A=0时,若B≠0,则必定有Δ>0(此时,适用盛金公式②解题)。
&&盛金定理5:当A<0时,则必定有Δ>0(此时,适用盛金公式②解题)。
&&盛金定理6:当Δ=0时,若B=0,则必定有A=0(此时,适用盛金公式①解题)。
&&盛金定理7:当Δ=0时,若B≠0,盛金公式③一定不存在A≤0的值(此时,适用盛金公式③解题)。
&&盛金定理8:当Δ<0时,盛金公式④一定不存在A≤0的值。(此时,适用盛金公式④解题)。
&&盛金定理9:当Δ<0时,盛金公式④一定不存在T≤-1或T≥1的值,即T出现的值必定是-1<T<1。
显然,当A≤0时,都有相应的盛金公式解题。
注意:盛金定理逆之不一定成立。如:当Δ>0时,不一定有A<0。
盛金定理表明:盛金公式始终保持有意义。任意实系数的一元三次方程都可以运用盛金公式直观求解。
当Δ=0(d≠0)时,使用卡尔丹公式解题仍存在开立方。与卡尔丹公式相比较,盛金公式的表达形式较简明,使用盛金公式解题较直观、效率较高;盛金判别法判别方程的解较直观。重根判别式A=b2-3ac;B=bc-9ad;C=c2-3bd是最简明的式子,由A、B、C构成的总判别式Δ=B2-4AC也是最简明的式子(是非常美妙的式子),其形状与一元二次方程的根的判别式相同;盛金公式②中的式子(-B±(B2-4AC)1/2)/2具有一元二次方程求根公式的形式,这些表达形式体现了数学的有序、对称、和谐与简洁美。
此外,一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。
一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:
(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到
(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))
(3)由于x=A^(1/3)+B^(1/3),所以(2)可化为
x^3=(A+B)+3(AB)^(1/3)x,移项可得
(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知
(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得
(6)A+B=-q,AB=-(p/3)^3
(7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即
(8)y1+y2=-(b/a),y1*y2=c/a
(9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a
(10)由于型为ay^2+by+c=0的一元二次方程求根公式为
y1=-(b+(b^2-4ac)^(1/2))/(2a)
y2=-(b-(b^2-4ac)^(1/2))/(2a)
(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)
y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)
将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得
(12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)
B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)
(13)将A,B代入x=A^(1/3)+B^(1/3)得
(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)
式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。
3.特殊性质
4.在高考中的应用
5.三次函数性态的五个要点
1.三次函数y=f(x)在(-∞,+∞)上的极值点的个数
2.三次函数y=f(x)的图象与x 轴交点个数
3.单调性问题
4.三次函数f(x)图象的切线条数
5.融合三次函数和不等式,创设情境求参数的范围
6.三次函数的三大性质
target=_blank&http://blog./UploadFiles/52862.doc[/title]
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
平均变化率
函数值的改变量与自变量的比 Δy/Δx=(y2-y1)/(x2-x1)&&叫做函数 y=f(x) 从 x1 到 x2 之间的平均变化率。
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
(1)分式:
a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)
当r=0,1时式子的值为0
当r=2时值为1
当r=3时值为a+b+c
由e^iθ=cosθ+isinθ,得到:
sinθ=(e^iθ-e^-iθ)/2i
cosθ=(e^iθ+e^-iθ)/2
(3)三角形
设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:
d^2=R^2-2Rr
(4)多面体
设v为顶点数,e为棱数,f是面数,则
v-e+f=2-2p
p为欧拉示性数,例如
p=0 的多面体叫第零类多面体
p=1 的多面体叫第一类多面体
&&(5) 多边形
设一个二维几何图形的顶点数为V,划分区域数为Ar,一笔画笔数为B,则有:
(如:矩形加上两条对角线所组成的图形,V=5,Ar=4,B=8)
&&(6). 欧拉定理
在同一个三角形中,它的外心Circumcenter、重心Gravity、九点圆圆心Nine-point-center、垂心Orthocenter共线。
其实欧拉公式是有很多的,上面仅是几个常用的。
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
如果一个数x的立方等于a,即x的三次方等于a(x^3=a),那么这个数x就叫做a的立方根,也叫做三次方根。读作“三次根号a”其中,a叫做被开方数,3叫做根指数。(a不等于0)
求一个数a的立方根的运算叫做开立方。
所有实数都有且只有一个立方根。
正数的立方根是正数,负数的立方根是负数,0的立方根是0。
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
设A、B是任意两个集合,在集合A中任意取一个元素x,在集合B中任意取一个元素y,组成一个有序对(x,y),把这样的有序对作为新的元素,他们的全体组成的集合称为集合A和集合B的直积,记为A×B,即A×B={(x,y)|x∈A且y∈B}。
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和:
f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!o(x-x.)^2,+f'''(x.)/3!o(x-x.)^3+……+f(n)(x.)/n!o(x-x.)^n+Rn
其中Rn=f(n+1)(ξ)/(n+1)!o(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。
(注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。)
证明:我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式:
P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n
来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.), P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An。显然,P(x.)=A0, 所以A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n! An,An=f(n)(x.)/n!。至此,多项的各项系数都已求出,得:P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!o(x -x.)^2+……+f(n)(x.)/n!o(x-x.)^n.
