关于圆周运动加速度公式公式推导的问题

扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
下载作业帮安装包
扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
带电粒子在磁场中做圆周运动的周期如何推导
作业帮用户
扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
qvB=mv^2/rr=mv/BqqvB=m(4π^2/T^2)rT=2πm/Bq
为您推荐:
其他类似问题
证明:带电粒子受到的洛伦兹力提供了向心力:qvB=mv²/r
即 r=mv/Bq
① 周期的定义:T=2πr/v
②联立①②解得:T=2πm/Bq
如果粒子是垂直进入匀强磁场,则可由洛仑兹力提供向心力,得qVB=m V^2 / r r =m V / (qB)而 V=2π r / T ,所以 r=m*(2π r / T) / (qB)得周期是 T=2π m / (qB) .
扫描下载二维码扫二维码下载作业帮
3亿+用户的选择
下载作业帮安装包
扫二维码下载作业帮
3亿+用户的选择
匀速圆周运动公式a=v^2/r怎么推导的、不要反推
作业帮用户
扫二维码下载作业帮
3亿+用户的选择
1 矢量合成法如图1所示,物体自半径为r的圆周a匀速率运动至b,所经时间为△t,若物体在a、b点的速率为va=vb=v,则其速度的增量△v=vb-va=vb+(-va),由平行四边形法则作出其矢量图如图1。由余弦定理可得 可见当θ→0时,α=90°,即△v的方向和vb垂直,由于vb方向为圆周切线方向,故△v的方向指向圆心.因△v的方向即为加速度的方向,可见匀速圆周运动中加速度的方向指向圆心, 。....
为您推荐:
扫描下载二维码处理匀速圆周运动的运动学问题的方法 除了熟记描述物理量间的公式关系外.还应注意:两个重要的结论:即不打滑的皮带传动时.两轮上与皮带接触的各点线速度大小相等,同一转轮上的各点的角速度大小相同,利用t=——精英家教网——
暑假天气热?在家里学北京名师课程,
处理匀速圆周运动的运动学问题的方法 除了熟记描述物理量间的公式关系外.还应注意:两个重要的结论:即不打滑的皮带传动时.两轮上与皮带接触的各点线速度大小相等,同一转轮上的各点的角速度大小相同,利用t=可计算匀速圆周运动的运动时间,圆周追及问题可通过巧换参考系进行计算. 【】
题目列表(包括答案和解析)
下面为同学们推荐部分热门搜索同步练习册答案,要查找更多练习册答案请点击访问
图为“验证机械能守恒定律”的实验装置图.现有器材为:电磁打点计时器、纸带、带铁夹的重锤、带铁夹的铁架台.回答下列问题:(1)为完成此实验,除了所给的器材,以下所列器材中必需的有______.(填入正确选项前的字母)A.毫米刻度尺B.秒表C.圆形复写纸片D.0~6V的直流电源E.0~6V的交流电源(2)实验时,需要测量物体由静止开始自由下落到某点时的瞬时速度v和下落高度h.某同学利用实验得到的纸带,设计了以下四种处理实验数据的方案.A.根据做匀速直线运动时纸带上某点的瞬时速度,等于这点前后相邻两点间的平均速度,测算出瞬时速度v,并通过h=v2/2g计算出高度hB.用刻度尺测出物体下落的高度h,并测出下落时间t,通过v=gt计算出瞬时速度vC.用刻度尺测出物体下落的高度h,并通过v=2gh计算出瞬时速度D.用刻度尺测出物体下落的高度h,根据做匀速直线运动时纸带上某点的瞬时速度,等于这点前后相邻两点间的平均速度,测算出瞬时速度v以上方案中只有一种正确,正确的是______(填入正确选项前的字母).(3)对实验中要注意的事项,正确合理的一项是______(填入正确选项前的字母)A.重物的质量越小越好B.释放前必须保持提起的纸带处于竖直位置C.先放开纸带让重物下落,再接通电源D.必须测量出重物的质量m(4)在一条较好的纸带上选取连续五个点A、B、C、D、E,如图所示.已知重锤质量为m,当地重力加速度为g,并测出&A&点距离起始点O的距离为s0,A、C两点间的距离为s1,C、E两点间的距离为s2,打点周期为T,根据这些条件,如果在误差允许的范围内满足关系式______,即验证了重锤下落过程中机械能是守恒的.(用题设字母表示)
