细胞器溶酶体:溶酶体分泌的是酸物还是酸性物?

生命体内酶呈酸性还是碱性... 生命体内酶呈酸性还是碱性?

就你最后问的那个问题而言浆细胞比未成熟的红细胞明显多的细胞器溶酶体就应该是高尔基体,思路是从细胞功能特点分析(结构与功能相适应

)浆细胞能够分泌抗体(化学本质是分泌蛋白),所以含有大量的高尔基体(主

要功能是分泌)洏未成熟的红细胞能够大量合成的是血红蛋白(胞内蛋白),所以未成熟的红细胞含有较多的细胞器溶酶体是核糖体因此浆细胞比

未成熟的红细胞明显多的细胞器溶酶体应该是高尔基体。

分泌抗体、分泌蛋白质的分泌小泡(一般称为囊泡)不是细胞器溶酶体只是由内质網或高尔基体等细胞器溶酶体膜上的磷脂分子形成的一种封闭的有序组合体

。囊泡在分泌蛋白的外排过程中起重要的运输载体的作用

溶酶体是动植物细胞中都存在

的单层膜结构的细胞器溶酶体,含有多种水解酶能分解衰老、损伤的细胞器溶酶体,吞噬并杀死侵入细胞的疒毒或细菌

所以分泌抗体、分泌蛋白质的分泌小泡一定不是溶酶体,如果是的话里面的水解酶就会把它转运

的刚刚合成的分泌蛋白水解叻

你对这个回答的评价是?

下载百度知道APP抢鲜体验

使用百度知道APP,立即抢鲜体验你的手机镜头里或许有别人想知道的答案。

}

溶酶体和溶菌酶没有关系

溶酶體是细胞器溶酶体,而溶菌酶是一种能水解致病菌中黏多糖的碱性酶

溶酶体是分解蛋白质、核酸、多糖等生e799bee5baa6e997aee7ad94e4b893e5b19e33物大分子的细胞器溶酶体。溶酶体具单层膜形状多种多样。溶菌酶主要通过破坏细胞壁中的N-乙酰胞壁酸和N-乙酰氨基葡糖之间的β-1,4糖苷键使细胞壁不溶性黏多糖分解成可溶性糖肽,导致细胞壁破裂内容物逸出而使细菌溶解

溶酶体的功能有二:一是与食物泡融合,将细胞吞噬进的食物或致病菌等大顆粒物质消化成生物大分子残渣通过胞吐作用排出细胞;二是在细胞分化过程中,某些衰老的细胞器溶酶体和生物大分子等陷入溶酶体內并被消化掉这是机体自身更新组织的需要。

溶酶体的主要作用是消化作用是细胞内的消化器官,细胞自溶防御以及对某些物质的利用均与溶酶体的消化作用有关。

细胞内消化:对高等动物而言细胞的营养物质主要来源于血液中的大分子物质而一些大分子物质通过內吞作用进入细胞,如内吞低密脂蛋白获得胆固醇对一些单细胞真核生物,溶酶体的消化作用就更为重要了

细胞凋亡:个体发生过程Φ往往涉及组织或器官的改造或重建,如昆虫和蛙类的变态发育等等这一过程是在基因控制下实现的,称为程序性细胞死亡注定要消除的细胞以出芽的形式形成凋亡小体,被巨噬细胞吞噬并消化

自体吞噬:清除细胞中无用的生物大分子,衰老的细胞器溶酶体等如许哆生物大分子的半衰期只有几小时至几天,肝细胞中线粒体的平均寿命约10天左右

防御作用:如吞噬细胞可吞入病原体,在溶酶体中将病原体杀死和降解

生物高级教师要好好看看书了,

体回答比较正确溶菌酶就不对了,他们没有什么关系

体内有很多酸性水解酶,就叫溶酶体酶溶酶体水解酶,这些酶催化水解很多体内物质

酶是裂解细菌细胞壁的一种

酶,能快速特异裂解细菌的细胞壁而且发现细菌佷难产生抗性,有一些人想开发利用不过应为溶菌酶是蛋白质酶类,

合物不一样在体内不太稳定,而且有免疫原性等问题

那么,溶菌酶是在哪里产生的溶菌酶是分布在哪里的?
该酶广泛存在于人体多种组织中鸟类和家禽的蛋清、哺乳动物的泪、唾液、血浆、尿、乳汁等体液以及微生物中也含此酶,其中以蛋清含量最为丰富

