同一传送带的自行车大轮小轮区别和小轮包角相等吗

轮式传送带
轮式传送带
根据数量多少打折
想了解价格和发货日?先请登录公司会员,然后点击进入商品详细页面,确定型号后即可查看!
温馨提示:详细产品目录请点击右上角[PDF]或点击以下网址,进行选择
■L尺寸固定
FFSSPHFFSPPH
■轮数指定型
FFSSPHFFFSPPHF
[ ! ]指定型的L尺寸为N&P+P。
FFSSPHFFSPPHFFSSPHFFFSPPHF
边框:A6N01SS-T5
阳极氧化处理
轮:聚缩醛
生成3D预览型号&
未确定的型号用样品型号表示。请选择左侧的“指定规格/尺寸”的选项,可以显示指定尺寸的3D预览。
Loading...
型号数量折扣一般发货日RoHS规格
长度 L(mm)
滚轮数量 N(个)
滚轮数量 N(个)
对应L尺寸固定型(小间距型)100067-有
对应L尺寸固定型(小间距型)1500100-有
对应L尺寸固定型(小间距型)3000200-
对应滚轮数指定型--5 ~ 110有
对应L尺寸固定型(经济型)100020-有
对应L尺寸固定型(经济型)150030-有
对应L尺寸固定型(经济型)300060-
对应滚轮数指定型---
Loading...
规格表型式&L&NFFSSPH&3000&&FFSPPHF&&&10■L尺寸固定型
FFSSPH(经济型)100040325503525201.8410kg1500302.763000605.52PFSPPH(小间距型)100040325151310676.397kg15001009.42300020018.6
■轮数指定型
FFSSPHF5~1101.8410kgJBS50□FFSPPHF5~1106.397kgJBS50□
轮式传送带
A6N01SS-T5
本色阳极氧化处理
长度 L(mm)
<li class="is-specItem" id="cond_specList_::mig05" data-spec-category="specList" data-spec-code="" data-spec-value="mig05" data-sitelog-value="
<li class="is-specItem" id="cond_specList_::mig08" data-spec-category="specList" data-spec-code="" data-spec-value="mig08" data-sitelog-value="
<li class="is-specItem" id="cond_specList_::mig10" data-spec-category="specList" data-spec-code="" data-spec-value="mig10" data-sitelog-value="
滚轮数量 N(个)
滚轮数量 N(个)
&[5-110/1个单位]
按发货日筛选
本分类中也有这种产品!
经常在一起被购买的商品
技术支持窗口
电话号码:021-(拨通后请按3选择商品技术咨询,然后根据语音提示选择对应的商品类型)
/ FAX:021-09高考一轮复习---高中物理复习精讲易错题集230页_学霸学习网
09高考一轮复习---高中物理复习精讲易错题集230页
第一章 质点的运动错题集
一、主要内容
?本章内容包括位移、路程、时间、时刻、平均速度、即时速度、线速度、角速度、加速度等基本概念,以及匀变速直线运动的规律、平抛运动的规律及圆周运动的规律。在学习中要注意准确理解位移、速度、加速度等基本概念,特别应该理解位移与距离(路程)、速度与速率、时间与时刻、加速度与速度及速度变化量的不同。?
二、基本方法?
本章中所涉及到的基本方法有:利用运动合成与分解的方法研究平抛运动的问题,这是将复杂的问题利用分解的方法将其划分为若干个简单问题的基本方法;利用物理量间的函数关系图像研究物体的运动规律的方法,这也是形象、直观的研究物理问题的一种基本方法。这些具体方法中所包含的思想,在整个物理学研究问题中都是经常用到的。因此,在学习过程中要特别加以体会。
?三、错解分析?
在本章知识应用的过程中,初学者常犯的错误主要表现在:对要领理解不深刻,如加速度的大小与速度大小、速度变化量的大小,加速度的方向与速度的方向之间常混淆不清;对位移、速度、加速度这些矢量运算过程中正、负号的使用出现混乱:在未对物体运动(特别是物体做减速运动)过程进行准确分析的情况下,盲目地套公式进行运算等。
例1 汽车以10 m/s的速度行使5分钟后突然刹车。如刹车过程是做匀变速运动,加速度大小为5m/s2 ,则刹车后3秒钟内汽车所走的距离是多少?
【错解】因为汽车刹车过程做匀减速直线运动,初速v0=10 m/s加速度
【错解原因】出现以上错误有两个原因。一是对刹车的物理过程不清楚。当速度减为零时,车与地面无相对运动,滑动摩擦力变为零。二是对位移公式的物理意义理解不深刻。位移S对应时间t,这段时间内a必须存在,而当a不存在时,求出的位移则无意义。由于第一点的不理解以致认为a永远地存在;由于第二点的不理解以致有思考a什么时候不存在。
【分析解答】依题意画出运动草图1-1。设经时间t1速度减为零。据匀减速直线运动速度公式v1=v0-at则有0=10-5t解得t=2S由于汽车在2S时
【评析】物理问题不是简单的计算问题,当得出结果后,应思考是否与
s=-30m的结果,这个结果是与实际不相符的。应思考在运用规律中是否出现与实际不符的问题。
本题还可以利用图像求解。汽车刹车过程是匀减速直线运动。据v0,a
由此可知三角形v0Ot所包围的面积即为刹车3s内的位移。
例2 气球以10m/s的速度匀速竖直上升,从气球上掉下一个物体,经17s到达地面。求物体刚脱离气球时气球的高度。(g=10m/s2)
【错解】物体从气球上掉下来到达地面这段距离即为物体脱离气球时,气球的高度。
所以物体刚脱离气球时,气球的高度为 1445m。
【错解原因】由于学生对惯性定律理解不深刻,导致对题中的隐含条件即物体离开气球时具有向上的初速度视而不见。误认为v0=0。实际物体随气球匀速上升时,物体具有向上10m/s的速度当物体离开气球时,由于惯性物体继续向上运动一段距离,在重力作用下做匀变速直线运动。
【分析解答】本题既可以用整体处理的方法也可以分段处理。
方法一:可将物体的运动过程视为匀变速直线运动。根据题意画出运动草图如图1-3所示。规定向下方向为正,则V0=-10m/sg=10m/s2据h=v0t+
∴物体刚掉下时离地1275m。
方法二:如图1-3将物体的运动过程分为A→B→C和C→D两段来处理。A→B→C为竖直上抛运动,C→D为竖直下抛运动。
在A→B→C段,据竖直上抛规律可知此阶段运动时间为
由题意知tCD=17-2=15(s)
=1275(m)
方法三:根据题意作出物体脱离气球到落地这段时间的V-t图(如图1-4所示)。
其中△v0otB的面积为A→B的位移
△tBtcvc的面积大小为B→C的位移
梯形tCtDvDvC的面积大小为C→D的位移即物体离开气球时距地的高度。
则tB=1s根据竖直上抛的规律tc=2s tBtD=17-1=16(s)
在△tBvDtD中则可求vD=160(m/s)
【评析】在解决运动学的问题过程中,画运动草图很重要。解题前应根据题意画出运动草图。草图上一定要有规定的正方向,否则矢量方程解决问题就会出现错误。如分析解答方法一中不规定正方向,就会出现
例3 经检测汽车A的制动性能:以标准速度20m/s在平直公路上行使时,制动后40s停下来。现A在平直公路上以20m/s的速度行使发现前方180m处有一货车B以6m/s的速度同向匀速行使,司机立即制动,能否发生撞车事故?