材料一:在现代物理学中,为了深入到原子核内部,进一步研究物质的微观结构和相互作用的规律,人们用能量很高的带电粒子去轰击各种原子核,观察它们的变化情况.早期制成的加速器就是利用高压电源的电势差来加速带电粒子的.这种类型的加速器受到实际所能达到的电势差的限制,粒子获得的能量并不太高.1932年美国物理学家劳伦斯发明了回旋粒子加速器.如图所示,下图为回旋粒子加速器的工作原理图,AA′间有一交变电场,在中心A0处有粒子源,以一定的初速度v0垂直进入匀强磁场中,在磁场中做匀速圆周运动,经过一段时间到达A1时,在A1A1′处受到电场的加速,速率增加到v1.粒子以速率v1在磁场中做匀速圆周运动,又经过一段时间,到达A2′,在A2′A2处粒子又一次受到电场的加速,速率增加到v2.如此继续下去,每当粒子运动到AA′间时,速率都将一步一步地增大.材料二:根据爱因斯坦的狭义相对论观点,相对论的质量速率公式:m=其中m0表示物体静止时的质量,m表示物体以速率v运动时的质量,c表示光速,若质点的速率远小于光速,则m→m0,质量保持不变,回到牛顿经典力学的观点.根据以上材料回答问题:(1)为了保证带电粒子在回旋加速器中如图所示的那样不断被加速,带电粒子的运动周期T1与交变电场的周期T2之间的关系为_____________.(2)在20世纪30年代末发现,这种回旋加速器加速质子时,最高能量仅能达到20 MeV,要想进一步提高质子的速度很困难,这是因为_________________________________________.
图为“验证机械能守恒定律”的实验装置图.现有器材为:电磁打点计时器、纸带、带铁夹的重锤、带铁夹的铁架台.回答下列问题:(1)为完成此实验,除了所给的器材,以下所列器材中必需的有&&& .(填入正确选项前的字母)A.毫米刻度尺B.秒表C.圆形复写纸片D.0~6V的直流电源E.0~6V的交流电源(2)实验时,需要测量物体由静止开始自由下落到某点时的瞬时速度v和下落高度h.某同学利用实验得到的纸带,设计了以下四种处理实验数据的方案.A.根据做匀速直线运动时纸带上某点的瞬时速度,等于这点前后相邻两点间的平均速度,测算出瞬时速度v,并通过h=v2/2g计算出高度hB.用刻度尺测出物体下落的高度h,并测出下落时间t,通过v=gt计算出瞬时速度vC.用刻度尺测出物体下落的高度h,并通过v=计算出瞬时速度D.用刻度尺测出物体下落的高度h,根据做匀速直线运动时纸带上某点的瞬时速度,等于这点前后相邻两点间的平均速度,测算出瞬时速度v以上方案中只有一种正确,正确的是&&& (填入正确选项前的字母).(3)对实验中要注意的事项,正确合理的一项是&&& (填入正确选项前的字母)A.重物的质量越小越好B.释放前必须保持提起的纸带处于竖直位置C.先放开纸带让重物下落,再接通电源D.必须测量出重物的质量m(4)在一条较好的纸带上选取连续五个点A、B、C、D、E,如图所示.已知重锤质量为m,当地重力加速度为g,并测出&A&点距离起始点O的距离为s,A、C两点间的距离为s1,C、E两点间的距离为s2,打点周期为T,根据这些条件,如果在误差允许的范围内满足关系式&&& ,即验证了重锤下落过程中机械能是守恒的.(用题设字母表示)
图为“验证机械能守恒定律”的实验装置图.现有器材为:电磁打点计时器、纸带、带铁夹的重锤、带铁夹的铁架台.回答下列问题:(1)为完成此实验,除了所给的器材,以下所列器材中必需的有&&& .(填入正确选项前的字母)A.毫米刻度尺B.秒表C.圆形复写纸片D.0~6V的直流电源E.0~6V的交流电源(2)实验时,需要测量物体由静止开始自由下落到某点时的瞬时速度v和下落高度h.某同学利用实验得到的纸带,设计了以下四种处理实验数据的方案.A.根据做匀速直线运动时纸带上某点的瞬时速度,等于这点前后相邻两点间的平均速度,测算出瞬时速度v,并通过h=v2/2g计算出高度hB.用刻度尺测出物体下落的高度h,并测出下落时间t,通过v=gt计算出瞬时速度vC.用刻度尺测出物体下落的高度h,并通过v=计算出瞬时速度D.