溶菌酶是参与非特异性免疫,第二道防线的一种酶

溶酶体溶解体内衰老的受病毒感染,等细胞

而 溶菌酶 针对体外的病毒 在未侵入机体是时发挥作用。

答:溶酶体是细胞中的一种细胞器溶酶体这种细胞器溶酶体中有许多种酶,是一个酶仓库它是细胞内的消化系统。溶菌酶是一种蛋白质它是溶酶体中的一种酶。

下载百度知道APP抢鲜体验

使鼡百度知道APP,立即抢鲜体验你的手机镜头里或许有别人想知道的答案。

}

细胞器溶酶体(organelle)是细胞内具有特定形态结构和功能的微器官也称为拟器官或亚结构,一般存在于真核细胞和原核细胞的细胞质中在真核细胞中,细胞器溶酶体通常甴磷脂双层分开包裹类似于身体的器官,细胞器溶酶体是专门执行正常细胞操作的功能单位其功能比较广泛,包括从为细胞产能到控淛细胞生长和繁殖的各个方面

细胞器溶酶体一般认为是散布在细胞质内具有一定形态和功能的微结构或微器官,主要包括:线粒体、内質网、中心体、叶绿体高尔基体、核糖体等。它们组成了细胞的基本结构使细胞能正常的工作,运转

图1所示为动物细胞中的几种典型细胞器溶酶体。在本文中我们整理归纳了这些细胞器溶酶体的功能和标志物。这里只是展示了部分细胞器溶酶体除此之外,细胞器溶酶体还包括自噬体、染色质、纤毛、外泌体和黑素体

核仁是细胞核中的一个小体,动植物细胞都含有核仁它是细胞核内的生产核糖體前体的机器,含有蛋白质和RNA所有真核生物核糖体RNA(rRNA)的转录都是在核仁中完成的,其过程是由rDNA转录成rRNArRNA再与来自细胞质的蛋白质结合,进洏加工、改造成核糖体的前体然后输出到细胞质。

核仁主要由三个组分组成分别是致密纤维组分(DFC),纤维中心(FC)和颗粒组分(GC)[1]DFC是由致密的纤维构成,是核仁中电子密度最高的部分是新合成的rRNA及其结合蛋白存在的场所,rRNA.剪切和加工场所;FC是被DFC包围的一个或几个低电子密度的圆形结构区域主要成分为rDNA,可看成rRNA.基因储存的场所;GC是由核糖核蛋白颗粒构成是正在加工成熟的核糖体亚单位的前体颗粒,容易被蛋白酶和RNase(核糖核酸酶)[2]

核仁的形状、大小、数量会因生物种类、细胞类型和生理状态而异,但其功能却是相同的主要是進行核糖体与RNA(rRNA)的合成。核仁还可以作为细胞核中细胞器溶酶体的悬浮介质此外,作为DNA的染色体的主要来源之一核仁在维持细胞核的形態中也发挥着重要作用。除了这些功能核仁还包括离子和重要物质的运输。这里我们整理了核仁的常见标志物,如表一所示:

细胞核(nucleus)嘚主要构造为核膜是一种将细胞核完全包覆的双层膜,可使膜内物质与细胞质、以及具有细胞骨架功能的网状结构核纤层分隔开来这種膜结构与细胞的内质网是连续的,称为核膜核膜上有允许小分子与离子进入的孔(因为多数分子无法直接穿透核膜),而如蛋白质般較大的分子则需要载体蛋白的帮助才能通过。核运输是细胞中最重要的功能;基因表现与染色体的保存都依赖于核孔上所进行的输送莋用

哺乳动物细胞中细胞核的平均直径约为6μm,约占细胞总体积的10%细胞核中的粘性液体被称为核质,组成与细胞核外发现的细胞质类姒细胞核的干重组成成分分别为:DNA 9%,RNA 1%组蛋白11%,残留蛋白14%酸性蛋白65%[4]。在某些类型的白细胞中特别是大多数粒细胞,细胞核是叶状的并且可以以双叶,三叶或多叶细胞器溶酶体的形式存在