& &&&接下来就要求误差的具体表达式了。设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.) =Rn'(x.)=Rn''(x.)=……=Rn(n)(x.)=0。根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=Rn(x)-Rn (x.)/(x-x.)^(n+1)-0=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(x.-x.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得Rn'(ξ1)-Rn'(x.)/(n+1)(ξ1-x.)^n-0=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n- 1)这里ξ2在ξ1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x之间。但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x)。综上可得,余项Rn(x)=f(n+1)(ξ)/(n+1)!o(x-x.)^(n+1)。一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn。
麦克劳林展开式:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和:
f(x)=f(0)+f'(0)x+f''(0)/2!ox^2,+f'''(0)/3!ox^3+……+f(n)(0)/n!ox^n+Rn
其中Rn=f(n+1)(θx)/(n+1)!ox^(n+1),这里0&θ&1。
证明:如果我们要用一个多项式P(x)=A0+A1x+A2x^2+……+Anx^n来近似表示函数f(x)且要获得其误差的具体表达式,就可以把泰勒公式改写为比较简单的形式即当x.=0时的特殊形式:
f(x)=f(0)+f'(0)x+f''(0)/2!ox^2,+f'''(0)/3!ox^3+……+f(n)(0)/n!ox^n+f(n+1)(ξ)/(n+1)!ox^(n+1)
由于ξ在0到x之间,故可写作θx,0&θ&1。
麦克劳林展开式的应用:
1、展开三角函数y=sinx和y=cosx。
解:根据导数表得:f(x)=sinx , f'(x)=cosx , f''(x)=-sinx , f'''(x)=-cosx , f(4)(x)=sinx……
于是得出了周期规律。分别算出f(0)=0,f'(0)=1, f''(x)=0, f'''(0)=-1, f(4)=0……
最后可得:sinx=x-x^3/3!+x^5/5!-x^7/7!+x^9/9!-……(这里就写成无穷级数的形式了。)
类似地,可以展开y=cosx。
2、计算近似值e=lim x→∞ (1+1/x)^x。
解:对指数函数y=e^x运用麦克劳林展开式并舍弃余项:
e^x≈1+x+x^2/2!+x^3/3!+……+x^n/n!
当x=1时,e≈1+1+1/2!+1/3!+……+1/n!
取n=10,即可算出近似值e≈2.7182818。
3、欧拉公式:e^ix=cosx+isinx(i为-1的开方,即一个虚数单位)
证明:这个公式把复数写为了幂指数形式,其实它也是由麦克劳林展开式确切地说是麦克劳林级数证明的。过程具体不写了,就把思路讲一下:先展开指数函数e^z,然后把各项中的z写成ix。由于i的幂周期性,可已把系数中含有土i的项用乘法分配律写在一起,剩余的项写在一起,刚好是cosx,sinx的展开式。然后让sinx乘上提出的i,即可导出欧拉公式。有兴趣的话可自行证明一下。
泰勒展开式
e的发现始于微分,当 h 逐渐接近零时,计算 之值,其结果无限接近一定值 2.71828...,这个定值就是 e,最早发现此值的人是瑞士著名数学家欧拉,他以自己姓名的字头小写 e 来命名此无理数.
计算对数函数 的导数,得 ,当 a=e 时, 的导数为 ,因而有理由使用以 e 为底的对数,这叫作自然对数.
若将指数函数 ex 作泰勒展开,则得
以 x=1 代入上式得
此级数收敛迅速,e 近似到小数点后 40 位的数值是
将指数函数 ex 扩大它的定义域到复数 z=x+yi 时,由
透过这个级数的计算,可得
由此,De Moivre 定理,三角函数的和差角公式等等都可以轻易地导出.譬如说,z1=x1+y1i, z2=x2+y2i,
我们不仅可以证明 e 是无理数,而且它还是个超越数,即它不是任何一个整系数多项式的根,这个结果是 Hermite 在1873年得到的.
