小曲:中国的引力波探测新进展还有意义吗

引力波的那些事:中国的引力波探测还有意义吗?-ZAKER新闻
百度知道日报
美国激光干涉引力波天文台 LIGO 团队发现引力波,堪称是 21 世纪物理学最重大的发现。它的出现,甚至比 2012 年欧洲核子中心 CERN 发现希格斯玻色子更加激动人心。在物理学各大领域都被量子理论占据的今天,它成了经典物理最后的荣耀与丰碑。引力波探测:几十年上下求索自从广义相对论预言引力波之后不久,人们便开始追寻引力波。到今天,已经度过了几十个春秋。发现引力波有什么意义呢?大致有以下三方面。首先,引力波探测证实了爱因斯坦以及合作者的预言,再一次验证了广义相对论。其次,就像电磁波和放射性现象一样,引力波是人类了解这个宇宙的新窗口。引力波的发现标志着人类进入了一个新的时代,开创了人类了解世界的新方式。(1887 年赫兹发现电磁波时,谁能想象 130 年后,电磁波已经走进每个家庭。1896 年贝克勒尔发现放射线的时候,谁能想到现在每一家医院都能留下核物理的足迹。)再次,引力波可以提供宇宙发展演化的信息,有助于我们进一步了解宇宙(诸位还记得 2014 年 BICEP 卫星宣称发现了原初引力波吗?后来确定是来源于星际尘埃的干扰。原初引力波可以反映宇宙早期的性质)。20 世纪 60 年代,美国马里兰大学物理学家韦伯曾利用长 2 米、质量为 1 吨的铝筒进行引力波探测,1968 年甚至宣称发现了引力波,但同行们却无法重复他的结论。后来人们利用迈克尔逊 - 莫雷干涉原理来探测引力波。迈克尔逊 - 莫雷干涉仪是利用两束激光进行干涉的装置,当两束光的路程不一致时,便会产生干涉现象。通过观察干涉条纹,便可进行精确测距。历史上,迈克尔逊和莫雷曾经利用这样的仪器发现了真空中的光速不变。迈克尔逊 - 莫雷干涉仪这次 LIGO 使用的堪称豪华版迈克尔逊 - 莫雷干涉仪,只不过干涉臂换成了 4km 长的 " 跑道 "。引力波是时空的涟漪。当有引力波传来时,弯曲的时空会使得 4km 长的跑道发生 " 形变 "(拉长或压缩)。利用激光束的干涉,可以精确地测量 4km" 跑道 " 上由引力波引起的长度变化。因为引力波所产生的 " 形变 " 效果太微弱了,在 10 的负 20 次方量级,探测它们实在是难上加难。LIGO 引力波探测100 多年前,迈克尔逊—莫雷干涉仪的出现验证了光速不变;100 多年后,LIGO 团队用豪华版迈克尔逊 - 莫雷干涉仪观测到了广义相对论中的引力波。迈克尔逊 - 莫雷干涉仪为爱因斯坦厥功甚伟,爱因斯坦看到了今天这一幕,必会在阴间大摆筵席,与迈克尔逊和莫雷一醉方休。可见,每一个成功的理论物理学家背后,都有一批成功的实验物理学家。LIGO 之后,还有欧洲的 LISA(激光干涉空间天线),它是一个规划中的引力波探测项目,利用三颗卫星在天空中排成个三角形,卫星上高精度的激光器彼此发射激光来进行干涉。90 年代欧洲人捉摸着,六十年代韦伯用铝筒和铝棒没有能发现引力波,是因为精度不够;LIGO 用 4km 长的 " 干涉臂 ",还没有找到引力波,那必然是距离还不够大。所以,我们用相隔成千上万公里的卫星,作为干涉臂,这下距离总够了吧。图为 LISA 引力波探测计划中国引力波探测,是机会还是大坑?自从二战以后,各发达国家竞相提出引力波探测计划,而这方面,中国长期以来都是空白,这是一个巨大的遗憾。很多人不看好中国引力波探测,认为引力波已经被 LIGO 团队发现了,中国再去搞什么天琴计划,纯属多此一举,既得不了诺贝尔奖,又没有什么实际用途,只能为他人作嫁衣裳。这里边牵扯两个问题。