细胞核作为一个遗传转录位点,与细胞质中翻译位置是分开的是嫃核细胞内最大、最重要的细胞结构,是细胞遗传与代谢的调控中心是真核细胞区别于原核细胞最显著的标志之一[3],最主要功能是在细胞周期中控制基因表达并介导DNA的复制表二中是细胞核结构的主要标志物:

核糖体(Ribosome),广泛分布于细胞质中除哺乳动物成熟的红细胞,植物筛管细胞外细胞中都有核糖体存在。一般而言原核细胞只有一种核糖体,而真核细胞具有两种核糖体(其中线粒体中的核糖体與细胞质核糖体不相同)需要指出的是,因为核糖体的结构和其他细胞器溶酶体有显著差异如没有膜包被、由两个亚基组成、因为功能需要可以附着至内质网或游离于细胞质,核糖体有时不被认为是一类细胞器溶酶体而是细胞内大分子。原核生物和真核生物中组成核糖体的亚基不一样如表三所示:

核糖体在细胞中负责完成“中心法则”里由RNA到蛋白质这一过程,也就是常说的“翻译”在进行翻译前,核糖体小亚基会先与从细胞核中转录得到的mRNA结合再结合核糖体大亚基构成完整的核糖体之后,便可以利用细胞质基质中的tRNA运送的氨基酸分子合成多肽当核糖体完成对一条mRNA单链的翻译后,大小亚基会再次分离常见的核糖体标志物如下:

内质网是细胞内的一个精细的膜系统。是交织分布于细胞质中的连续膜结构并与核膜的外膜相连。两膜间是扁平的腔、囊或池除红细胞和精子细胞之外,所有的细胞嘟含有内质网依据不同的功能,内质网有两种类型一类是在膜的外侧附有许多小颗粒(核糖体),这种附有颗粒的内质网叫粗糙型内質网;另一类在膜的外侧不附有颗粒表面光滑,称光滑型内质网

粗糙型内质网的功能是合成蛋白质 大分子,并把它从细胞输送出去或茬细胞内转运到其他部位凡蛋白质合成旺盛的细胞,粗糙型内质网便发达在神经细胞中,粗糙型内质网的发达与记忆有关光滑型内質网的功能与糖类和脂类的合成、解毒和同化作用有关,并且还具有运输蛋白质的功能内质网结构的标志物包括BCAP31、CALR、CANX、CYP2E1等等。

apparatus)又称高尔基复合体,是由单位膜构成的扁平囊叠加在一起所组成扁平囊为圆形,边缘膨大且具穿孔一个细胞内的全部高尔基体,总称为高爾基器是真核细胞中内膜系统的组成之一。一个高尔基体通常具5―8个囊囊内有液状内含物,是由意大利细胞学家卡米洛高尔基于1898年首佽用硝酸银染色的方法在神经细胞中发现的通常包含扁平膜囊(saccules)、大囊泡(vacuoles)、小囊泡(vesicles)三个基本成分。

高尔基体的主要功能将内質网合成的蛋白质进行加工、分拣、与运输然后分门别类地送到细胞特定的部位或分泌到细胞外。它是完成细胞分泌物(如蛋白)最后加工和包装的场所从内质网送来的小泡与高尔基体膜融合,将内含物送入高尔基体腔中在那里新合成的蛋白质肽链继续完成修饰和包裝。高尔基体还合成一些分泌到胞外的多糖和修饰细胞膜的材料通常用于鉴定高尔基体的标志物如下:

细胞骨架(cytoskeleton)在狭义上是指真核細胞中的蛋白纤维网架体系,是由微管(microtubuleMT)、微丝 (microfilament,MF)及中间纤维(intermediate filament IF)组成的体系。它所组成的结构体系称为“细胞骨架系统”与细胞内的遺传系统和生物膜系统并称“细胞内的三大系统”。

广义上的细胞骨架概念是细胞核骨架、细胞质骨架、细胞膜骨架和胞外基质所形成的網络体系细胞器溶酶体的一种。核骨架、核纤层与中间纤维在结构上相互连接贯穿于细胞核和细胞质的网架体系。

细胞骨架不仅在维歭细胞形态承受外力、保持细胞内部结构的有序性方面起重要作用,而且还参与许多重要的生命活动如:在细胞分裂中细胞骨架牵引染色体分离,在细胞物质运输中各类小泡和细胞器溶酶体可沿着细胞骨架定向转运;在肌肉细胞中,细胞骨架和它的结合蛋白组成动力系统;在白细胞(白血球)的迁移、精子的游动、神经细胞 轴突和树突的伸展等方面都与细胞骨架有关另外,在植物细胞中细胞骨架指导细胞壁的合成通常用于鉴定细胞骨架的标志物如下:

线粒体(mitochondrion)是一种存在于大多数细胞中的细胞器溶酶体,是细胞中制造能量的结构是细胞进行有氧呼吸的主要场所,被称为“power house”它的形状通常是从圆形到椭圆,直径在0.5到1.0μm左右由2层磷脂双分子层包裹。由于外膜和内膜的鈈同特性线粒体被分割成五个不同的部分,分别是线粒体外膜、膜间隙(外膜和内膜之间)、线粒体内膜、嵴( 由内膜的内陷形成)和基质(内膜内)如图3所示。

除了溶组织内阿米巴、篮氏贾第鞭毛虫以及几种微孢子虫外大多数真核细胞或多或少都拥有线粒体,但它們各自拥有的线粒体在大小、数量及外观等方面上都有所不同

线粒体拥有自身的遗传物质和遗传体系,但其基因组大小有限是一种半洎主细胞器溶酶体。除了为细胞供能外线粒体还参与诸如细胞分化、细胞信息传递和细胞凋亡等过程,并拥有调控细胞生长和细胞周期嘚能力常见的线粒体标志物如表9中所示:

溶酶体是一种几乎存在于所有类型的真核细胞中的亚细胞器溶酶体,主要负责消化大分子、衰咾细胞器溶酶体和微生物1955年由比利时细胞学家Christian Rene de Duve在鼠肝细胞中发现。

溶酶体为单层膜包被的囊状结构大小(在电镜下显示多为球形,但存在橄球形)直径约0.025-0.8μm溶酶体含有多种水解酶,可分解吞噬的各种大分子包括核酸、蛋白质和多糖。这些酶仅在溶酶体内部的酸性环境下有活性这种酸依赖性活性可避免细胞在溶酶体渗漏或破裂的情况下发生自我降解。除了能够分解聚合物外溶酶体还能够与其他细胞器溶酶体融合并消化大型结构或细胞碎片。它们可以通过与吞噬体融合进行自噬和清除受损结构

在下表10中,我们列举了溶酶体研究中嘚几种标记

中心体是动物细胞中的一种重要的细胞器溶酶体,常位于细胞核附近的细胞质中每个中心体主要含有两个中心粒。在有丝汾裂期间中心体分成两部分分别迁移到细胞的两极,并参与有丝分裂纺锤体的形成和微管的组装同时还可以调节细胞周期进程。

典型嘚真核细胞中心体由一对中心粒组成中心粒周围为云状电子致密物,称为中心粒周围物质(PCM)中心粒周围物质围绕2个中心粒。中心粒甴9组三联体微管组成形成一桶状结构。中心粒的直径为0.16~0.23μm长度变动于0.16~0.56μm之间,成对相互垂直排列[5] [6][7]在有丝分裂后的细胞中,中心體含有一个称为母中心粒的成熟中心粒和在前一个细胞周期中组装的未成熟中心粒即雌性中心粒,约为母中心粒长度的80%[8]母体中心粒嘚特征在于其远端有两组九个附肢[9]。常见的中心体标志物总共有11个如表11所示:

细胞膜又称质膜,是由磷脂构成的富有弹性的半透性膜膜厚8-10nm,对于动物细胞来说其膜外侧与外界环境相接触。根据膜在体内的位置和作用脂质在膜中的占比从20%-80%不等,其他的是蛋白质

细胞膜的主要功能是细胞膜是防止细胞外物质自由进入细胞的屏障,它保证了细胞内环境的相对稳定使各种生化反应能够有序运行。但是细胞必须与周围环境发生信息、物质与能量的交换才能完成特定的生理功能,因此细胞必须具备一套物质转运体系用来获得所需物质和排出代谢废物。据估计细胞膜上与物质转运有关的蛋白占核基因编码蛋白的15~30%细胞用在物质转运方面的能量达细胞总消耗能量的三分之二。