【错解】 设汽车A制动后40s的位移为s1,货车B在这段时间内的位
S2=v2t=6×40=240(m)
两车位移差为400-240=160(m)
因为两车刚开始相距180m>160m
所以两车不相撞。
【错解原因】这是典型的追击问题。关键是要弄清不相撞的条件。汽车A与货车B同速时,两车位移差和初始时刻两车距离关系是判断两车能否相撞的依据。当两车同速时,两车位移差大于初始时刻的距离时,两车相撞;小于、等于时,则不相撞。而错解中的判据条件错误导致错解。
【分析解答】如图1-5汽车A以v0=20m/s的初速做匀减速直线运动经40s停下来。据加速度公式可求出a=-0.5m/s2当A车减为与B车同速时是A车逼近B车距离最多的时刻,这时若能超过B车则相撞,反之则不能相撞。
△S=364-168=196>180(m)
所以两车相撞。
【评析】分析追击问题应把两物体的位置关系图画好。如图1.5,通过此图理解物理情景。本题也可以借图像帮助理解图1-6中。阴影区是A车比B车多通过的最多距离,这段距离若能大于两车初始时刻的距离则两车必相撞。小于、等于则不相撞。从图中也可以看出A车速度成为零时,不是A车比B车多走距离最多的时刻,因此不能作为临界条件分析。
例4 如图1-7所示,一人站在岸上,利用绳和定滑轮,拉船靠岸,在某一时刻绳的速度为v,绳AO段与水平面夹角为θ,不计摩擦和轮的质量,则此时小船的水平速度多大?
【错解】将绳的速度按图1-8所示的方法分解,则v1即为船的水平速度v1=v?cosθ。
【错解原因】上述错误的原因是没有弄清船的运动情况。实际上船是在做平动,每一时刻船上各点都有相同的水平速度。而AO绳上各点运动比较复杂,既有平动又有转动。以连接船上的A点来说,它有沿绳的平动分速度v,也有与v垂直的法向速度vn,即转动分速度,A点的合速度vA即为两个分速度的合。vA=v/cosθ
【分析解答】方法一:小船的运动为平动,而绳AO上各点的运动是平动+转动。以连接船上的A点为研究对象,如图1-9,A的平动速度为v,转动速度为vn,合速度vA即与船的平动速度相同。则由图可以看出vA=v/cosθ。
【评析】方法二:我们可以把绳子和滑轮看作理想机械。人对绳子做的功等于绳子对船做的功。我们所研究的绳子都是轻质绳,绳上的张力相等。对于绳上的C点来说即时功率P人绳=F?v。对于船上A点来说P绳船=FvA?cos
解答的方法一,也许学生不易理解绳上各点的运动。从能量角度来讲也可以得到同样的结论。
还应指出的是要有实际力、实际加速度、实际速度才可分解。
例5? 一条宽为L的河流,河水流速为v1,船在静水中的? 速度为v2,要使船划到对岸时航程最短,船头应指向什么方向?最短航程是多少?
【错解】要使航程最短船头应指向与岸垂直的方向。最短航程为L。
【错解原因】上而错解的原因是对运动的合成不理解。船在水中航行并不是船头指向什么方向就向什么方向运动。它的运动方向是船在静水中的速度方向与水流方向共同决定的。要使航程最短应是合速度垂直于岸。
【分析解答】题中没有给出v1与v2的大小关系,所以应考虑以下可能情况。
此种情况下航程最短为L。
②当v2<v1时,如图1-11船头斜向上游,与岸夹角为θ时,用三角形法则分析当它的方向与圆相切时,航程最短,设为S,由几何关系可知此时v2⊥v(合速度)(θ≠0)
③当v2=v1时,如图1-12,θ越小航程越短。(θ≠ 0)
【评析】航程最短与时间最短是两个不同概念。航程最短是指合位移最小。时间最短是指用最大垂直河岸的速度过河的时间。解决这类问题的依据就是合运动与分运动的等时性及两个方向运动的独立性。
例6 有一个物体在h高处,以水平初速度v0抛出,落地时的速度为v1,竖直分速度为vy,下列公式能用来计算该物体在空中运动时间的是(? )
【错解原因】形成以上错误有两个原因。第一是模型与规律配套。Vt=v0+gt是匀加速直线运动的速度公式,而平抛运动是曲线运动,不能用此公式。第二不理解运动的合成与分解。平抛运动可分解为水平的匀速直线运动和竖直的自由落体运动。每个分运动都对应自身运动规律。
【分析解答】本题的正确选项为A,C,D。
平抛运动可分解为水平方向的匀速运动和竖直方向的自由落体,分运动与合运动时间具有等时性。
水平方向:x=v0t①
据式①~⑤知A,C,D正确。
【评析】选择运动公式首先要判断物体的运动性质。运动性质确定了,模型确定了,运动规律就确定了。判断运动性要根据合外力和初速度的关系。当合外力与初速度共线时,物体做直线运动,当合外力与v不共线时,物体做曲线运动。当合外力与v0垂直且恒定时,物体做平抛运动。当物体总与v垂直时,物体做圆运动。
例7? 一个物体从塔顶落下,在到达地面前最后一秒内通过的位移为整个位移的9/25,求塔高(g=10m/s2)。
【错解】因为物体从塔顶落下,做自由落体运动。
解得H=13.9m
【错解原因】物体从塔顶落下时,对整个过程而言是初速为零的匀加速直线运动。而对部分最后一秒内物体的运动则不能视为初速为零的匀加速直线运动。因为最后一秒内的初始时刻物体具有一定的初速,由于对整体和部分的关系不清,导致物理规律用错,形成错解。
【分析解得】根据题意画出运动草图,如图1-13所示。物体从塔顶落到地面所经历时间为t,通过的位移为H物体在t―1秒内的位移为h。因为V0=0
由①②③解得H=125m
【评析】解决匀变速直线运动问题时,对整体与局部,局部与局部过程相互关系的分析,是解题的重要环节。如本题初位置记为A位置,t―1秒时记为B位置,落地点为C位置(如图1-13所示)。不难看出既可以把BC段看成整体过程AC与局部过程AB的差值,也可以把BC段看做是物体以初速度VB和加速度g向下做为时1s的匀加速运动,而vB可看成是局部过程AB的末速度。这样分析就会发现其中一些隐含条件。使得求解方便。
另外值得一提的是匀变速直线运动的问题有很多题通过v-t图求解既直观又方便简洁。如本题依题意可以做出v-t图(如图1-14),由题意
例8 正在与Rm高空水平匀速飞行的飞机,每隔1s释放一个小球,先后共释放5个,不计空气阻力,则(? )
A.这5个小球在空中排成一条直线
B.这5个小球在空中处在同一抛物线上
C.在空中,第1,2两个球间的距离保持不变
D.相邻两球的落地间距相等
【错解】因为5个球先后释放,所以5个球在空中处在同一抛物线上,又因为小球都做自由落体运动,所以C选项正确。