其一,LIGO 发现引力波是否意味着引力波领域的主要工作已经做完,只剩下残羹冷炙,再无研究价值,更无获得诺贝尔而奖的希望?其二,引力波探测技术是否是空中楼阁,毫无应用价值?引力波按频率可以分为高频、中频和低频三种,这次 LIGO 发现的是中频部分的引力波。三种引力波的来源、性质、探测手段并不完全相同。这些性质上的差别决定了高频、中频和低频引力波的应用方向定会有很大差别(如果将来有一天引力波技术能走向应用)。2014 年,BICEP 卫星宣称发现的是宇宙大爆炸早期的原初引力波,而这次 LIGO 发现的是两黑洞融合产生的引力波,两者又不相同。可见,引力波不是单一的。并不表明 LIGO 发现了引力波,这个领域就尘埃落定了,就再也没有其他人的事情了。君不见,电磁波产生了多少个诺贝尔奖,放射性产生了多少个诺贝尔奖,加速器和中微子产生了多少个诺贝尔奖,超导又产生了多少个诺贝尔奖。引力波是个巨大的宝库,催生出多少诺贝尔奖,还未可知。退一步说,即便 LIGO 之后,真的没有可能得引力波的诺贝尔奖了,中国探测引力波是否毫无意义,我看也未必。在这里我们先不谈引力波本身的应用价值(因为引力波本身距离实际应用还会有很长一段距离),只说说空间引力波探测技术在其它领域的应用价值。像天琴计划这样的太空探测,需要对几颗卫星间的距离进行精确测量,也需要对激光束进行严格校准,还需要排除太空中各种背景的影响。它不仅会满足引力波这样的纯科学探索,对于空间测距以及激光技术也是巨大的促进。从引力波探测看大科学装置实验一般来说,在科学研究中,别人做过的点子,你再做就没什么意思了。但大科学装置存在例外情况,因为大学科装置需要经验,需要积累,需要传承。一方面是科学上的,一方面是配套的工程技术上的。没有小工程,没有前期的工程基础,很难在短时间内建起像样的大工程。因此,没有前期基础,仅凭某天的一个点子,一个机遇,就指望让一个大装置拔地而起,是不现实的。即便建起来,估计事故也不会少。因此,对于这类涉及大科学装置的实验,能独树一帜固然很好,但也不是所有仿照别人的项目都没有价值。任何大科学装置从投资到建设,从维护到升级,从运行到分析,从采集第一个数据到发表最后的结果,都经过了几年甚至几十年的峥嵘岁月。人们往往只能看到它们的成功,却看不到它们背后的艰辛。就比如 LIGO 团队,在他们从 1991 年启动,经过了升级和再升级之后,才有了今天的发现。里边复杂的探测技术,各种精密仪器,不是一朝一夕就能完成的。而且大多数时间里,LIGO 都一无所获,扮演着失败者的角色。以至于像我这样的外缘人士,前几年已不对 LIGO 抱有什么希望了,一心期望着 LISA 早日出来救市。从九十年代至今的二十余年里,LIGO 团队的花费不下十亿美金。在 LIGO 团队未成功的那些年代里,想必也曾饱受争议,想必也曾受到这样的讽刺:他们花了纳税人这么多钱,什么也没探测到,真是一群废物!在 2016 年之前,对于引力波花落谁家,是美国的 LIGO 捷足先登,还是欧洲的 LISA 夺得桂冠,谁也无从知道。科学的发现颇有些戏剧性,一人得道,鸡犬升天。如今,LIGO 抢了头功,成为闻名天下的明星,尽可指点江山,激昂文字。而 LISA 出师未捷,便先闻噩耗,此刻 LISA 团队的研究者的心情可以用本山大叔小品中的台词来形容——我的心是哇凉哇凉的呀!但决并非意味着 LISA 失去了存在的意义。如果说 LIGO 代表了中频引力波探测的尖端,LISA 则代表了低频引力波探测的尖端,而且,LISA 也有着一些 LIGO 没有的技术。它们一个地面,一个太空一个中频,一个低频,遥相呼应,熠熠生辉。未来,在浩淼的天空中,相信 LISA 终会有一席之地。