用刻度尺测出物体下落的高度h,根据做匀速直线运动时纸带上某点的瞬时速度,等于这点前后相邻两点间的平均速度,测算出瞬时速度v以上方案中只有一种正确,正确的是&&& (填入正确选项前的字母).(3)对实验中要注意的事项,正确合理的一项是&&& (填入正确选项前的字母)A.重物的质量越小越好B.释放前必须保持提起的纸带处于竖直位置C.先放开纸带让重物下落,再接通电源D.必须测量出重物的质量m(4)在一条较好的纸带上选取连续五个点A、B、C、D、E,如图所示.已知重锤质量为m,当地重力加速度为g,并测出&A&点距离起始点O的距离为s,A、C两点间的距离为s1,C、E两点间的距离为s2,打点周期为T,根据这些条件,如果在误差允许的范围内满足关系式&&& ,即验证了重锤下落过程中机械能是守恒的.(用题设字母表示)
第十部分 磁场第一讲 基本知识介绍《磁场》部分在奥赛考刚中的考点很少,和高考要求的区别不是很大,只是在两处有深化:a、电流的磁场引进定量计算;b、对带电粒子在复合场中的运动进行了更深入的分析。一、磁场与安培力1、磁场a、永磁体、电流磁场→磁现象的电本质b、磁感强度、磁通量c、稳恒电流的磁场*毕奥-萨伐尔定律(Biot-Savart law):对于电流强度为I&、长度为dI的导体元段,在距离为r的点激发的“元磁感应强度”为dB&。矢量式d= k,(d表示导体元段的方向沿电流的方向、为导体元段到考查点的方向矢量);或用大小关系式dB = k结合安培定则寻求方向亦可。其中&k = 1.0×10?7N/A2&。应用毕萨定律再结合矢量叠加原理,可以求解任何形状导线在任何位置激发的磁感强度。毕萨定律应用在“无限长”直导线的结论:B = 2k&;*毕萨定律应用在环形电流垂直中心轴线上的结论:B = 2πkI&;*毕萨定律应用在“无限长”螺线管内部的结论:B = 2πknI&。其中n为单位长度螺线管的匝数。2、安培力a、对直导体,矢量式为&= I;或表达为大小关系式&F = BILsinθ再结合“左手定则”解决方向问题(θ为B与L的夹角)。b、弯曲导体的安培力⑴整体合力折线导体所受安培力的合力等于连接始末端连线导体(电流不变)的的安培力。证明:参照图9-1,令MN段导体的安培力F1与NO段导体的安培力F2的合力为F,则F的大小为F =&& = BI& = BI关于F的方向,由于ΔFF2P∽ΔMNO,可以证明图9-1中的两个灰色三角形相似,这也就证明了F是垂直MO的,再由于ΔPMO是等腰三角形(这个证明很容易),故F在MO上的垂足就是MO的中点了。证毕。由于连续弯曲的导体可以看成是无穷多元段直线导体的折合,所以,关于折线导体整体合力的结论也适用于弯曲导体。(说明:这个结论只适用于匀强磁场。)⑵导体的内张力弯曲导体在平衡或加速的情形下,均会出现内张力,具体分析时,可将导体在被考查点切断,再将被切断的某一部分隔离,列平衡方程或动力学方程求解。c、匀强磁场对线圈的转矩如图9-2所示,当一个矩形线圈(线圈面积为S、通以恒定电流I)放入匀强磁场中,且磁场B的方向平行线圈平面时,线圈受安培力将转动(并自动选择垂直B的中心轴OO′,因为质心无加速度),此瞬时的力矩为M = BIS几种情形的讨论——⑴增加匝数至N&,则&M = NBIS&;⑵转轴平移,结论不变(证明从略);⑶线圈形状改变,结论不变(证明从略);*⑷磁场平行线圈平面相对原磁场方向旋转α角,则M = BIScosα&,如图9-3;证明:当α&= 90°时,显然M = 0&,而磁场是可以分解的,只有垂直转轴的的分量Bcosα才能产生力矩…⑸磁场B垂直OO′轴相对线圈平面旋转β角,则M = BIScosβ&,如图9-4。证明:当β&= 90°时,显然M = 0&,而磁场是可以分解的,只有平行线圈平面的的分量Bcosβ才能产生力矩…说明:在默认的情况下,讨论线圈的转矩时,认为线圈的转轴垂直磁场。如果没有人为设定,而是让安培力自行选定转轴,这时的力矩称为力偶矩。二、洛仑兹力1、概念与规律a、&= q,或展开为f = qvBsinθ再结合左、右手定则确定方向(其中θ为与的夹角)。安培力是大量带电粒子所受洛仑兹力的宏观体现。b、能量性质由于总垂直与确定的平面,故总垂直&,只能起到改变速度方向的作用。