考虑一个离散函数(即数列) R,它在 n 所取的值 u(n) 记成 un,通常我们就把这个函数书成 或 (un).数列 u 的差分 还是一个数列,它在 n 所取的值以定义为
以后我们干脆就把 简记为
(例):数列 1, 4, 8, 7, 6, -2, ... 的差分数列为 3, 4, -1, -1, -8 ...
注:我们说「数列」是「定义在离散点上的函数」如果在高中,这样的说法就很恶劣.但在此地,却很恰当,因为这样才跟连续型的函数具有完全平行的类推.
差分算子的性质
(i) [合称线性]
(ii) (常数) [差分方程根本定理]
其中 ,而 (n(k) 叫做排列数列.
(iv) 叫做自然等比数列.
(iv)' 一般的指数数列(几何数列)rn 之差分数列(即「导函数」)为 rn(r-1)
给一个数列 (un).和分的问题就是要算和 . 怎么算呢 我们有下面重要的结果:
定理1 (差和分根本定理) 如果我们能够找到一个数列 (vn),使得 ,则
和分也具有线性的性质:
给一个函数 f,若牛顿商(或差分商) 的极限 存在,则我们就称此极限值为 f 为点 x0 的导数,记为 f'(x0) 或 Df(x),亦即
若 f 在定义区域上每一点导数都存在,则称 f 为可导微函数.我们称 为 f 的导函数,而 叫做微分算子.
微分算子的性质:
(i) [合称线性]
(ii) (常数) [差分方程根本定理]
(iii) Dxn=nxn-1
(iv) Dex=ex
(iv)' 一般的指数数列 ax 之导函数为
设 f 为定义在 [a,b] 上的函数,积分的问题就是要算阴影的面积.我们的办法是对 [a,b] 作分割:
;其次对每一小段 [xi-1,xi] 取一个样本点 ;再求近似和 ;最后再取极限 (让每一小段的长度都趋近于 0).
若这个极限值存在,我们就记为 的几何意义就是阴影的面积.
(事实上,连续性也「差不多」是积分存在的必要条件.)
积分算子也具有线性的性质:
定理2 若 f 为一连续函数,则 存在.(事实上,连续性也「差不多」是积分存在的必要条件.)
定理3 (微积分根本定理) 设 f 为定义在闭区间 [a,b] 上的连续函数,我们欲求积分 如果我们可以找到另一个函数 g,使得 g'=f,则
注1)(2)两式虽是类推,但有一点点差异,即和分的上限要很小心!
上面定理1及定理3基本上都表述着差分与和分,微分与积分,是两个互逆的操作,就好像加法与减法,乘法与除法是互逆的操作一样.
我们都知道差分与微分的操作比和分与积分简单多了,而上面定理1及定理3告诉我们,要计算 (un) 的和分及 f 的积分,只要去找另一个 (vn) 及 g 满足 , g'=f (这是差分及微分的问题),那么对 vn 及 g 代入上下限就得到答案了.换句话说,我们可以用较简单的差分及微分操作来掌握较难的和分及积分操作,这就是&以简御繁&的精神.牛顿与莱布尼慈对微积分最大的贡献就在此.
甲)Taylor展开公式
这分别有离散与连续的类推.它是数学中「逼近」这个重要想法的一个特例.逼近想法的意思是这样的:给一个函数 f,我们要研究 f 的行为,但 f 本身可能很复杂而不易对付,于是我们就想法子去找一个较「简单」的函数 g,使其跟 f 很「靠近」,那么我们就用 g 来取代 f.这又是以简御繁的精神表现.由上述我们看出,要使用逼近想法,我们还需要澄清
两个问题:即如何选取简单函数及逼近的尺度.
(一) 对于连续世界的情形,Taylor 展式的逼近想法是选取多项函数作为简单函数,并且用局部的「切近」作为逼近尺度.说得更明白一点,给一个直到到 n 阶都可导微的函数 f,我们要找一个 n 次多项函数 g,使其跟 f 在点 x0 具有 n 阶的「切近」,即 ,答案就是
此式就叫做 f 在点 x0 的 n 阶 Taylor 展式.
g 在 x0 点附近跟 f 很靠近,于是我们就用 g 局部地来取代 f.从而用 g 来求得 f 的一些局部的定性行为.因此 Taylor 展式只是局部的逼近.当f是足够好的一个函数,即是所谓解析的函数时,则 f可展成 Taylor 级数,而且这个 Taylor 级数就等于 f 自身.
