设O为△ABC内一点,AB=AC, ∠...

当前位置:
>>>已知O是△ABC内部一点,OA+OB+OC=0,ABoAC=2且∠ABC=60°,则△OBC的..
已知O是△ABC内部一点,OA+OB+OC=0,ABoAC=2且∠ABC=60°,则△OBC的面积为______
题型:填空题难度:中档来源:不详
∵OA+OB+OC=0∴OA+OB=-OC∴O为三角形的重心∴△OBC的面积为△ABC面积的13∵ABoAC=2∴|AB|o|AC|cos∠BAC=2∵∠BAC=60°∴|AB|o|AC|=4△ABC面积为12|AB|o|AC|sin∠BAC=3∴△OBC的面积为33故答案为33
马上分享给同学
据魔方格专家权威分析,试题“已知O是△ABC内部一点,OA+OB+OC=0,ABoAC=2且∠ABC=60°,则△OBC的..”主要考查你对&&向量数量积的运算,平面向量的应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
向量数量积的运算平面向量的应用
两个向量数量积的含义:
如果两个非零向量,,它们的夹角为,我们把数量叫做与的数量积(或内积或点积),记作:,即。叫在上的投影。规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。 数量积的的运算律:
已知向量和实数λ,下面(1)(2)(3)分别叫做交换律,数乘结合律,分配律。(1);(2);(3)。向量数量积的性质:
设两个非零向量(1);(2);(3);(4);(5)当,同向时,;当与反向时,;当为锐角时,为正且,不同向,;当为钝角时,为负且,不反向,。 平面向量在几何、物理中的应用
1、向量在平面几何中的应用:(1)证明线段相等平行,常运用向量加法的三角形法则、平行四边形法则,有时也用到向量减法的定义;(2)证明线段平行,三角形相似,判断两直线(或线段)是否平行,常运用到向量共线的条件;(3)证明垂直问题,常用向量垂直的充要条件;1、向量在三角函数中的应用: (1)以向量为载体研究三角函数中最值、单调性、周期等三角函数问题;(2)通过向量的线性运算及数量积、共线来解决三角形中形状的判断、边角的大小与关系。2、向量在物理学中的应用: 由于力、速度是向量,它们的分解与合成与向量的加法相类似,可以用向量方法来解决,力做的功就是向量中数量积的一种体现。3、向量在解析几何中的应用:(1)以向量为工具研究平面解析几何中的坐标、性质、长度等问题;(2)以向量知识为工具研究解析几何中常见的轨迹与方程问题。 平面向量在几何、物理中的应用
1、用向量解决几何问题的步骤: (1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面问题转化为向量问题; (2)通过向量运算,研究几何元素之间的关系,如:距离,夹角等; (3)把运算结果“翻译”成几何关系。 2、用向量中的有关知识研究物理中的相关问题,步骤如下: (1)问题的转化,即把物理问题转化为数学问题; (2)模型的建立,即建立以向量为主题的数学模型; (3)求出数学模型的有关解; (4)将问题的答案转化为相关的物理问题。
发现相似题
与“已知O是△ABC内部一点,OA+OB+OC=0,ABoAC=2且∠ABC=60°,则△OBC的..”考查相似的试题有:
413521409053452188525341496082281092当前位置:
>>>已知:如图,在△ABC中,AB=AC,∠BAC=,且60°&&120°.P为△A..
已知:如图,在△ABC中,AB=AC,∠BAC=,且60°&&120°.P为△ABC内部一点,且PC=AC,∠PCA=120°—.(1)用含的代数式表示∠APC,得∠APC =_______________________;(2)求证:∠BAP=∠PCB;(3)求∠PBC的度数.
题型:解答题难度:中档来源:不详
(1)∠APC.&&&&(2)证明:∵CA=CP, ∴∠1=∠2=. ∴∠3=∠BAC-∠1==.
∵AB=AC, ∴∠ABC=∠ACB==. ∴∠4=∠ACB-∠5==.