【错解原因】形成错解的原因是只注意到球做平抛运动,但没有理解小球做平抛的时间不同,所以它们在不同的抛物线上,小球在竖直方向做自由落体运动,但是先后不同。所以C选项不对。
【分析解答】释放的每个小球都做平抛运动。水平方向的速度与飞机的飞行速度相等,在水平方向做匀速直线运动,在竖直方向上做自由落体运动,只是开始的时刻不同。飞机和小球的位置如图1-15可以看出A,D选项正确。
【评析】解这类题时,决不应是想当然,而应依据物理规律画出运动草图,这样会有很大的帮助。如本题水平方向每隔1s过位移一样,投小球水平间距相同,抓住特点画出各个球的轨迹图,这样答案就呈现出来了。
例9? 物块从光滑曲面上的P点自由滑下,通过粗糙的静止水平传送带以后落到地面上的Q点,若传送带的皮带轮沿逆时针方向转动起来,使传送带随之运动,如图1-16所示,再把物块放到P点自由滑下则(? )
A.物块将仍落在Q点
B.物块将会落在Q点的左边
C.物块将会落在Q点的右边
D.物块有可能落不到地面上
【错解】因为皮带轮转动起来以后,物块在皮带轮上的时间长,相对皮带位移弯大,摩擦力做功将比皮带轮不转动时多,物块在皮带右端的速度将小于皮带轮不动时,所以落在Q点左边,应选B选项。
【错解原因】学生的错误主要是对物体的运动过程中的受力分析不准确。实质上当皮带轮逆时针转动时,无论物块以多大的速度滑下来,传送带给物块施的摩擦力都是相同的,且与传送带静止时一样,由运动学公式知位移相同。从传送带上做平抛运动的初速相同。水平位移相同,落点相同。
【分析解答】物块从斜面滑下来,当传送带静止时,在水平方向受到与运动方向相反的摩擦力,物块将做匀减速运动。离开传送带时做平抛运动。当传送带逆时针转动时物体相对传送带都是向前运动,受到滑动摩擦力方向与运动方向相反。? 物体做匀减速运动,离开传送带时,也做平抛运动,且与传送带不动时的抛出速度相同,故落在Q点,所以A选项正确。
【评析】若此题中传送带顺时针转动,物块相对传送带的运动情况就应讨论了。
(1)当v0=vB物块滑到底的速度等于传送带速度,没有摩擦力作用,物块做匀速运动,离开传送带做平抛的初速度比传送带不动时的大,水平位移也大,所以落在Q点的右边。
(2)当v0>vB物块滑到底速度小于传送带的速度,有两种情况,一是物块始终做匀加速运动,二是物块先做加速运动,当物块速度等于传送带的速度时,物体做匀速运动。这两种情况落点都在Q点右边。
(3)v0<vB当物块滑上传送带的速度大于传送带的速度,有两种情况,一是物块一直减速,二是先减速后匀速。第一种落在Q点,第二种落在Q点的右边。
第二章 牛顿定律错题集?
一、主要内容?
本章内容包括力的概念及其计算方法,重力、弹力、摩擦力的概念及其计算,牛顿运动定律,物体的平衡,失重和超重等概念和规律。其中重点内容重力、弹力和摩擦力在牛顿第二定律中的应用,这其中要求学生要能够建立起正确的“运动和力的关系”。因此,深刻理解牛顿第一定律,则是本章中运用牛顿第二定律解决具体的物理问题的基础。?
二、基本方法?
本章中所涉及到的基本方法有:力的分解与合成的平行四边形法则,这是所有矢量进行加、减法运算过程的通用法则;运用牛顿第二定律解决具体实际问题时,常需要将某一个物体从众多其他物体中隔离出来进行受力分析的“隔离法”,隔离法是分析物体受力情况的基础,而对物体的受力情况进行分析又是应用牛顿第二定律的基础。因此,这种从复杂的对象中隔离出某一孤立的物体进行研究的方法,在本章中便显得十分重要。
?三、错解分析?
在本章知识应用的过程中,初学者常犯的错误主要表现在:对物体受力情况不能进行正确的分析,其原因通常出现在对弹力和摩擦力的分析与计算方面,特别是对摩擦力(尤其是对静摩擦力)的分析;对运动和力的关系不能准确地把握,如在运用牛顿第二定律和运动学公式解决问题时,常表现出用矢量公式计算时出现正、负号的错误,其本质原因就是对运动和力的关系没能正确掌握,误以为物体受到什么方向的合外力,则物体就向那个方向运动。
例1 甲、乙两人手拉手玩拔河游戏,结果甲胜乙败,那么甲乙两人谁受拉力大?
【错解】因为甲胜乙,所以甲对乙的拉力比乙对甲的拉力大。就像拔河一样,甲方胜一定是甲方对乙方的拉力大。
【错解原因】产生上述错解原因是学生凭主观想像,而不是按物理规律分析问题。按照物理规律我们知道物体的运动状态不是由哪一个力决定的而是由合外力决定的。甲胜乙是因为甲受合外力对甲作用的结果。甲、乙两人之间的拉力根据牛顿第三定律是相互作用力,甲、乙二人拉力一样大。
【分析解答】甲、乙两人相互之间的拉力是相互作用力,根据牛顿第三定律,大小相等,方向相反,作用在甲、乙两人身上。
【评析】生活中有一些感觉不总是正确的,不能把生活中的经验,感觉当成规律来用,要运用物理规律来解决问题。
例2 如图2-1所示,一木块放在水平桌面上,在水平方向上共受三个力,F1,F2和摩擦力,处于静止状态。其中F1=10N,F2=2N。若撤去力F1则木块在水平方向受到的合外力为(?? )
A.10N向左?? B.6N向右? C.2N向左?? D.0
【错解】木块在三个力作用下保持静止。当撤去F1后,另外两个力的合力与撤去力大小相等,方向相反。故A正确。
【错解原因】造成上述错解的原因是不加分析生搬硬套运用“物体在几个力作用下处于平衡状态,如果某时刻去掉一个力,则其他几个力的合力大小等于去掉这个力的大小,方向与这个力的方向相反”的结论的结果。实际上这个规律成立要有一个前提条件,就是去掉其中一个力,而其他力不变。本题中去掉F1后,由于摩擦力发生变化,所以结论不成立。
【分析解答】由于木块原来处于静止状态,所以所受摩擦力为静摩擦力。依据牛二定律有F1-F2-f=0此时静摩擦力为8N方向向左。撤去F1后,木块水平方向受到向左2N的力,有向左的运动趋势,由于F2小于最大静摩擦力,所以所受摩擦力仍为静摩擦力。此时―F2+f′=0即合力为零。故D选项正确。
【评析】摩擦力问题主要应用在分析物体运动趋势和相对运动的情况,所谓运动趋势,一般被解释为物体要动还未动这样的状态。没动是因为有静摩擦力存在,阻碍相对运动产生,使物体间的相对运动表现为一种趋势。由此可以确定运动趋势的方向的方法是假设静摩擦力不存在,判断物体沿哪个方向产生相对运动,该相对运动方向就是运动趋势的方向。如果去掉静摩擦力无相对运动,也就无相对运动趋势,静摩擦力就不存在。
例3 ?如图2-2所示水平放置的粗糙的长木板上放置一个物体m,当用于缓慢抬起一端时,木板受到的压力和摩擦力将怎样变化?