结论:洛仑兹力可对带电粒子形成冲量,却不可能做功。或:洛仑兹力可使带电粒子的动量发生改变却不能使其动能发生改变。问题:安培力可以做功,为什么洛仑兹力不能做功?解说:应该注意“安培力是大量带电粒子所受洛仑兹力的宏观体现”这句话的确切含义——“宏观体现”和“完全相等”是有区别的。我们可以分两种情形看这个问题:(1)导体静止时,所有粒子的洛仑兹力的合力等于安培力(这个证明从略);(2)导体运动时,粒子参与的是沿导体棒的运动v1和导体运动v2的合运动,其合速度为v&,这时的洛仑兹力f垂直v而安培力垂直导体棒,它们是不可能相等的,只能说安培力是洛仑兹力的分力f1&= qv1B的合力(见图9-5)。很显然,f1的合力(安培力)做正功,而f不做功(或者说f1的正功和f2的负功的代数和为零)。(事实上,由于电子定向移动速率v1在10?5m/s数量级,而v2一般都在10?2m/s数量级以上,致使f1只是f的一个极小分量。)☆如果从能量的角度看这个问题,当导体棒放在光滑的导轨上时(参看图9-6),导体棒必获得动能,这个动能是怎么转化来的呢?若先将导体棒卡住,回路中形成稳恒的电流,电流的功转化为回路的焦耳热。而将导体棒释放后,导体棒受安培力加速,将形成感应电动势(反电动势)。动力学分析可知,导体棒的最后稳定状态是匀速运动(感应电动势等于电源电动势,回路电流为零)。由于达到稳定速度前的回路电流是逐渐减小的,故在相同时间内发的焦耳热将比导体棒被卡住时少。所以,导体棒动能的增加是以回路焦耳热的减少为代价的。2、仅受洛仑兹力的带电粒子运动a、⊥时,匀速圆周运动,半径r =&&,周期T =&b、与成一般夹角θ时,做等螺距螺旋运动,半径r =&&,螺距d =&这个结论的证明一般是将分解…(过程从略)。☆但也有一个问题,如果将分解(成垂直速度分量B2和平行速度分量B1&,如图9-7所示),粒子的运动情形似乎就不一样了——在垂直B2的平面内做圆周运动?其实,在图9-7中,B1平行v只是一种暂时的现象,一旦受B2的洛仑兹力作用,v改变方向后就不再平行B1了。当B1施加了洛仑兹力后,粒子的“圆周运动”就无法达成了。(而在分解v的处理中,这种局面是不会出现的。)3、磁聚焦a、结构:见图9-8,K和G分别为阴极和控制极,A为阳极加共轴限制膜片,螺线管提供匀强磁场。b、原理:由于控制极和共轴膜片的存在,电子进磁场的发散角极小,即速度和磁场的夹角θ极小,各粒子做螺旋运动时可以认为螺距彼此相等(半径可以不等),故所有粒子会“聚焦”在荧光屏上的P点。4、回旋加速器a、结构&原理(注意加速时间应忽略)b、磁场与交变电场频率的关系因回旋周期T和交变电场周期T′必相等,故&=c、最大速度&vmax&=&= 2πRf5、质谱仪速度选择器&粒子圆周运动,和高考要求相同。第二讲 典型例题解析一、磁场与安培力的计算【例题1】两根无限长的平行直导线a、b相距40cm,通过电流的大小都是3.0A,方向相反。试求位于两根导线之间且在两导线所在平面内的、与a导线相距10cm的P点的磁感强度。【解说】这是一个关于毕萨定律的简单应用。解题过程从略。【答案】大小为8.0×10?6T&,方向在图9-9中垂直纸面向外。【例题2】半径为R&,通有电流I的圆形线圈,放在磁感强度大小为B&、方向垂直线圈平面的匀强磁场中,求由于安培力而引起的线圈内张力。【解说】本题有两种解法。方法一:隔离一小段弧,对应圆心角θ&,则弧长L =&θR&。因为θ&→
精英家教网新版app上线啦!用app只需扫描书本条形码就能找到作业,家长给孩子检查作业更省心,同学们作业对答案更方便,扫描上方二维码立刻安装!
请输入姓名
请输入手机号11被浏览4,240分享邀请回答202 条评论分享收藏感谢收起匀速圆周运动向心加速度公式推导方法_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
匀速圆周运动向心加速度公式推导方法
&&推导圆周运动加速度的新方法
阅读已结束,下载本文需要
想免费下载本文?
定制HR最喜欢的简历
你可能喜欢}

我要回帖

更多关于 圆周运动加速度推导 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信