假如 LISA 和其它引力波探测项目因此自暴自弃,不再前进,引力波领域就会被美国做大做强。我想,同样的道理也适合于中国。中国的太空引力波探测,本来就比 LISA 起步晚,再畏缩不前,拿什么去和未来的 LISA 争呢?出品:科普中国制作:小曲监制:中国科学院计算机网络信息中心" 科普中国 " 是中国科协携同社会各方利用信息化手段开展科学传播的科学权威品牌。本文由科普中国融合创作出品,转载请注明出处。未经百度知道日报书面许可,任何单位及个人不得以任何方式或理由对百度知道日报上所发布的内容进行使用、复制、修改、抄录、传播或与其它产品捆绑使用、销售。凡侵犯百度知道日报知识产权的,必依法追究其法律责任。申请授权及商业合作请及时联系 文章出处:百度知道日报()原始链接:百度问咖:青年精英养成社区,与行业大咖聊聊!马上体验 &&或扫描二维码免费下载
相关标签:
原网页已经由 ZAKER 转码排版
生活达人5小时前
生活达人5小时前
生活达人6小时前
生活达人6小时前
谈资4小时前
谈资4小时前
男人窝-生活频道1小时前
佰佰安全网18分钟前
真相大白话29分钟前
佰佰安全网18分钟前
男人窝-生活频道2小时前
佰佰安全网3小时前
佰佰安全网6小时前
佰佰安全网6小时前
佰佰安全网6小时前引力波探测史:从爱因斯坦到LIGO
[摘要]日,LIGO项目的科学家宣布,他们已经探测到了引力波,这标志着宇宙学和物理学研究将进入新的阶段。
乐器发出的声音满载着信息。聆听音乐时,我们可以推论出演奏音乐的乐器的种类(如管乐器或者弦乐器)和质地(铜制的或是木制的),我们甚至可以评价乐手技艺的精湛程度。所有这些信息的载体是声波,这是一种以固定速率向外传播的空气扰动。物理学家也借用这个概念来研究。只不过,在宇宙中传导波的介质并不是空气,而是时空;而这种波不再是声波,而是引力波。实际上,广义相对论提出的一个基本假设是,把空间的三个维度和时间维度统一在一起的时空(spacetime)是具有弹性的。就算其中空无一物,时空也可发生振动,而这种振动就是引力波。这种波与乐器发出的声波一样,也满载着信息。这些信息一方面反映了制造出引力波的事件,而另一方面也体现了引力波传播时通过的时空的性质。物理学家希望,在未来的几年里,美国的激光干涉引力波天文台(LIGO)以及意大利VIRGO探测器能获得来自宇宙的、证明引力波存在的直接证据。(日,LIGO合作组织宣布他们已经探测到了引力波。)爱因斯坦在1916年提出了引力波的概念。起初,引力波曾遭到了物理学家的质疑。从理论的角度看,引力波的存在仰仗的是时空与其他物理实体之间的微妙差异。此外,通过实验探测引力波是极为困难的。现在,再没人怀疑引力波的存在了。引力波是广义相对论的预言产物,而广义相对论在20世纪已经被无数的观测和实验所证实。此外,一些观测为引力波的存在提供了间接证据。物理学家甚至算出了引力波的一些特征值,比如传播速度。引力波在真空中的传播速度等于光速,与广义相对论的预测一致。引力的速度引力以有限的速度传播,这个性质并不是显而易见的。这个观点最初由皮埃尔-西蒙•拉普拉斯(Pierre-Simon de Laplace)于1773年提出,与当时的主流理论——牛顿的万有引力理论是相悖的。在牛顿的理论框架内,不管相隔多远,两个有质量的物体间的引力作用是立即发生的。而牛顿的理论相当成功,例如,它可以准确地解释行星运动的开普勒定律。拉普拉斯希望借用自己的新理论来解释一个奇特的天文现象——朔望月(月相变化的一个完整周期)的缩短。我们现在知道,这个现象是由于地球自转受潮汐力的影响变慢而造成的。