∴∠3=∠4.即∠BAP=∠PCB.&&&&&&&&&&&&&&&&&&&&&&&&(3)解法一:在CB上截取CM使CM=AP,连接PM(如图6). ∵PC=AC,AB=AC,∴PC=AB.在△ABP和△CPM中,&&&&&&&&&& AB=CP,∠3=∠4, AP=CM,∴△ABP≌△CPM. ∴∠6=∠7, BP=PM. ∴∠8=∠9. ∵∠6=∠ABC-∠8,∠7=∠9-∠4,∴∠ABC-∠8=∠9-∠4.即()-∠8=∠9-(). ∴ ∠8+∠9=. ∴2∠8=. ∴∠8=.即∠PBC=.&&&&&&&&&&&&&&&&&&&&&&&&解法二:作点P关于BC的对称点N,连接PN、AN、BN和CN(如图7).&则△PBC和△NBC关于BC所在直线对称.∴△PBC≌△NBC.∴BP=BN,CP=CN,∠4=∠6=,∠7=∠8.∴∠ACN=∠5+∠4+∠6==.∵PC=AC, ∴AC=NC. ∴△CAN为等边三角形. ∴AN=AC,∠NAC=. ∵AB=AC,∴AN=AB.∵∠PAN=∠PAC-∠NAC=()-=,∴∠PAN=∠3.在△ABP和△ANP中,&&&&&&&&&& AB=AN,∠3=∠PAN, AP=AP,∴△ABP≌△ANP. ∴PB=PN. ∴△PBN为等边三角形. ∴∠PBN=. ∴∠7=∠PBN =.即∠PBC=.&&&&&&&&&&&&&&此题主要考查三角形内角和定理及等腰三角形的性质的综合运用,综合性较强。
马上分享给同学
据魔方格专家权威分析,试题“已知:如图,在△ABC中,AB=AC,∠BAC=,且60°&&120°.P为△A..”主要考查你对&&相似多边形的性质,相似三角形的判定,相似三角形的性质,相似三角形的应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
相似多边形的性质相似三角形的判定相似三角形的性质相似三角形的应用
相似多边形:如果两个边数相同的多边形的对应角相等,对应边成比例,这两个或多个多边形叫做相似多边形,相似多边形对应边的比叫做相似比。(或相似系数)判定:如果对应角相等,对应边成比例的多边形是相似多边形.如果所有对应边成比例,那么这两个多边形相似相似多边形的性质:相似多边形的性质定理1:相似多边形周长比等于相似比。相似多边形的性质定理2:相似多边形对应对角线的比等于相似比。相似多边形的性质定理3:相似多边形中的对应三角形相似,其相似比等于相似多边形的相似比。相似多边形的性质定理4:相似多边形面积的比等于相似比的平方。相似多边形的性质定理5:若相似比为1,则全等。相似多边形的性质定理6:相似三角形的对应线段(边、高、中线、角平分线)成比例。相似多边形的性质定理7:相似三角形的对应角相等,对应边成比例。相似多边形的性质定理主要根据它的定义:对应角相等,对应边成比例。相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。互为相似形的三角形叫做相似三角形。例如图中,若B'C'//BC,那么角B=角B',角BAC=角B'A'C',是对顶角,那么我们就说△ABC∽△AB'C'相似三角形的判定:1.基本判定定理(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。2.直角三角形判定定理(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。3.一定相似:(1).两个全等的三角形(全等三角形是特殊的相似三角形,相似比为1:1)(2).两个等腰三角形(两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。) (3).两个等边三角形(两个等边三角形,三个内角都是60度,且边边相等,所以相似) (4).直角三角形中由斜边的高形成的三个三角形。相似三角形判定方法:证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。一、(预备定理)平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明)二、如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。三、如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似。