值得注意的是,一阶 Taylor 展式的特殊情形,此时 g(x)=f(x0+f'(x0)(x-x0)) 的图形正好是一条通过点 (x0,f(x0)) 而且切于 f 的图形之直线.因此 f 在点 x0 的一阶 Taylor 展式的意义就是,我们用过点 (x0,f(x0)) 的切线局部地来取代原来 f 曲线.这种局部化「用平直取代弯曲」的精神,是微分学的精义所在.
利用 Talor 展式,可以帮忙我们做很多事情,比如判别函数的极大值与极小值,求积分的近似值,作函数表(如三角函数表,对数表等),这些都是意料中事.事实上,我们可以用逼近的想法将微积分「一以贯之」.
复次我们注意到,我们选取多项函数作为逼近的简单函数,理由很简单:在众多初等函数中,如三角函数,指数函数,对数函数,多项函数等,从算术的观点来看,以多项函数最为简单,因为要计算多项函数的值,只牵涉到加减乘除四则运算,其它函数就没有这么简单.
当然,从别的解析观点来看,在某些情形下还另有更有用更重要的简单函数.例如,三角多项式,再配合上某种逼近尺度,我们就得到 Fourier 级数展开,这在应用数学上占有举足轻重的地位.(事实上,Fourier 级数展开是采用最小方差的逼近尺度,这在高等数学中经常出现,而且在统计学中也有应用.)
注:取 x0=0 的特例,此时 Taylor 展式又叫做 Maclaurin 展式.不过只要会做特例的展开,欲求一般的 Taylor 展式,作一下平移(或变数代换)就好了.因此我们大可从头就只对 x=0 点作 Taylor 展式.
(二) 对于离散的情形,Taylor 展开就是:
给一个数列 ,我们要找一个 n 次多项式数列 (gt),使得 gt 与 ft 在 t=0 点具有 n 阶的「差近」.所谓在 0 点具有 n 阶差近是指:
答案是 此式就是离散情形的 Maclaurin 公式.
乙)分部积分公式与Abel分部和分公式的类推
(一) 分部积分公式:
设 u(x),v(x) 在 [a,b] 上连续,则
(二) Abel分部和分公式:
设(un),(v)为两个数列,令 sn=u1+......+un,则
上面两个公式分别是莱布尼慈导微公式 D(uv)=(Du)v+u(Dv),及莱布尼慈差分公式 的结论.注意到,这两个莱布尼慈公式,一个很对称,另一个则不然.
(丁)复利与连续复利 (这也分别是离散与连续之间的类推)
(一) 复利的问题是这样的:有本金 y0,年利率 r,每年复利一次,要问 n 年后的本利和 yn= 显然这个数列满足差分方程 yn+1=yn(1+r)
根据(丙)之(二)得知 yn=y0(1+r)n 这就是复利的公式.
(二) 若考虑每年复利 m 次,则 t 年后的本利和应为
令 ,就得到连续复利的概念,此时本利和为y(t)=y0ert
换句话说,连续复利时,t 时刻的本利和 y(t)=y0ert 就是微分方程 y'=ry 的解答.
由上述我们看出离散复利问题由差分方程来描述,而连续复利的问题由微分方程来描述.对于常系数线性的差分方程及微分方程,解方程式的整个要点就是叠合原理,因此求解的办法具有完全平行的类推.
(戊)Fubini 重和分定理与 Fubini 重积分定理(也是离散与连续之间的类推)
(一) Fubini 重和分定理:给一个两重指标的数列 (ars),我们要从 r=1 到 m,s=1到 n, 对 (ars) 作和 ,则这个和可以这样求得:光对 r 作和再对 s 作和(反过来亦然).亦即我们有
(二)Fubini 重积分定理:设 f(x,y) 为定义在 上之可积分函数,则
当然,变数再多几个也都一样.
(己)Lebesgue 积分的概念
(一) 离散的情形:给一个数列 (an),我们要估计和 ,Lebesgue 的想法是,不管这堆数据指标的顺序,我们只按数值的大小来分堆,相同的分在一堆,再从每一堆中取一个数值,乘以该堆的个数,整个作和起来,这就得到总和.
(二)连续的情形:给一个函数 f,我们要定义曲线 y=f(x) 跟 X 轴从 a 到 b 所围出来的面积.
Lebesgue 的想法是对 f 的影域 作分割:
函数值介 yi-1 到 yi 之间的 x 收集在一齐,令其为 , 于是 [a,b] 就相应分割成 ,取样本点 ,作近似和
让影域的分割加细,上述近似和的极限若存在的话,就叫做 f 在 [a,b] 上的 Lebesgue 积分.