【错解】以木板上的物体为研究对象。物体受重力、摩擦力、支持力。因为物体静止,则根据牛顿第二定律有
错解一:据式②知道θ增加,f增加。
错解二:另有错解认为据式②知θ增加,N减小则f=μN说明f减少。
【错解原因】错解一和错解二都没能把木板缓慢抬起的全过程认识透。只抓住一个侧面,缺乏对物理情景的分析。若能从木块相对木板静止入手,分析出再抬高会相对滑动,就会避免错解一的错误。若想到f=μN是滑动摩擦力的判据,就应考虑滑动之前怎样,也就会避免错解二。
【分析解答】以物体为研究对象,如图2-3物体受重力、摩擦力、支持力。物体在缓慢抬起过程中先静止后滑动。静止时可以依据错解一中的解法,可知θ增加,静摩擦力增加。当物体在斜面上滑动时,可以同错解二中的方法,据f=μN,分析N的变化,知f滑的变化。θ增加,滑动摩擦力减小。在整个缓慢抬起过程中y方向的方程关系不变。依据错解中式②知压力一直减小。所以抬起木板的过程中,摩擦力的变化是先增加后减小。压力一直减小。
【评析】物理问题中有一些变化过程,不是单调变化的。在平衡问题中可算是一类问题,这类问题应抓住研究变量与不变量的关系。可从受力分析入手,列平衡方程找关系,也可以利用图解,用矢量三角形法则解决问题。如此题物体在未滑动时,处于平衡状态,加速度为零。所受三个力围成一闭合三角形。如图2-4。类似问题如图2-5用绳将球挂在光滑的墙面上,绳子变短时,绳的拉力和球对墙的压力将如何变化。从对应的矢量三角形图2-6不难看出,当绳子变短时,θ角增大,N增大,T变大。图2-7在AC绳上悬挂一重物G,在AC绳的中部O点系一绳BO,以水平力F牵动绳BO,保持AO方向不变,使BO绳沿虚线所示方向缓缓向上移动。在这过程中,力F和AO绳上的拉力变化情况怎样?用矢量三角形(如图2-8)可以看出T变小,F先变小后变大。这类题的特点是三个共点力平衡,通常其中一个力大小、方向均不变,另一个力方向不变,大小变,第三个力大小、方向均改变。还有时是一个力大小、方向不变,另一个力大小不变,方向变,第三个力大小、方向都改变。
例4 如图2-9物体静止在斜面上,现用水平外力F推物体,在外力F由零逐渐增加的过程中,物体始终保持静止,物体所受摩擦力怎样变化?
【错解】错解一:以斜面上的物体为研究对象,物体受力如图2-10,物体受重力mg,推力F,支持力N,静摩擦力f,由于推力F水平向右,所以物体有向上运动的趋势,摩擦力f的方向沿斜面向下。根据牛顿第二定律列方程
f+mgsinθ=Fcosθ?????? ①
N-Fsinθ-mgcosθ=0 ②
由式①可知,F增加f也增加。所以在变化过程中摩擦力是增加的。
错解二:有一些同学认为摩擦力的方向沿斜面向上,则有F增加摩擦力减少。
【错解原因】上述错解的原因是对静摩擦力认识不清,因此不能分析出在外力变化过程中摩擦力的变化。
【分析解答】本题的关键在确定摩擦力方向。由于外力的变化物体在斜面上的运动趋势有所变化,如图2-10,当外力较小时(Fcosθ<mgsinθ)物体有向下的运动趋势,摩擦力的方向沿斜面向上。F增加,f减少。与错解二的情况相同。如图2-11,当外力较大时(Fcosθ>mgsinθ)物体有向上的运动趋势,摩擦力的方向沿斜面向下,外力增加,摩擦力增加。当Fcosθ=mgsinθ时,摩擦力为零。所以在外力由零逐渐增加的过程中,摩擦力的变化是先减小后增加。
【评析】若斜面上物体沿斜面下滑,质量为m,物体与斜面间的摩擦因数为μ,我们可以考虑两个问题巩固前面的分析方法。
(1) F为怎样的值时,物体会保持静止。
(2)F为怎样的值时,物体从静止开始沿斜面以加速度a运动。
受前面问题的启发,我们可以想到F的值应是一个范围。
首先以物体为研究对象,当F较小时,如图2-10物体受重力mg、支持力N、斜向上的摩擦力f和F。物体刚好静止时,应是F的边界值,此时的摩擦力为最大静摩擦力,可近似看成f静=μN(最大静摩擦力)如图建立坐标,据牛顿第二定律列方程
当F从此值开始增加时,静摩擦力方向开始仍然斜向上,但大小减小,当F增加到FCOSθ=mgsinθ时,即F=mg?tgθ时,F再增加,摩擦力方向改为斜向下,仍可以根据受力分析图2-11列出方程
随着F增加,静摩擦力增加,F最大值对应斜向下的最大静摩擦力。
要使物体静止F的值应为
关于第二个问题提醒读者注意题中并未提出以加速度a向上还是向下运动,应考虑两解,此处不详解此,给出答案供参考。
例5? 如图2-12,m和M保持相对静止,一起沿倾角为θ的光滑斜面下滑,则M和m间的摩擦力大小是多少?
【错解】以m为研究对象,如图2-13物体受重力mg、支持力N、摩擦力f,如图建立坐标有
?再以m+N为研究对象分析受力,如图2-14,(m+M)g?sinθ=(M+m)a③
据式①,②,③解得f=0
所以m与M间无摩擦力。
【错解原因】造成错解主要是没有好的解题习惯,只是盲目的模仿,似乎解题步骤不少,但思维没有跟上。要分析摩擦力就要找接触面,摩擦力方向一定与接触面相切,这一步是堵住错误的起点。犯以上错误的客观原因是思维定势,一见斜面摩擦力就沿斜面方向。归结还是对物理过程分析不清。
【分析解答】因为m和M保持相对静止,所以可以将(m+M)整体视为研究对象。受力,如图2-14,受重力(M十m)g、支持力N′如图建立坐标,根据牛顿第二定律列方程
x:(M+n)gsinθ=(M+m)a??? ①
解得a=gsinθ
沿斜面向下。因为要求m和M间的相互作用力,再以m为研究对象,受力如图2-15。
根据牛顿第二定律列方程
因为m,M的加速度是沿斜面方向。需将其分解为水平方向和竖直方向如图2-16。
由式②,③,④,⑤解得f=mgsinθ?cosθ
方向沿水平方向m受向左的摩擦力,M受向右的摩擦力。
【评析】? 此题可以视为连接件问题。连接件问题对在解题过程中选取研究对象很重要。有时以整体为研究对象,有时以单个物体为研究对象。整体作为研究对象可以将不知道的相互作用力去掉,单个物体作研究对象主要解决相互作用力。单个物体的选取应以它接触的物体最少为最好。如m只和M接触,而M和m还和斜面接触。
另外需指出的是,在应用牛顿第二定律解题时,有时需要分解力,有时需要分解加速度,具体情况分析,不要形成只分解力的认识。
例6? 如图2-17物体A叠放在物体B上,B置于光滑水平面上。A,B质量分别为mA=6kg,mB=2kg,A,B之间的动摩擦因数μ=0.2,开始时F=10N,此后逐渐增加,在增大到45N的过程中,则
?????????????????????????????????????????????????????????????????????????????????????????????????? [??? ]
A.当拉力F<12N时,两物体均保持静止状态
B.两物体开始没有相对运动,当拉力超过12N时,开始相对滑动
C.两物体间从受力开始就有相对运动
D.两物体间始终没有相对运动
【错解】? 因为静摩擦力的最大值近似等于滑动摩擦力。fmax=μN=0.2×6=12(N)。所以当F>12N时,A物体就相对B物体运动。F<12N时,A相对B不运动。所以A,B选项正确。
【错解分析】 产生上述错误的原因一致是对A选项的理解不正确,A中说两物体均保持静止状态,是以地为参考物,显然当有力F作用在A物体上,A,B两物体对地来说是运动的。二是受物体在地面上运动情况的影响,而实际中物体在不固定物体上运动的情况是不同的。
【分析解答】 首先以A,B整体为研究对象。受力如图2-18,在水平方向只受拉力F,根据牛顿第二定律列方程
F=(mA+mB)a??? ①
再以B为研究对象,如图2-19,B水平方向受摩擦力
f=mBa?? ?②
代入式①F=(6+2)×6=48N
由此可以看出当F<48N时A,B间的摩擦力都达不到最大静摩擦力,也就是说,A,B间不会发生相对运动。所以D选项正确。
【评析】 物理解题中必须非常严密,一点的疏忽都会导致错误。避免错误发生的最好方法就是按规范解题。每一步都要有依据。
例7 如图2-20,用绳AC和 BC吊起一重物,绳与竖直方向夹角分别为30°和60°,AC绳能承受的最大的拉力为150N,而BC绳能承受的最大的拉力为100N,求物体最大重力不能超过多少?