而在当时,为了解释这个现象,拉普拉斯构造了一个与牛顿体系不同的理论模型。在拉普拉斯的理论中,引力反映的是物体发射出的粒子的作用,这些粒子的速度是有限的。拉普拉斯将他的理论预测与观测进行对照,他发现所谓的“粒子”的速度应该至少是光速的700万倍(光速大约是每秒30万千米)。这个速度如此之大,实际上跟牛顿的理论没有太大的差别。100年后,苏格兰人詹姆斯•克拉克•麦克斯韦(James Clerk Maxwell)提出了电磁学理论,而美国物理学家阿尔伯特•迈克尔逊(Albert Michelson)和爱德华•莫雷(Edward Morley)则通过实验证明光速守恒。这些发现间接地促使研究者重新考虑引力的速度问题。为了解释光速守恒,昂利•庞加莱(Henri Poincaré)发明了所谓的“新力学”,它的方程与爱因斯坦的狭义相对论相似,但其物理学意义则不同。然而,不管是在庞加莱还是爱因斯坦的理论框架下,没有任何作用力的传播速度能超过光速,而这是与牛顿引力理论抵触的。庞加莱于1905年提出了一个新理论,他认为引力作用的传播速度也等于光速,相当于一种“引力波”。但是,他的理论却有不可挽回的缺陷。其中最致命的一点在于,无法根据这个基本假设得出一个一般性的引力定律。另外,这个理论还违反了作用力-反作用力定律。而且这种“引力波”需要从波源汲取能量,但它本身却不能像声波或电磁波那样携带能量。爱因斯坦建立了普遍适用且与观测数据相符的引力理论。他在1915年发表了广义相对论方程,该方程将相对性原理扩展到对所有观测者有效(相对性原理指的是对于任何观测者,物理定律都是相同的,在狭义相对论中这一原理仅对惯性系中的观测者有效)。广义相对论为引力现象提供了一种与相对性原理相符的描述。这一伟大成就的核心思想完全颠覆了人们对时间和空间的认识。最开始颠覆这些“常识”的是狭义相对论,特别明显地体现了这一点的是德国物理学家赫尔曼•闵可夫斯基(Hermann Minkowski)在1907年根据狭义相对论得出的几何表达式。闵可夫斯基证明,就算两个观测者测量两个事件的时间间隔和距离时得到的结果不同,但对分割两个事件的某种“时空距离”,他们得出的结果总是一致。这意味着,独立于观测者的物理现实不是单独的时间或空间,而是时空,一个能将时间和空间统一起来的四维几何结构。爱因斯坦的广义相对论则更进了一步,指出时空不是绝对的,即时空的几何并不像狭义相对论那样是既定的。爱因斯坦提出,时空的几何是由其中所含的能量决定的,而引力恰恰就是时空的弯曲几何的体现——而不是一种“力”。我们通常用一个图示来说明这个道理:空间是一片因为中央大质量天体而畸变的曲面,大质量天体旁边有一个较小的天体。在这幅图示中,较小的天体并不受力,它受惯性支配笔直向前运动。但由于空间是弯曲的,小天体的运行轨迹也是弯曲的,结果就是绕着大质量天体旋转。这种图示在某种意义上是错误的,但却道明了一个事实:在现代物理中,时空不再只是一个供物理事件上演的被动场地,它成为了一种与其他物体联系在一起的柔软连续体。时空的波动为了简化讨论,我们先把时间放在一边。我们可以把空间视为某种可以扭曲、振动的弹性介质,因此它可以传播波(见上图)。自1916年起,爱因斯坦就开始尝试证明他的广义相对论方程包含一个解,这个解能够表征引力波的传播。然而,广义相对论的数学之美与其方程的复杂性不分伯仲。这些方程的一个特点就是它们是非线性的。所谓的非线性,指的是一个系统产生的反应与它所受的刺激并不成正比。正如面对这种问题时研究者常做的那样,爱因斯坦决定先考虑简化后的情况。他把引力波视为对初始的“平坦”时空的微调——即摄动。