& 四、如果两个三角形的三组对应边成比例,那么这两个三角形相似五(定义)对应角相等,对应边成比例的两个三角形叫做相似三角形六、两三角形三边对应垂直,则两三角形相似。七、两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。八、由角度比转化为线段比:h1/h2=Sabc易失误比值是一个具体的数字如:AB/EF=2而比不是一个具体的数字如:AB/EF=2:1相似三角形性质定理:(1)相似三角形的对应角相等。(2)相似三角形的对应边成比例。(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。(4)相似三角形的周长比等于相似比。(5)相似三角形的面积比等于相似比的平方。(6)相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方(7)若a/b =b/c,即b2=ac,b叫做a,c的比例中项(8)c/d=a/b 等同于ad=bc.(9)不必是在同一平面内的三角形里①相似三角形对应角相等,对应边成比例.②相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.③相似三角形周长的比等于相似比
定理推论:推论一:顶角或底角相等的两个等腰三角形相似。推论二:腰和底对应成比例的两个等腰三角形相似。推论三:有一个锐角相等的两个直角三角形相似。推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。相似三角形的应用:应用相似三角形的判定、性质等知识去解决某些简单的实际问题(计算不能直接测量物体的长度和高度)。
发现相似题
与“已知:如图,在△ABC中,AB=AC,∠BAC=,且60°&&120°.P为△A..”考查相似的试题有:
705486691949713414699233727513719648在△abc中,ab=ac.o为△abc内一点,bo=co,连接ao与bc有什么关系?说明理由
znxdlyufgo
答ao与bc的关系为ao是bc的垂直平分线平分bc原因bo与co相等并且ao的任意一点到bc的距离相等因为ab=ac
为您推荐:
其他类似问题
扫描下载二维码当前位置:
>>>在Rt△ABC中,∠C=90°,AC=1,BC=,点O为Rt△ABC内一点,连接A0、BO..
在Rt△ABC中,∠C=90°,AC=1,BC=,点O为Rt△ABC内一点,连接A0、BO、CO,且∠AOC=∠COB=BOA=120°,按下列要求画图(保留画图痕迹):以点B为旋转中心,将△AOB绕点B顺时针方向旋转60°,得到△A′O′B(得到A、O的对应点分别为点A′、O′),并回答下列问题:∠ABC= &&& ,∠A′BC= &&& ,OA+OB+OC= &&& .
题型:解答题难度:中档来源:不详
解:作图如下:30°;90°;。试题分析:按题意作图。∵∠C=90°,AC=1,BC=,∴。∴∠ABC=30°。∵△AOB绕点B顺时针方向旋转60°,∴∠A′BC=∠ABC+60°=30°+60°=90°。∵∠C=90°,AC=1,∠ABC=30°,∴AB=2AC=2。∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,∴A′B=AB=2,BO=BO′,A′O′=AO。∴△BOO′是等边三角形。∴BO=OO′,∠BOO′=∠BO′O=60°。∵∠AOC=∠COB=BOA=120°,∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°。∴C、O、A′、O′四点共线。在Rt△A′BC中,。
马上分享给同学
据魔方格专家权威分析,试题“在Rt△ABC中,∠C=90°,AC=1,BC=,点O为Rt△ABC内一点,连接A0、BO..”主要考查你对&&轴对称,用坐标表示平移,平移,尺规作图&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
轴对称用坐标表示平移平移尺规作图
轴对称的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合 ,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等;(3)关于某直线对称的两个图形是全等图形。轴对称的判定:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。这样就得到了以下性质: 1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。 2.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 3.线段的垂直平分线上的点与这条线段的两个端点的距离相等。  4.对称轴是到线段两端距离相等的点的集合。