【错解】以重物为研究对象,重物受力如图2-21。由于重物静止,则有
TACsin30°=TBCsin60°
TACcos30°+TBCcos60°=G
将TAC=150N,TBC=100N代入式解得G=200N。
【错解原因】以上错解的原因是学生错误地认为当TAC=150N时,TBC=100N,而没有认真分析力之间的关系。实际当TBC=100N时,TBC已经超过150N。
【分析解答】以重物为研究对象。重物受力如图2-21,重物静止,加速度为零。据牛顿第二定律列方程
TACsin30°-TBCsin60°=0??? ①
TACcos30°+TBCcos60°-G=0??? ②
而当TAC=150N时,TBC=86.6<100N
将TAC=150N,TBC=86.6N代入式②解得G=173.32N。
所以重物的最大重力不能超过173.2N。
例8? 如图2-22质量为M,倾角为α的楔形物A放在水平地面上。质量为m的B物体从楔形物的光滑斜面上由静止释放,在B物体加速下滑过程中,A物体保持静止。地面受到的压力多大?
【错解】以A,B整体为研究对象。受力如图2-23,因为A物体静止,所以N=G=(M+m)g。
【错解原因】由于A,B的加速度不同,所以不能将二者视为同一物体。忽视了这一点就会造成错解。
【分析解答】分别以A,B物体为研究对象。A,B物体受力分别如图2-24a,2-24b。根据牛顿第二定律列运动方程,A物体静止,加速度为零。
x:Nlsinα-f=0??? ①
y:N-Mg-Nlcosα=0??? ②
B物体下滑的加速度为a,
x:mgsinα=ma??? ③
y:Nl-mgcosα=0??? ④
由式①,②,③,④解得N=Mg+mgcosα
根据牛顿第三定律地面受到的压力为Mg十mgcosα。
【评析】 在解决物体运动问题时,在选取研究对象时,若要将几个物体视为一个整体做为研究对象,应该注意这几个物体必须有相同的加速度。
例9? 如图2-25天花板上用细绳吊起两个用轻弹簧相连的两个质量相同的小球。两小球均保持静止。当突然剪断细绳时,上面小球A与下面小球B的加速度为????? [??? ]
A.a1=g? a2=g
B.a1=g? a2=g
C.a1=2g? a2=0
D.a1=0? a2=g
【错解】 剪断细绳时,以(A+B)为研究对象,系统只受重力,所以加速度为g,所以A,B球的加速度为g。故选A。
【错解原因】 出现上述错解的原因是研究对象的选择不正确。由于剪断绳时,A,B球具有不同的加速度,不能做为整体研究。
【分析解答】 分别以A,B为研究对象,做剪断前和剪断时的受力分析。剪断前A,B静止。如图2-26,A球受三个力,拉力T、重力mg和弹力F。B球受三个力,重力mg和弹簧拉力F′
A球:T-mg-F=0??? ①
B球:F′-mg=0??? ②
由式①,②解得T=2mg,F=mg
剪断时,A球受两个力,因为绳无弹性剪断瞬间拉力不存在,而弹簧有形米,瞬间形状不可改变,弹力还存在。如图2-27,A球受重力mg、弹簧给的弹力F。同理B球受重力mg和弹力F′。
A球:-mg-F=maA????? ③
B球:F′-mg=maB??? ④
由式③解得aA=-2g(方向向下)
由式④解得aB=0
故C选项正确。
【评析】 (1)牛顿第二定律反映的是力与加速度的瞬时对应关系。合外力不变,加速度不变。合外力瞬间改变,加速度瞬间改变。本题中A球剪断瞬间合外力变化,加速度就由0变为2g,而B球剪断瞬间合外力没变,加速度不变。
(2)弹簧和绳是两个物理模型,特点不同。弹簧不计质量,弹性限度内k是常数。绳子不计质量但无弹性,瞬间就可以没有。而弹簧因为有形变,不可瞬间发生变化,即形变不会瞬间改变,要有一段时间。
例10? 如图2-28,有一水平传送带以2m/s的速度匀速运动,现将一物体轻轻放在传送带上,若物体与传送带间的动摩擦因数为0.5,则传送带将该物体传送10m的距离所需时间为多少?
【错解】由于物体轻放在传送带上,所以v0=0,物体在竖直方向合外力为零,在水平方向受到滑动摩擦力(传送带施加),做v0=0的匀加速运动,位移为10m。
据牛顿第二定律F=ma有f=μmg=ma,a=μg=5m/s2
【错解原因】上述解法的错误出在对这一物理过程的认识。传送带上轻放的物体的运动有可能分为两个过程。一是在滑动摩擦力作用下作匀加速直线运动;二是达到与传送带相同速度后,无相对运动,也无摩擦力,物体开始作匀速直线运动。关键问题应分析出什么时候达到传送带的速度,才好对问题进行解答。
【分析解答】以传送带上轻放物体为研究对象,如图2-29在竖直方向受重力和支持力,在水平方向受滑动摩擦力,做v0=0的匀加速运动。
据牛二定律F=ma
有水平方向:f=ma??? ①
竖直方向:N-mg=0??? ②
f=μN??? ③
由式①,②,③解得a=5m/s2
设经时间tl,物体速度达到传送带的速度,据匀加速直线运动的速度公式
v0=v0+at??? ④
解得t1=0.4s
物体位移为0.4m时,物体的速度与传送带的速度相同,物体0.4s后无摩擦力,开始做匀速运动
S2=v2t2??? ⑤
因为S2=S-S1=10―0.4=9.6(m),v2=2m/s
代入式⑤得t2=4.8s
则传送10m所需时间为t=0.4+4.8=5.2s。
【评析】本题是较为复杂的一个问题,涉及了两个物理过程。这类问题应抓住物理情景,带出解决方法,对于不能直接确定的问题可以采用试算的方法,如本题中错解求出一直做匀加速直线运动经过10m用2s,可以拿来计算一下,2s末的速度是多少,计算结果v=5×2=10(m/s),已超过了传送带的速度,这是不可能的。当物体速度增加到2m/s时,摩擦力瞬间就不存在了。这样就可以确定第2个物理过程。
例11? 如图2-30,一个弹簧台秤的秤盘质量和弹簧质量都可以不计,盘内放一个物体P处于静止。P的质量为12kg,弹簧的劲度系数k=800N/m。现给P施加一个竖直向上的力F,使P从静止开始向上做匀加速运动。已知在前0.2s内F是变化的,在0.2s以后F是恒力,则F的最小值是多少,最大值是多少?