泰勒公式的余项
泰勒余项可以写成以下几种不同的形式:
&&1.佩亚诺余项;
&&2.施勒米尔希-罗什余项;
&&3.拉格朗日余项;
&&4.柯西余项;
&&5.积分余项。
18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor), 于1685 年8月18日在米德尔塞克斯的埃德蒙顿出生。1709年后移居伦敦,获法学硕士学位。他在 1712年当选为英国皇家学 会会员,并于两年后获法学博士学位。同年(即1714年)出任英国皇家学会秘书,四年 后因健康理由辞退职务。1717年,他以泰勒定理求解了数值方程。 最后在月29日于伦敦逝世。
泰勒的主要著作是1715年出版的《正 的和反的增量方法》,书内以下列形式陈述出他已于 1712年7月给其老师梅钦(数学家、天文学家)信中首先提出的著名定理——泰勒定理:式内v为独立变量的增量, 及 为流数。他假定z随时间均匀变化,则 为常数。上述公式以现代形式表示则为:这公式是从格雷戈里-牛顿插值公式发展而成 的,当x=0时便称作马克劳林定理。1772年 ,拉格朗日强调了此公式之重要性,而且称之为微分学基本定理,但泰勒于证明当中并没有考虑 级数的收敛性,因而使证明不严谨, 这工作直至十九世纪二十年代才由柯西完成。
泰勒定理开创 了有限差分理论,使任何单变量 函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者 。 泰勒于书中还讨论了微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要 。他透过求解方程 导出了基本频率公式,开创了研究弦振问题之先 河。此外,此书还包括了他于数学上之其他创造性工作,如论述常微分方程的奇异解,曲率 问题之研究等。
1715年,他出版了另一名著《线性透 视论》,更发表了再版的《线性透视原理》(1719) 。他以极严密之形式展开其线性透视学体系,其中最突出之贡献是提出和使用「没影点」概念, 这对摄影测量制图学之发展有 一定影响。另外,还撰有哲学遗作,发表于1793年。
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
:) :) :) :) :) :) :) :)
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
数环(number&&ring)
数环定义 设S是复数集的非空子集。如果S中的数对任意两个数的和、差、积仍属于S,则称S是一个数环。例如整数集Z就是一个数环。
性质1&&任何数环都包含数零(即零环是最小的数环)。
性质2&&设S是一个数环。若a∈S ,则na∈S(n∈Z)。
性质3&&若M,N都是数环,则M∩N也是数环。
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
完全平方数
(一)完全平方数的性质
一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数,也叫做平方数。例如:
0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441,484,…
观察这些完全平方数,可以获得对它们的个位数、十位数、数字和等的规律性的认识。下面我们来研究完全平方数的一些常用性质:
性质1:完全平方数的末位数只能是0,1,4,5,6,9。
性质2:奇数的平方的个位数字为奇数,十位数字为偶数。
证明 奇数必为下列五种形式之一:
10a+1, 10a+3, 10a+5, 10a+7, 10a+9
分别平方后,得
(10a+1)=100+20a+1=20a(5a+1)+1
(10a+3)=100+60a+9=20a(5a+3)+9
(10a+5)=100+100a+25=20 (5a+5a+1)+5
(10a+7)=100+140a+49=20 (5a+7a+2)+9
(10a+9)=100+180a+81=20 (5a+9a+4)+1
综上各种情形可知:奇数的平方,个位数字为奇数1,5,9;十位数字为偶数。
性质3:如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数。
证明 已知=10k+6,证明k为奇数。因为的个位数为6,所以m的个位数为4或6,于是可设m=10n+4或10n+6。则
10k+6=(10n+4)=100+(8n+1)x10+6
或 10k+6=(10n+6)=100+(12n+3)x10+6
即 k=10+8n+1=2(5+4n)+1
或 k=10+12n+3=2(5+6n)+3
∴ k为奇数。
推论1:如果一个数的十位数字是奇数,而个位数字不是6,那么这个数一定不是完全平方数。