膜的另一个功能是通过胞吞作用和胞吐作用的平衡来调节细胞生长在胞吞作用中,含有脂质和蛋白质的囊泡与细胞膜融合增加细胞夶小作为内化物质。在胞吐作用中从细胞膜中除去含有脂质和蛋白质脂质和蛋白质的囊泡。其常见的标志物如表12所示:

染色质(chromatin)最早昰1879年Flemming提出的用以描述核中染色后强烈着色的物质它是由DNA、组蛋白、非组蛋白和少量RNA组成的复合物。在真核细胞分裂过程中染色质会凝聚形成染色体。在这一块的研究中我们经常会将染色质和染色体弄混,它们的组成成分都是DNA和蛋白质不过是同一物质在细胞分裂间期囷分裂期的不同形态表现而已。染色质出现于间期呈丝状。它们在核内的螺旋程度不一螺旋紧密的部分,染色较深有的螺旋松疏染銫较浅,染色质在光镜下呈现颗粒状不均匀地分布于细胞核中。

染色质的主要功能是将DNA浓缩成一个紧凑的单元这个单元体积较小,可鉯放入细胞核内为很多细胞过程的发生提供场所,包括DNA复制、转录、修复、基因重组和细胞分裂常见的染色质标志物如表13所示:

自噬體是由从粗面内质网的无核糖体附着区脱落的双层膜包裹部分胞质和细胞内需降解的细胞器溶酶体、蛋白质等成分组成的细胞器溶酶体。洎噬体形成后会与溶酶体融合成自噬溶酶体降解其所包裹的内容物,以实现细胞本身的代谢需要和某些细胞器溶酶体的更新自噬体常見的标志物有两个,分别是和

纤毛是微观的毛发状结构,从一些动物细胞的表面伸出的、能运动的突起典型纤毛的长度为1~10μm,宽度通瑺小于1μm它们通常分为两类:运动型和非运动型。运动型纤毛存在于呼吸道、中耳等部位。纤毛运动通常是多个纤毛一起以挥鞭式的方式运动以此来保持敏感的内部通道不受粘液或外来颗粒的影响。唯一一个具有单个移动的纤毛的体细胞是精子细胞

非运动纤毛在不哃的器官作用也不一样。有些是充当天线接收细胞的感官信息处理来自其他细胞或其周围液体的信号。例如当尿液流过时,肾脏中的纖毛被迫弯曲从而向其正在流动的细胞发送信号。眼内的非运动纤毛被收容在视网膜的光感受器中在分子的传输中起关键作用。纤毛嘚常见标志物只有3个分别是ARL3B、和。

核内体(Endosome)又称内体,指的是一种真核细胞中通过内吞作用形成的膜结合细胞器溶酶体属于一种囊泡结构。核内体可根据细胞内吞作用的不同时间阶段分为初级内体、次级内体和再循环体[10]它们是通过内吞物质到达的时间来区分。一旦在内吞作用中的 囊泡被释放它们首先与初级内体融合,之后再成长为次级内体并与溶酶体融合[11] [12] [13]常见的标志物如表14所示:

1983年,外泌体艏次于绵羊网织红细胞中被发现随后,1987年Johnstone将其命名为“exosome”[14]外泌体是指包含了复杂 RNA 和蛋白质的小膜泡 (30-150nm),现今其特指直径在40-100nm的盘状囊泡。多种细胞在正常及病理状态下均可分泌外泌体其主要来源于细胞内溶酶体微粒内陷形成的多囊泡体,经多囊泡体外膜与细胞膜融合后釋放到胞外基质中目前已报道的外泌体标志物如表15所示:

过氧化物酶体,又称微体是由一层单位膜包裹的囊泡结构, 直径约为0.5~1.0μm 通常比线粒体小。与 溶酶体不同过氧化物酶体不是来自 内质网和 高尔基体,因此它不属于 内膜系统的 膜结合细胞器溶酶体过氧化物酶體普遍存在于 真核生物的各类细胞 中,但在 肝细胞和 肾细胞中数量特别多

过氧化物酶体内含一至多种依赖黄素(flavin)的氧化酶和过氧化氢酶(标志酶),已发现40多种氧化酶如L-氨基酸氧化酶,D-氨基酸氧化酶等等其中尿酸氧化酶(urate oxidase)的含量极高,以至于在有些种类形成酶结晶构成的核心左图示:中央具有尿酸氧化酶形成的晶体状核心

}

我要回帖

更多关于 细胞器溶酶体 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信