如预料的一样,他计算出了几种不同类型的引力场振动,而它们均以光速传播。但是他很快就开始怀疑,这些解在物理上是否真实存在。一个疑点与引力波的双重性质有关:引力波既是几何学的,是空(时)间的波动;也是物理学的,是引力场的特征。因此,作为一种自然界中存在的波,引力波的振幅应该能够和一些物理量联系在一起,比如速度、辐射功率等等。在爱因斯坦解出的6种引力波里(用现代物理术语来讲就是6种偏振模式),只有两种既能传递能量又以光速传播。这些波也是横波,如同电磁波一样,也就是说它们只在与传播方向垂直的平面上振动。与此相反,声波是纵波,会在传播的方向上压缩空气。而爱因斯坦得到的其他4个偏振解并不传输能量,传播速度也是随机的。实际上这是个在当时未能被理解的数学问题,问题出在了坐标系的选择上。事实上,相对性原理规定,物理量的值并不随坐标系的选取而发生变化。爱因斯坦选择的坐标系并不完美,用它算出的偏振模式在广义相对论的框架下不是真实存在的。但是,现在研究其他引力理论的物理学家发现,这些偏振解中的某几个具有物理意义。如果能观测到这些偏振模式的话,将有划时代的意义,这能让我们测试超越广义相对论的物理理论。令人琢磨不透的坐标系性质,加上方程的非线性,不仅让涉及广义相对论的物理问题计算起来极为困难,还让结果难以理解。这就是物理学家在20世纪60年代以前都未能理解黑洞视界的原因。1936年左右,爱因斯坦也一度相信自己和纳森•罗森(Nathan Rosen,爱因斯坦在普林斯顿高等研究院的助手)证明了引力波并不存在。而这个结论与爱因斯坦先前的工作是完全矛盾的。引力波输送的能量以及它与物质系统的相互作用,这些问题看似容易,但实际上非常复杂,以至于物理学家一直在研究这些问题,经过了几十年才能得出初步结论。探测引力波但是在寻找引力波方面,英国物理学家菲利克斯•皮拉尼(Felix Pirani)于1955年获得了关键性的突破。他证明,可以通过测量至少两个测试质量(质量非常小的物体,它们自身的引力可以忽略不计)之间的距离变化来探测引力波。事实上,尽管用孤立的物体无法探测到引力波,但还是可以通过测量两个测试质量之间空间的压缩和膨胀来发现它的踪迹。美国马里兰大学的约瑟夫•韦伯(Joseph Weber)受此启发,开始进行实验直接探测引力波。虽然他用自己在20世纪60年代设计的“韦伯棒”(Weber bar)什么也没有探测到,但是他的这一发明启迪了许多物理学家。用棒状探测器来探测引力波的概念后来被广为接受并加以改良。引力辐射原则上是可以探测到的。那么如何进行定量测量呢?想要设计探测器的话,首先得确定引力波源辐射功率的量级、引力波经过时导致的空间长度变化的量级以及信号频率的量级。根据爱因斯坦最初的研究,科学家可以估算出人体在摆手时发出的引力波功率量级是10–50瓦特,这和大多数恒星系统发出的引力波功率差不多。这些值已得到了更精确的计算方法的证实,引力波似乎成了一种无法观测的思想玩物。随着天文学家在1962年发现了类星体,并在1967年发现了脉冲星,探测引力波的希望被再次点燃。这些天体属于中子星(由非常致密的原子核物质构成的天体)或者黑洞(光也无法逃逸的时空陷阱)。它们非常致密(相比于它们的质量而言,它们的体积非常小),在描述其引力性质时必须考虑广义相对论。物理学家已经证明,如果一个致密天体高速(接近光速)运动,并且这种运动是连贯的且不太对称的话,这个天体就能成为良好的引力波源。虽然无法通过望远镜观测,但一个双星系统中的两个黑洞并合是能量最高的天体物理现象之一。两个具有太阳质量的黑洞并合发出的引力波功率量级大概是1046瓦特,这已经可以媲美太阳发光的功率(1026瓦特)。