轴对称作用:可以通过对称轴的一边从而画出另一边。 可以通过画对称轴得出的两个图形全等。 扩展到轴对称的应用以及函数图像的意义。
轴对称的应用:关于平面直角坐标系的X,Y对称意义如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数。 相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变。
关于二次函数图像的对称轴公式(也叫做轴对称公式 )设二次函数的解析式是 y=ax2+bx+c 则二次函数的对称轴为直线 x=-b/2a,顶点横坐标为 -b/2a,顶点纵坐标为 (4ac-b2)/4a
在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。譬如,等腰三角形经常添设顶角平分线;矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;正方形,菱形问题经常添设对角线等等。另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中。平移:把一个图形整体沿某一方向移动一定的距离, 图形的这种移动,叫做平移。平移后图形的位置改变,形状、大小不变。在平面直角坐标系内:如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。图形平移与点的坐标变化之间的关系:(1)左右平移:原图形上的点(x、y),向右平移a个单位(x+a,y);原图形上的点(x、y),向左平移a个单位(x-a,y);(2)上、下平移:原图形上的点(x、y),向上平移a个单位(x,y+b);原图形上的点(x、y),向下平移a个单位(x,y-b)。定义:将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移是图形变换的一种基本形式。平移不改变图形的形状和大小,平移可以不是水平的。 平移基本性质:经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。(1)图形平移前后的形状和大小没有变化,只是位置发生变化;(2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等(3)多次连续平移相当于一次平移。(4)偶数次对称后的图形等于平移后的图形。(5)平移是由方向和距离决定的。这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移平移的条件:确定一个平移运动的条件是平移的方向和距离。
平移的三个要点1 原来的图形的形状和大小和平移后的图形是全等的。2 平移的方向。(东南西北,上下左右,东偏南n度,东偏北n度,西偏南n度,西偏北n度)3 平移的距离。(长度,如7厘米,8毫米等)
平移作用:1.通过简单的平移可以构造精美的图形。也就是花边,通常用于装饰,过程就是复制-平移-粘贴。2.平移长于平行线有关,平移可以将一个角,一条线段,一个图形平移到另一个位置,是分散的条件集中到一个图形上,使问题得到解决。平移作图的步骤:(1)找出能表示图形的关键点;(2)确定平移的方向和距离;(3)按平移的方向和距离确定关键点平移后的对应点;(4)按原图的顺序,连结各对应点。 尺规作图:是指限定用没有刻度的直尺和圆规来完成的画图。一把没有刻度的直尺看似不能做什么,画一个圆又不知道它的半径,画线段又没有精确的长度。其实尺规作图的用处很大,比如单用圆规找出一个圆的圆心,量度一个角的角度,等等。运用尺规作图可以画出与某个角相等的角,十分方便。 尺规作图的中基本作图:作一条线段等于已知线段;作一个角等于已知角;作线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线。 还有:已知一角、一边做等腰三角形已知两角、一边做三角形已知一角、两边做三角形依据公理:还可以根据已知条件作三角形,一般分为已知三边作三角形,已知两边及夹角作三角形,已知两角及夹边作三角形等,作图的依据是全等三角形的判定定理:SSS,SAS,ASA等。 