推论2:如果一个完全平方数的个位数字不是6,则它的十位数字是偶数。
性质4:偶数的平方是4的倍数;奇数的平方是4的倍数加1。
这是因为 (2k+1)=4k(k+1)+1
性质5:奇数的平方是8n+1型;偶数的平方为8n或8n+4型。
在性质4的证明中,由k(k+1)一定为偶数可得到(2k+1)是8n+1型的数;由为奇数或偶数可得(2k)为8n型或8n+4型的数。
性质6:平方数的形式必为下列两种之一:3k,3k+1。
因为自然数被3除按余数的不同可以分为三类:3m,3m+1, 3m+2。平方后,分别得
(3m+1)=9+6m+1=3k+1
(3m+2)=9+12m+4=3k+1
同理可以得到:
性质7:不能被5整除的数的平方为5k±1型,能被5整除的数的平方为5k型。
性质8:平方数的形式具有下列形式之一:16m,16m+1, 16m+4,16m+9。
除了上面关於个位数,十位数和余数的性质之外,还可研究完全平方数各位数字之和。例如,256它的各位数字相加为2+5+6=13,13叫做256的各位数字和。如果再把13的各位数字相加:1+3=4,4也可以叫做256的各位数字的和。下面我们提到的一个数的各位数字之和是指把它的各位数字相加,如果得到的数字之和不是一位数,就把所得的数字再相加,直到成为一位数为止。我们可以得到下面的命题:
一个数的数字和等於这个数被9除的余数。
下面以四位数为例来说明这个命题。
设四位数为,则
= 999a+99b+9c+(a+b+c+d)
= 9(111a+11b+c)+(a+b+c+d)
显然,a+b+c+d是四位数被9除的余数。
对於n位数,也可以仿此法予以证明。
关於完全平方数的数字和有下面的性质:
性质9:完全平方数的数字之和只能是0,1,4,7,9。
证明 因为一个整数被9除只能是9k,9k±1, 9k±2, 9k±3, 9k±4这几种形式,而
(9k)=9(9)+0
(9k±1)=9(9±2k)+1
(9k±2)=9(9±4k)+4
(9k±3)=9(9±6k)+9
(9k±4)=9(9±8k+1)+7
除了以上几条性质以外,还有下列重要性质:
性质10:为完全平方数的充要条件是b为完全平方数。
证明 充分性:设b为平方数,则
必要性:若为完全平方数,=,则
性质11:如果质数p能整除a,但不能整除a,则a不是完全平方数。
证明 由题设可知,a有质因数p,但无因数,可知a分解成标准式时,p的次方为1,而完全平方数分解成标准式时,各质因数的次方均为偶数,可见a不是完全平方数。
性质12:在两个相邻的整数的平方数之间的所有整数都不是完全平方数,即若
则k一定不是完全平方数。
性质13:一个正整数n是完全平方数的充分必要条件是n有奇数个因数(包括1和n本身)。
(二)重要结论
1.个位数是2,3,7,8的整数一定不是完全平方数;
2.个位数和十位数都是奇数的整数一定不是完全平方数;
3.个位数是6,十位数是偶数的整数一定不是完全平方数;
4.形如3n+2型的整数一定不是完全平方数;
5.形如4n+2和4n+3型的整数一定不是完全平方数;
6.形如5n±2型的整数一定不是完全平方数;
7.形如8n+2, 8n+3, 8n+5, 8n+6,8n+7型的整数一定不是完全平方数;
8.数字和是2,3,5,6,8的整数一定不是完全平方数。
[例1]:一个自然数减去45及加上44都仍是完全平方数,求此数。
解:设此自然数为x,依题意可得
(m,n为自然数)
(2)-(1)可得
但89为质数,它的正因数只能是1与89,於是。解之,得n=45。代入(2)得。故所求的自然数是1981。
[例2]:求证:四个连续的整数的积加上1,等于一个奇数的平方(1954年基辅数学竞赛题)。
分析 设四个连续的整数为,其中n为整数。欲证
是一奇数的平方,只需将它通过因式分解而变成一个奇数的平方即可。
证明 设这四个整数之积加上1为m,则
而n(n+1)是两个连续整数的积,所以是偶数;又因为2n+1是奇数,因而n(n+1)+2n+1是奇数。这就证明了m是一个奇数的平方。
[例3]:求证:11,111,1111,这串数中没有完全平方数(1972年基辅数学竞赛题)。
分析 形如的数若是完全平方数,必是末位为1或9的数的平方,即
在两端同时减去1之后即可推出矛盾。
证明 若,则
因为左端为奇数,右端为偶数,所以左右两端不相等。
因为左端为奇数,右端为偶数,所以左右两端不相等。
综上所述,不可能是完全平方数。
另证 由为奇数知,若它为完全平方数,则只能是奇数的平方。但已证过,奇数的平方其十位数字必是偶数,而十位上的数字为1,所以不是完全平方数。
[例4]:试证数列49,, 的每一项都是完全平方数。
=4()(9+1)+8+1
=36 ()+12+1
即为完全平方数。
[例5]:用300个2和若干个0组成的整数有没有可能是完全平方数?