但是,所有的大功率引力波源和我们的距离都十分遥远,在地球上进行的探测实验只能收集到非常微弱的信号。在这种信号的作用下,测试质量间距的相对变化最高也只有10-20,相当于太阳和地球之间的距离改变了一个原子的直径。对脉冲双星PSR B1913+16的研究间接地证明了引力波的存在。美国人约瑟夫•泰勒(Joseph Hooton Taylor)和拉塞尔•赫尔斯(Russell Hulse)于1974年发现了PSR B1913+16(他们也因此于1993年获得了诺贝尔物理学奖)。这个双星系统公转周期的逐步减少与能量的消失有关,而消失的能量转化成了引力波。这个效应其实类似于拉普拉斯为了解释月球在轨道上的加速而提出的理论。法国物理学家蒂博•达穆尔(Thibault Damour)和娜塔莉•德鲁艾尔(Nathalie Deruelle)等人的计算证明,广义相对论和脉冲双星观测结果是一致的。之后就是直接探测引力波了,这就是位于意大利比萨南部的VIRGO探测器以及分别位于美国两个地点的激光干涉引力波天文台(LIGO)承担的重任。这些仪器能够探测出相当于原子直径比上太阳系直径的距离相对变化。在21世纪初的首阶段运行中,这些探测器未能探测到引力波,但是此后研究者对它们的灵敏度进行了一次大升级。先进LIGO(Advanced LIGO)已投入运行。VIRGO探测器的高级版本也将在2016年投入使用。这些探测器利用的是干涉测量方法。测试质量是悬挂于探测器的两个互相垂直的长臂末端的反射镜。探测器两臂内穿梭着大功率的激光束(功率可达200瓦特)。两臂长度的微弱变化会影响两束激光相遇处的光强。两个反射镜相距越远,由引力波造成的臂长变化量就会越大,也更“容易”被观测到。法意合建的VIRGO探测器的臂长达3千米。红外激光器发出的激光束被半透明反光镜(分光镜)一分为二。每束激光会进入一个长达3千米的光腔,然后照射到反射镜上(即测试质量),接着反射镜会把激光反射回分光镜那里。在返回分光镜前,激光在光腔中已被来回反射了许多次。这多次来回会显著增加探测器的等效臂长。由于光的波动性,分光镜上两束激光互相叠加发生干涉。实验开始前,科学家调整仪器,让两束激光发生相消干涉——一束光的波峰正对应另一束光的波谷,反之亦然。通过这种方式两个光波互相抵消,而传感器(一个光电二极管)不会记录下任何信号。当引力波经过时,每束激光的光程会发生微小的变化。这将会改变两束激光波峰和波谷的相对位置,因此两者的叠加并不会发生相消干涉,而传感器则会记录下一个信号。研究人员可据此推导出臂长的变化并确定是否曾有引力波经过。经过升级改造的干涉仪可探测的最小臂长变化量的量级是10-20米,差不多是质子大小的十万分之一。但是,除了引力波以外有许多其他因素会影响反射镜之间的距离。物理学家正在尝试从“噪音”中分离出由引力波引发的信号。测试质量上的反射镜在被运送到VIRGO 台址之前,首先会在测试工作台上接受分析。研究人员尤其关注镜片表面,它必须毫无瑕疵。VIRGO与LIGO干涉仪工作时既互相独立,又齐心协力。科学家希望综合多个干涉仪的信息,利用三角测量法来确定引力波源在天空中的具体位置。三角测量法的原理就好比用双耳来听声音。用单耳听是无法确定声源位置的。声音到达两只耳朵的时间存在先后差异,通过这个时间延迟就可以推算出声源的方位。与此类似,一台干涉仪接收到的引力波信号可以来自任何地方,在地球表面至少需要3台互相分离的引力波探测器才能确定波源的位置。VIRGO与LIGO的两台探测器合作,组成了这种引力波探测网,并从2007年开始运行。两个团队的研究者分享这些探测器的数据,并对其进行整合分析。