F最大值即N=0时,F=ma+mg=210(N)
【错解原因】错解原因是对题所叙述的过程不理解。把平衡时的关系G=F+N,不自觉的贯穿在解题中。
【分析解答】解题的关键是要理解0.2s前F是变力,0.2s后F的恒力的隐含条件。即在0.2s前物体受力和0.2s以后受力有较大的变化。
以物体P为研究对象。物体P静止时受重力G、称盘给的支持力N。
因为物体静止,∑F=0
N=G=0??? ①
N=kx0??? ②
设物体向上匀加速运动加速度为a。
此时物体P受力如图2-31受重力G,拉力F和支持力N′
据牛顿第二定律有
F+N′-G=ma??? ③
当0.2s后物体所受拉力F为恒力,即为P与盘脱离,即弹簧无形变,由0~0.2s内物体的位移为x0。物体由静止开始运动,则
将式①,②中解得的x0=0.15m代入式③解得a=7.5m/s2
F的最小值由式③可以看出即为N′最大时,即初始时刻N′=N=kx。
代入式③得
Fmin=ma+mg-kx0
=12×(7.5+10)-800×0.15
F最大值即N=0时,F=ma+mg=210(N)
【评析】本题若称盘质量不可忽略,在分析中应注意P物体与称盘分离时,弹簧的形变不为0,P物体的位移就不等于x0,而应等于x0-x(其中x即称盘对弹簧的压缩量)。
?第三章? 机械能错题集
?
一、主要内容
本章内容包括功、功率、动能、势能(包括重力势能和弹性势能)等基本概念,以动能定理、重力做功的特点、重力做功与重力势能变化的关系及机械能守恒定律等基本规律。其中对于功的计算、功率的理解、做功与物体能量变化关系的理解及机械能守恒定律的适用条件是本章的重点内容。
二、基本方法
本章中所涉及到的基本方法有:用矢量分解的方法处理恒力功的计算,这里既可以将力矢量沿平行于物体位移方向和垂直于物体位移方向进行分解,也可以将物体的位移沿平行于力的方向和垂直于力的方向进行分解,从而确定出恒力对物体的作用效果;对于重力势能这种相对物理量,可以通过巧妙的选取零势能面的方法,从而使有关重力势能的计算得以简化。
三、错解分析
在本章知识应用的过程中,初学者常犯的错误主要表现在:“先入为主”导致解决问题的思路过于僵化,如在计算功的问题中,一些学生一看到要计算功,就只想到W= Fscosθ,而不能将思路打开,从W=Pt和W=ΔEt等多条思路进行考虑;不注意物理规律的适用条件,导致乱套机械能守恒定律。
例1? 如图3-1,小物块位于光滑斜面上,斜面位于光滑水平地面上,在小物块沿斜面下滑的过程中,斜面对小物块的作用力?????????????????????????????????????????????????????? [??? ]
A.垂直于接触面,做功为零
B.垂直于接触面,做功不为零
C.不垂直于接触面,做功为零
D.不垂直于接触面,做功不为零
【错解】斜面对小物块的作用力是支持力,应与斜面垂直,因为支持力总与接触面垂直,所以支持力不做功。故A选项正确。
【错解原因】斜面固定时,物体沿斜面下滑时,支持力做功为零。受此题影响,有些人不加思索选A。这反映出对力做功的本质不太理解,没有从求功的根本方法来思考,是形成错解的原因。
【分析解答】根据功的定义W=F?scosθ为了求斜面对小物块的支持力所做的功,应找到小物块的位移。由于地面光滑,物块与斜面体构成的系统在水平方向不受外力,在水平方向系统动量守恒。初状态系统水平方向动量为零,当物块有水平向左的动量时,斜面体必有水平向右的动量。由于m<M,则斜面体水平位移小于物块水平位移。根据图3-2上关系可以确定支持力与物块位移夹角大于90°,则斜面对物块做负功。应选B。
【评析】求解功的问题一般来说有两条思路。一是可以从定义出发。二是可以用功能关系。如本题物块从斜面上滑下来时,减少的重力势能转化为物块的动能和斜面的动能,物块的机械能减少了,说明有外力对它做功。所以支持力做功。
例2? 以20m/s的初速度,从地面竖直向上势出一物体,它上升的最大高度是18m。如果物体在运动过程中所受阻力的大小不变,则物体在离地面多高处,物体的动能与重力势能相等。(g=10m/s2)
【错解】以物体为研究对象,画出运动草图3-3,设物体上升到h高处动能与重力势能相等
此过程中,重力阻力做功,据动能定量有
物体上升的最大高度为H
由式①,②,③解得h=9.5m
【错解原因】初看似乎任何问题都没有,仔细审题,问物全体离地面多高处,物体动能与重力势相等一般人首先是将问题变形为上升过程中什么位置动能与重力势能相等。而实际下落过程也有一处动能与重力势能相等。
【分析解答】上升过程中的解同错解。
设物体下落过程中经过距地面h′处动能等于重力势能,运动草图如3-4。
据动能定量
解得h′=8.5m
【评析】在此较复杂问题中,应注意不要出现漏解。比较好的方法就是逐段分析法。
例3? 如图3-5,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短。现将子弹、木块和弹簧合在一起作研究对象,则此系统在从子弹开始射入木块到弹簧压缩到最短的过程中?????????????????????????????????????????????? [??? ]
A.动量守恒,机械能守恒
B.动量不守恒,机械能不守恒
C.动量守恒,机械能不守恒
D.动量不守恒,机械能守恒
【错解】以子弹、木块和弹簧为研究对象。因为系统处在光滑水平桌面上,所以系统水平方向不受外力,系统水平方向动量守恒。又因系统只有弹力做功,系统机械能守恒。故A正确。
【错解原因】错解原因有两个一是思维定势,一见光滑面就认为不受外力。二是规律适用条件不清。
【分析解答】以子弹、弹簧、木块为研究对象,分析受力。在水平方向,弹簧被压缩是因为受到外力,所以系统水平方向动量不守恒。由于子弹射入木块过程,发生巨烈的摩擦,有摩擦力做功,系统机械能减少,也不守恒,故B正确。
例4? 如图3-6,质量为M的木块放在光滑水平面上,现有一质量为m的子弹以速度v0射入木块中。设子弹在木块中所受阻力不变,大小为f,且子弹未射穿木块。若子弹射入木块的深度为D,则木块向前移动距离是多少?系统损失的机械能是多少?