解:设由300个2和若干个0组成的数为A,则其数字和为600
3|600 ∴3|A
此数有3的因数,故9|A。但9|600,∴矛盾。故不可能有完全平方数。
[例6]:试求一个四位数,它是一个完全平方数,并且它的前两位数字相同,后两位数字也相同(1999小学数学世界邀请赛试题)。
解:设此数为
此数为完全平方,则必须是11的倍数。因此11|a + b,而a,b为0,1,2,9,故共有(2,9), (3,8), (4,7),(9,2)等8组可能。
直接验算,可知此数为7744=88。
[例7]:求满足下列条件的所有自然数:
(1)它是四位数。
(2)被22除余数为5。
(3)它是完全平方数。
解:设,其中n,N为自然数,可知N为奇数。
11|N - 4或11|N + 4
所以此自然数为, , 。
[例8]:甲、乙两人合养了n头羊,而每头羊的卖价又恰为n元,全部卖完后,两人分钱方法如下:先由甲拿十元,再由乙拿十元,如此轮流,拿到最后,剩下不足十元,轮到乙拿去。为了平均分配,甲应该补给乙多少元(第2届“祖冲之杯”初中数学邀请赛试题)?
解:n头羊的总价为元,由题意知元中含有奇数个10元,即完全平方数的十位数字是奇数。如果完全平方数的十位数字是奇数,则它的个位数字一定是6。所以,的末位数字为6,即乙最后拿的是6元,从而为平均分配,甲应补给乙2元。
[例9]:矩形四边的长度都是小於10的整数(单位:公分),这四个长度数可构成一个四位数,这个四位数的千位数字与百位数字相同,并且这四位数是一个完全平方数,求这个矩形的面积(1986年缙云杯初二数学竞赛题)。
解:设矩形的边长为x,y,则四位数
∵N是完全平方数,11为质数 ∴x+y能被11整除。
又 ,得x+y=11。
∴∴9x+1是一个完全平方数,而,验算知x=7满足条件。又由x+y=11得。
[例10]:求一个四位数,使它等於它的四个数字和的四次方,并证明此数是唯一的。
解:设符合题意的四位数为,则,∴为五位数,为三位数,∴。经计算得,其中符合题意的只有2401一个。
[例11]:求自然数n,使的值是由数字0,2,3,4,4,7,8,8,9组成。
解:显然,。为了便於估计,我们把的变化范围放大到,於是,即。∵,∴。
另一方面,因已知九个数码之和是3的倍数,故及n都是3的倍数。这样,n只有24,27,30三种可能。但30结尾有六个0,故30不合要求。经计算得
故所求的自然数n = 27。
(四)讨论题
1.(1986年第27届IMO试题)
设正整数d不等於2,5,13,求证在集合{2,5,13,d}中可以找到两个不同的元素a , b,使得ab -1不是完全平方数。
2.求k的最大值
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
在抽象代数里,一个体L的子集S若被称做代数独立於一子体K的话,表示S内的元素都不符合系数包含在K内的非当然多项式。这表示任何以S内元素排成的有限序列α1, ..., αn(没有两个是一样的)和任一系数包含在K的非零多项式P(x1, ..., xn),都会得到 P(α1,...,αn) ≠ 0 的结果。特别的是,单元素集合 {α} 若是代数独立於K的话,若且唯若α会是K内的超越数或超越函数。一般而言,和於K代数独立集合的所有元素也必然会是K内的超越数或超越函数,但反之则不必然。举例来说,实数R的子集{√π, 2π+1}并不代数独立於有理数Q,当存在一非零多项式 P(x_1,x_2)=2x^2_1-x_2+1 当x1代入√π和x2代入2π+1时会变成零。林德曼-维尔斯特拉斯定理时常用做证明某些函数会代数独立於有理数。其内容为,当α1,...,αn为线性独立於有理数的代数数时,eα1,..., eαn便会代数独立於有理数。现在依然没有证明出集合{π, e}是否代数独立於有理数。Nesterenko在1996年证明了{π, eπ, Γ是代数独立於有理数的。给定一体扩张L/K,我们可以利用佐恩引理来证明总是存在一L的最大代数独立子集於K。甚至,所有个最大代数独立子集都会有相同的基数,称之为此一体扩张的超越次数。
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
反比例函数
形如 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:
反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
如图,上面给出了k分别为正和负(2和-2)时的函数图像。
当K>0时,反比例函数图像经过一,三象限,是减函数
当K<0时,反比例函数图像经过二,四象限,是增函数
反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为| k |。
2.对于双曲线y=k/x ,若在分母上加减任意一个实数 (即 y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
半群是一种特殊的代数系统,在形式语言,自动机等领域都有具体应用。
定义1&&&S, *&为一个代数系统,集S 不空。若*是S上的二元运算(封闭),则称&S, *&为广群。
定义2&&若&S, *&为广群,且*在S上可结合,则称&S, *&为半群。
定理1&&设&S, *&是一个半群,B包含于S且*在B上封闭,则&B, *&也是一个半群,通常称为&S, *&的子半群。
定理2&&若&S, *&为半群,且S是有限集,则必有元a∈S, 使a*a=a。