注意:保留全部的作图痕迹,包括基本作图的操作程序,只有保留作图痕迹,才能反映出作图的操作是否合理。 尺规作图方法:任何尺规作图的步骤均可分解为以下五种方法:·通过两个已知点可作一直线。·已知圆心和半径可作一个圆。·若两已知直线相交,可求其交点。·若已知直线和一已知圆相交,可求其交点。·若两已知圆相交,可求其交点。尺规作图简史:“规”就是圆规,是用来画圆的工具,在我国古代甲骨文中就有“规”这个字.“矩”就像现在木工使用的角尺,由长短两尺相交成直角而成,两者间用木杠连接以使其牢固,其中短尺叫勾,长尺叫股.矩的使用是我国古代的一个发明,山东历城武梁祠石室造像中就有“伏羲氏手执矩,女娲氏手执规”之图形.矩不仅可以画直线、直角,加上刻度可以测量,还可以代替圆规.甲骨文中也有矩字,这可追溯到大禹治水(公元前2000年)前.《史记》卷二记载大禹治水时“左准绳,右规矩”.赵爽注《周髀算经》中有“禹治洪水,……望山川之形,定高下之势,……乃勾股之所由生也.”意即禹治洪水,要先测量地势的高低,就必定要用勾股的道理.这也说明矩起源于很远的中国古代.春秋时代也有不少著作涉及规矩的论述,《墨子》卷七中说“轮匠(制造车子的工匠)执其规矩,以度天下之方圆.”《孟子》卷四中说“离娄(传说中目力非常强的人)之明,公输子(即鲁班,传说木匠的祖师)之巧,不以规矩,不能成方圆.”可见,在春秋战国时期,规矩已被广泛地用于作图、制作器具了.由于我国古代的矩上已有刻度,因此使用范围较广,具有较大的实用性.古代希腊人较重视规、矩在数学中训练思维和智力的作用,而忽视规矩的实用价值.因此,在作图中对规、矩的使用方法加以很多限制,提出了尺规作图问题.所谓尺规作图,就是只有限次地使用没有刻度的直尺和圆规进行作图.古希腊的安那萨哥拉斯首先提出作图要有尺寸限制.他因政治上的纠葛,被关进监狱,并被判处死刑.在监狱里,他思考改圆成方以及其他有关问题,用来打发令人苦恼的无所事事的生活.他不可能有规范的作图工具,只能用一根绳子画圆,用随便找来的破木棍作直尺,当然这些尺子上不可能有刻度.另外,对他来说,时间是不多了,因此他很自然地想到要有限次地使用尺规解决问题.后来以理论形式具体明确这个规定的是欧几里德的《几何原本》.由于《几何原本》的巨大影响,希腊人所崇尚的尺规作图也一直被遵守并流传下来.由于对尺规作图的限制,使得一些貌似简单的几何作图问题无法解决.最著名的是被称为几何三大问题的三个古希腊古典作图难题:立方倍积问题、三等分任意角问题和化圆为方问题.当时很多有名的希腊数学家,都曾着力于研究这三大问题,虽然借助于其他工具或曲线,这三大难题都可以解决,但由于尺规作图的限制,却一直未能如愿以偿.以后两千年来,无数数学家为之绞尽脑汁,都以失败而告终.直到1637年笛卡尔创立了解析几何,关于尺规作图的可能性问题才有了准则.到了1837年万芝尔首先证明立方倍积问题和三等分任意角问题都属于尺规作图不可能问题.1882年林德曼证明了π是无理数,化圆为方问题不可能用尺规作图解决,这才结束了历时两千年的数学难题公案.
发现相似题
与“在Rt△ABC中,∠C=90°,AC=1,BC=,点O为Rt△ABC内一点,连接A0、BO..”考查相似的试题有:
702628676544359983435065380541714405如图,在△ABC中,AB=AC,∠BAC=80°,O为△ABC内一点,且∠OBC=10°,∠OCA=20°,求∠BAO的度数.
【淼淼】241
作∠BAC的角平分线与CO的延长线交于点D,连接BD,∵∠BAD=∠DAC,AB=AC,AD=AD,∴△ABD≌△ACD,∴BD=CD,∠ABD=∠ACD,∴∠DBC=∠DCB,∵∠BAC=80°(已知),∴∠ABC=∠ACB=50°(三角形内角和定理);又∠OCA=20°,∴∠ABD=∠ACD=20°,∠OBD=∠ABC﹣∠ABD﹣∠OBC=50°﹣20°﹣10°=20°=∠ABD,∠DOB=∠OBC+∠OCB=∠OBC+∠ABC﹣∠ACO=10°+50°﹣20°=40°=∠BAD,∴∠OBD=∠ABD,∠DOB=∠DAB,BD=BD,∴△ABD≌△OBD,∴AB=OB,∴∠BAO=∠AOB,∴∠BAO=
(180°﹣∠ABO)=
[180°﹣(∠ABC﹣∠OBC)]=
(180°﹣40°)=70°.
为您推荐:
扫描下载二维码}

我要回帖

更多关于 bac abc abc 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信