【错解】(1)以木块和子弹组成的系统为研究对象。系统沿水平方向不受外力,所以沿水平方向动量守恒。设子弹和木块共同速度为v。据动量守恒有mv0=(M+m)v
子弹射入木块过程中,摩擦力对子弹做负功
(2)系统损失的机械能
即为子弹损失的功能
【错解原因】错解①中错误原因是对摩擦力对子弹做功的位移确定错误。子弹对地的位移并不是D,而D打入深度是相对位移。而求解功中的位移都要用对地位移。错解②的错误是对这一物理过程中能量的转换不清楚。子弹打入木块过程中,子弹动能减少并不等于系统机械能减少量。因为子弹减少的功能有一部分转移为木块的动能,有一部转化为焦耳热。
【分析解答】以子弹、木块组成系统为研究对象。画出运算草图,如图3―7。系统水平方向不受外力,故水平方向动量守恒。据动量守恒定律有
mv0=(M+m)v(设v0方向为正)
子弹打入木块到与木块有相同速度过程中摩擦力做功:
由运动草图可S木=S子-D???????????????????????????????? ③
【评析】子弹和木块相互作用过程中,子弹的速度由V0减为V,同时木块的速度由0增加到V。对于这样的一个过程,因为其间的相互作用力为恒力,所以我们可以从牛顿运动定律(即f使子弹和木块产生加速度,使它们速度发生变化)、能量观点、或动量观点三条不同的思路进行研究和分析。类似这样的问题都可以采用同样的思路。一般都要首先画好运动草图。例:如图3-8在光滑水平面上静止的长木板上,有一粗糙的小木块以v0沿木板滑行。情况与题中极其相似,只不过作用位置不同,但相互作用的物理过程完全一样。
参考练习:如图3-9一质量为M、长为l的长方形木板B放在光滑的水平地面上,在其右端放一质量为m的小木块A,m<M。现以地面为参考系,给A和B以大小相同,方向相反的初速度,使A开始向左运动,B开始向右运动,但最后A刚好没有滑离B板。求小木块A向左运动到达最远处(对地)离出发点的距离。
提示:注意分析物理过程。情景如图3-10。其中隐含条件A刚好没离B板,停在B板的左端,意为此时A,B无相对运动。A,B作用力大小相等,但加速度不同,由于A的加速度大,首先减为零,然后加速达到与B同速。
例5? 下列说法正确的是(?? )
A.合外力对质点做的功为零,则质点的动能、动量都不变
B.合外力对质点施的冲量不为零,则质点动量必将改变,动能也一定变
C.某质点受到合力不为零,其动量、动能都改变
D.某质点的动量、动能都改变,它所受到的合外力一定不为零。
【错解】错解一:因为合外力对质点做功为零,据功能定理有△EA=0,因为动能不变,所以速度V不变,由此可知动量不变。故A正确。
错解二:由于合外力对质点施的冲量不为零,则质点动量必将改变,V改变,动能也就改变。故B正确。
【错解原因】形成上述错解的主要原因是对速度和动量的矢量性不理解。对矢量的变化也就出现理解的偏差。矢量发生变化时,可以是大小改变,也可能是大小不改变,而方向改变。这时变化量都不为零。而动能则不同,动能是标量,变化就一定是大小改变。所以△Ek=0只能说明大小改变。而动量变化量不为零就有可能是大小改变,也有可能是方向改变。
【分析解答】本题正确选项为D。
因为合外力做功为零,据动能定理有△Ek=0,动能没有变化,说明速率无变化,但不能确定速度方向是否变化,也就不能推断出动量的变化量是否为零。故A错。合外力对质点施冲量不为零,根据动量定理知动量一定变,这既可以是速度大小改变,也可能是速度方向改变。若是速度方向改变,则动能不变。故B错。同理C选项中合外力不为零,即是动量发生变化,但动能不一定改变,C选项错。D选项中动量、动能改变,根据动量定量,冲量一定不为零,即合外力不为零。故D正确。
【评析】对于全盘肯定或否定的判断,只要找出一反例即可判断。要证明它是正确的就要有充分的论据。
例6? 物体m从倾角为α的固定的光滑斜面由静止开始下滑,斜面高为h,当物体滑至斜面底端,重力做功的瞬时功率为(??? )
【错解】错解一:因为斜面是光滑斜面,物体m受重力和支持。支持不
错解二:物体沿斜面做v0=0的匀加速运动a=mgsina
【错解原因】错解一中错误的原因是没有注意到瞬时功率P=Fvcosθ。
只有Fv同向时,瞬时功率才能等于Fv,而此题中重力与瞬时速度V不是同方向,所以瞬时功率应注意乘上F,v夹角的余弦值。
错解二中错误主要是对瞬时功率和平均功率的概念不清楚,将平均功率当成瞬时功率。
【分析解答】由于光滑斜面,物体m下滑过程中机械能守恒,滑至底端
F、v夹角θ为90°-α
故C选项正确。
【评析】求解功率问题首先应注意求解的是瞬时值还是平均值。如果求瞬时值应注意普遍式P=Fv?cosθ(θ为F,v的夹角)当F,v有夹角时,应注意从图中标明。
例7? 一列火车由机车牵引沿水平轨道行使,经过时间t,其速度由0增大到v。已知列车总质量为M,机车功率P保持不变,列车所受阻力f为恒力。求:这段时间内列车通过的路程。
【错解】以列车为研究对象,水平方向受牵引力和阻力f。
据P=F?V可知牵引力
F=P/v?????????????????????????????????????????????????????????????????????? ①
设列车通过路程为s,据动能定理有
【错解原因】以上错解的原因是对P=F?v的公式不理解,在P一定的情况下,随着v的变化,F是变化的。在中学阶段用功的定义式求功要求F是恒力。
【分析解答】以列车为研究对象,列车水平方向受牵引力和阻力。设列车通过路程为s。据动能定理
【评析】发动机的输出功率P恒定时,据P=F?V可知v变化,F就会发生变化。牵动ΣF,a变化。应对上述物理量随时间变化的规律有个定性的认识。下面通过图象给出定性规律。(见图3-12所示)
例8? 如图3-13,质量分别为m和2m的两个小球A和B,中间用轻质杆相连,在杆的中点O处有一固定转动轴,把杆置于水平位置后释放,在B球顺时针摆动到最低位置的过程中(?? )
A.B球的重力势能减少,动能增加,B球和地球组成的系统机械能守恒
B.A球的重力势能增加,动能也增加,A球和地球组成的系统机械能不守恒。
C.A球、B球和地球组成的系统机械能守恒
D.A球、B球和地球组成的系统机械不守恒
【错解】B球下摆过程中受重力、杆的拉力作用。拉力不做功,只有重力做功,所以B球重力势能减少,动能增加,机械能守恒,A正确。
同样道理A球机械能守恒,B错误,因为A,B系统外力只有重力做功,系统机械能守恒。故C选项正确。
【错解原因】 B球摆到最低位置过程中,重力势能减少动能确实增加,但不能由此确定机械能守恒。错解中认为杆施的力沿杆方向,这是造成错解的直接原因。杆施力的方向并不总指向沿杆的方向,本题中就是如此。杆对A,B球既有沿杆的法向力,也有与杆垂直的切向力。所以杆对A,B球施的力都做功,A球、B球的机械能都不守恒。但A+B整体机械能守恒。
【分析解答】B球从水平位置下摆到最低点过程中,受重力和杆的作用力,杆的作用力方向待定。下摆过程中重力势能减少动能增加,但机械能是否守恒不确定。A球在B下摆过程中,重力势能增加,动能增加,机械能增加。由于A+B系统只有重力做功,系统机械能守恒,A球机械能增加,B球机械能定减少。所以B,C选项正确。
【评析】有些问题中杆施力是沿杆方向的,但不能由此定结论,只要杆施力就沿杆方向。本题中A、B球绕O点转动,杆施力有切向力,也有法向力。其中法向力不做功。如图3-14所示,杆对B球施的力对B球的做负功。杆对A球做功为正值。A球机械能增加,B球机械能减少。
例9? 质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上。平衡时,弹簧的压缩量为x0,如图3-15所示。物块从钢板正对距离为3X0的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动。已知物体质量也为m时,它们恰能回到O点,若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度,求物块向上运动到最高点与O点的距离。