定理说明有限半群必有幂等元。
定义3&&含有么元的半群称为独异点。有时独异点也记&S, *, e&。
定理3&&设&S, *&为独异点,则关于*的运算表中任何两行或两列都不同。
定理4&&&S, *& 为独异点,若对任a, b∈S,且a, b有逆元aˉ1, bˉ1,&&则
1)(aˉ1)ˉ1 = a
2)a*b有逆且(a*b)ˉ1 = bˉ1 * aˉ1。
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
算式 suàn shì
  在数学中,算式是指在进行数(或代数式)的计算时所列出的式子,包括数(或代替数的字母)和运算符号两部分。按照计算方法的不同,算式一般分为横式和竖式两种。
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
所谓数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。
1.函数思想:
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法。
2.数形结合思想:
把代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答,这种方法在解析几何里最常用。例如求根号((a-1)^2+(b-1) ^2)+根号(a^2+(b-1)^2)+根号((a-1)^2+b^2)+根号(a^2+b^2)的最小值,就可以把它放在坐标系中,把它转化成一个点到(0,1)、(1,0)、(0,0)、(1,1)四点的距离,就可以求出它的最小值。
3.分类讨论思想:
当一个问题因为某种量的情况不同而有可能引起问题的结果不同时,需要对这个量的各种情况进行分类讨论。比如解不等式|a-1|&4的时候,就要讨论a的取值情况。
4.方程思想:
当一个问题可能与某个方程建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。例如证明柯西不等式的时候,就可以把柯西不等式转化成一个二次方程的判别式。
另外,还有归纳类比思想、转化归纳思想、概率统计思想等数学思想,例如利用归纳类比思想可以对某种相类似的问题进行研究而得出他们的共同点,从而得出解决这些问题的一般方法。转化归纳思想是把一个较复杂问题转化为另一个较简单的问题并且对其方法进行归纳。概率统计思想是指通过概率统计解决一些实际问题,如摸奖的中奖率、某次考试的综合分析等等。另外,还可以用概率方法解决一些面积问题。
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
  许凯是最先考察负数开平方运算的人,在 1484年,他在解方程4+x2=3x时得到的x值,如以现代的符号表示他的成果,即 x=3/2±√5/2-4,由于5/2-4是负数,所以他认为不可能解这方程。
& && &&&而第一个对负数开方运算进行研究并得到 虚数及其运算方法的人是卡尔达诺,在1545年,在他所著的《大术》中,记载了以下的乘法运算:
  当中相等于根号, m是减(即负),表示√-15,这就是最早表示虚数的方法。当时, 他称负数的平方根为「诡辩量」,并且怀疑运算这些数的合理性,因此,卡尔达诺称正数的根为真实的根(real root),负数的根为虚构的根(fictitious root)。但实和虚的用法与现代的不同。
& && &&&1637年,在笛卡儿的《几何学》一书中第 一次出现了虚数的名称。「imaginaires」代表虚的,及「reelles」代表实的。   
& && &&&1777年,欧拉在一篇递交给彼得堡科学院 的论文《微分公式》中首次以i来表示√-1,但很少人注意到。直到1801年,高斯才有系统 地使用这个符号,并沿用至今。
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
英语论坛,有您的参与更精彩.cn/discuz/forumdisplay.php?fid=20
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
英语论坛,有您的参与更精彩.cn/discuz/forumdisplay.php?fid=20
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
英语论坛,有您的参与更精彩.cn/discuz/forumdisplay.php?fid=20
最后登录在线时间135 小时威望967 金币833 注册时间阅读权限50帖子精华36积分3220UID1027183
金牌会员, 积分 3220, 距离下一级还需 4780 积分
威望967 注册时间积分3220精华36帖子
:) :) :) :) :) :) :) :) :) :) :) :)
英语论坛,有您的参与更精彩.cn/discuz/forumdisplay.php?fid=20
最后登录在线时间238 小时威望59 金币42 注册时间阅读权限30帖子精华1积分587UID897766
中级会员, 积分 587, 距离下一级还需 413 积分
威望59 注册时间积分587精华1帖子
:hug: 应该顶呀
Powered by}

我要回帖

更多关于 x的n次方减一分解 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信