这种数据共享还有一种好处:如果真的出现了引力波信号,那么所有探测器都应该探测到它,所以数据分享是个确认信号的好方法。对引力波源进行实时定位还能让在各个电磁波段工作的天文望远镜和卫星也同时指向波源,观测与引力波相关的天文现象(如伽马射线等)。2007年到2011年间,VIRGO和LIGO搜索了能够让臂长变化10-22米的引力波。但这还远远不够。探测器的灵敏度会对最大可探测距离造成直接影响(探测器只能探测到这个距离内的引力波源)。这个距离取决于波源的种类、特征、引力波的振幅、持续时间以及频率范围。打个比方,以VIRGO的灵敏度要探测到两个1.4倍太阳质量的中子星碰撞时发出的引力波,这两个中子星到地球的距离要在4 000万光年以内。而由脉冲星(高速自转的中子星)发出的引力波信号在几万光年外就无法被探测到了。知道了最大的测量距离后,还要考虑到引力波源的出现频率。一些引力波源非常罕见,比如相互碰撞的中子星要比单个的中子星少得多。如果能够提高引力波探测器的灵敏度,那么探测到引力波的可能性也会上升。换句话说,环绕地球的可探测宇宙范围将被扩大。从2011年底起,VIRGO经历了一些重大改造,变成了“先进VIRGO”(Advanced Virgo),将于2016年开始运行。“先进VIRGO”的反射镜变得更重,激光器的功率扩大了10倍,光学设置进行了调整,分析程序也得到了优化。到2020年,先进VIRGO能够探测的距离将是VIRGO的10倍,而它能探测的宇宙范围将扩大1 000倍。我们希望利用它在每年探测到更多的中子星碰撞。与此同时,LIGO也进行了升级改造,而且日本和印度也在建造新的引力波探测器,中国也在筹备引力波探测计划。在遥远的未来,人类还有更加雄心勃勃的引力波探测计划,如建造在地下的臂长为30千米的爱因斯坦望远镜(Einstein Telescope),或是位于的,臂长为500万千米的演化空间激光干涉天线(eLISA),我们对来自宇宙的天籁将变得更加熟稔。【“《环球科学》太空站”栏目由《科学美国人》中文版《环球科学》独家授权开设,为读者报道天文学、宇宙学、空间科学等领域的最新进展。未经《环球科学》授权,不得转载,摘编等。】
[责任编辑:sorazhang]
您认为这篇文章与"新一网(08008.HK)"相关度高吗?
Copyright & 1998 - 2017 Tencent. All Rights Reserved
还能输入140字阅读正文 :
引力波是什么,探测引力波到底有啥用?
众所周知,宇宙所有物质和能量之间都存在着引力,比如说,物体在地球上的重量,便是地球对其引力所致。尽管,引力是人类最早认识的一种基本作用力;但是,人们对它的认识却不太清楚。因此,无论是理论或实验领域,物理学家们对引力仍然探索不止。
一个世纪前,爱因斯坦预测了引力波的存在。对于它们的存在,近百年来,科学家们只能找到间接的证据。而在美国华盛顿当地时间日这一天,这个百年前的伟大预言终于被证实。当天上午,激光干涉引力波观测台(LIGO)实验组召开新闻发布会,告诉全世界,首次直接观测到了由两颗恒星级黑洞13亿年前并合产生的引力波。这是科学史上又一次具有划时代意义的发现。
引力波与暗物质、暗能量一样,都属于宇宙中悬而未解的谜团。
精彩科技视频
厂商投稿 产品评测/网站合作/010-84383 友情链接:029- 京公网安备55号
Copyright@
驱动中国 All Rights Reserved}

我要回帖

更多关于 第三次探测引力波 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信