【错解】物块m从A处自由落下,则机械能守恒
设钢板初位置重力势能为0,则
之后物块与钢板一起以v0向下运动,然后返回O点,此时速度为0,运动过程中因为只有重力和弹簧弹力做功,故机械能守恒。
2m的物块仍从A处落下到钢板初位置应有相同的速度v0,与钢板一起向下运动又返回机械能也守恒。返回到O点速度不为零,设为V则:
因为m物块与2m物块在与钢板接触时,弹性势能之比
2m物块与钢板一起过O点时,弹簧弹力为0,两者有相同的加速度g。之后,钢板由于被弹簧牵制,则加速度大于g,两者分离,2m物块从此位置以v为初速竖直上抛上升距离
【错解原因】这是一道综合性很强的题。错解中由于没有考虑物块与钢板碰撞之后速度改变这一过程,而导致错误。另外在分析物块与钢板接触位置处,弹簧的弹性势能时,也有相当多的人出错,两个错误都出时,会发现无解。这样有些人就返回用两次势能相等的结果,但并未清楚相等的含义。
【分析解答】物块从3x0位置自由落下,与地球构成的系统机械能守恒。则有
v0为物块与钢板碰撞时的的速度。因为碰撞板短,内力远大于外力,钢板与物块间动量守恒。设v1为两者碰撞后共同速
mv0=2mv1???????????????????????????????????????????????????? (2)
两者以vl向下运动恰返回O点,说明此位置速度为零。运动过程中机械能守恒。设接触位置弹性势能为Ep,则
同理2m物块与m物块有相同的物理过程
碰撞中动量守恒2mv0=3mv2????????????????????? (4)
所不同2m与钢板碰撞返回O点速度不为零,设为v则
因为两次碰撞时间极短,弹性形变未发生变化
Ep=E’p?????????????????????????????????????????????????????????? (6)
由于2m物块与钢板过O点时弹力为零。两者加速度相同为g,之后钢板被弹簧牵制,则其加速度大于g,所以与物块分离,物块以v竖直上抛。
【评析】本题考查了机械能守恒、动量守恒、能量转化的。守恒等多个知识点。是一个多运动过程的问题。关键问题是分清楚每一个过程。建立过程的物理模型,找到相应解决问题的规律。弹簧类问题,画好位置草图至关重要。
参考练习:如图3-16所示劲度系数为k1的轻质弹簧分别与质量为m1,m2的物体1,2,栓接系数为k2的轻弹簧上端与物体2栓接,下端压在桌面上(不栓接)。整个系统处于平衡状态,现施力将物体1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面,在此过程中,物体2的重力势能增大了多少?物体1的重力势能增大了多少?
提示:此题隐含的条件很多,挖掘隐含条件是解题的前提。但之后,必须有位置变化的情景图如图3-17。才能确定1,2上升的距离,请读者自行解答。
例10? 如图3-18所示,轻质弹簧竖直放置在水平地面上,它的正上方有一金属块从高处自由下落,从金属块自由下落到第一次速度为零的过程中
A.重力先做正功,后做负功
B.弹力没有做正功
C.金属块的动能最大时,弹力与重力相平衡
D.金属块的动能为零时,弹簧的弹性势能最大。
【错解】金属块自由下落,接触弹簧后开始减速,当重力等于弹力时,金属块速度为零。所以从金属块自由下落到第一次速度为零的过程中重力一直做正功,故A错。而弹力一直做负功所以B正确。因为金属块速度为零时,重力与弹力相平衡,所以C选项错。金属块的动能为零时,弹力最大,所以形变最大,弹性势能最大。故D正确。
【错解原因】形成以上错解的原因是对运动过程认识不清。对运动性质的判断不正确。金属块做加速还是减速运动,要看合外力方向(即加速度方向)与速度方向的关系。
【分析解答】要确定金属块的动能最大位置和动能为零时的情况,就要分析它的运动全过程。为了弄清运动性质,做好受力分析。可以从图3-19看出运动过程中的情景。
从图上可以看到在弹力N<mg时,a的方向向下,v的方向向下,金属块做加速运动。当弹力N等于重力mg时,a=0加速停止,此时速度最大。所以C选项正确。弹力方向与位移方向始终反向,所以弹力没有做正功,B选项正确。重力方向始终与位移同方向,重力做正功,没有做负功,A选项错。速度为零时,恰是弹簧形变最大时,所以此时弹簧弹性势能最大,故D正确。
所以B,C,D为正确选项。
【评析】对于较为复杂的物理问题,认清物理过程,建立物情景是很重要的。做到这一点往往需画出受力图,运动草图,这是应该具有的一种解决问题的能力。分析问题可以采用分析法和综合法。一般在考试过程中分析法用的更多。如本题A,B只要审题细致就可以解决。而C,D就要用分析法。C选项中动能最大时,速率最大,速率最大就意味着它的变化率为零,即a=0,加速度为零,即合外力为零,由于合外力为mg-N,因此得mg=N,D选项中动能为零,即速率为零,单方向运动时位移最大,即弹簧形变最大,也就是弹性势能最大。本题中金属块和弹簧在一定时间和范围内做往复运动是一种简运振动。从简谐运动图象可以看出位移变化中速度的变化,以及能量的关系。
?
第四章? 圆周运动错题集
一、主要内容
本章内容包括圆周运动的动力学部分和物体做圆周运动的能量问题,其核心内容是牛顿第二定律、机械能守恒定律等知识在圆周运动中的具体应用。
二、基本方法
本章中所涉及到的基本方法与第二章牛顿定律的方法基本相同,只是在具体应用知识的过程中要注意结合圆周运动的特点:物体所受外力在沿半径指向圆心的合力才是物体做圆周运动的向心力,因此利用矢量合成的方法分析物体的受力情况同样也是本章的基本方法;只有物体所受的合外力的方向沿半径指向圆心,物体才做匀速圆周运动。根据牛顿第二定律合外力与加速度的瞬时关系可知,当物体在圆周上运动的某一瞬间的合外力指向圆心,我们仍可以用牛顿第二定律对这一时刻列出相应的牛顿定律的方程,如竖直圆周运动的最高点和最低点的问题。另外,由于在具体的圆周运动中,物体所受除重力以外的合外力总指向圆心,与物体的运动方向垂直,因此向心力对物体不做功,所以物体的机械能守恒。
三、错解分析
在本章知识应用的过程中,初学者常犯的错误主要表现在:对物体做圆周运动时的受力情况不能做出正确的分析,特别是物体在水平面内做圆周运动,静摩擦力参与提供向心力的情况;对牛顿运动定律、圆周运动的规律及机械能守恒定律等知识内容不能综合地灵活应用,如对于被绳(或杆、轨道)束缚的物体在竖直面的圆周运动问题,由于涉及到多方面知识的综合,表现出解答问题时顾此失彼。
例1? 假如一做圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍做圆周运动,则(??? )
A.根据公式v=ωr,可知卫星运动的线速度增大到原来的2倍。
D.根据上述选项B和C给出的公式,可知卫星运动的线速度将减
【错解】选择A,B,C
所以选择A,B,C正确。
【错解分析】A,B,C中的三个公式确实是正确的,但使用过程中A,
【分析解答】正确选项为C,D。
A选项中线速度与半径成正比是在角速度一定的情况下。而r变化时,角速度也变。所以此选项不正确。同理B选项也是如此,F∝是在v一定时,但此时v变化,故B选项错。而C选项中G,M,m都是恒量,所以F∝
【评析】物理公式反映物理规律,不理解死记硬背经常会出错。使用中应理解记忆。知道使用条件,且知道来拢去脉。
卫星绕地球运动近似看成圆周运动,万有引力提供向心力,由此将
根据以上式子得出
例2? 一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多),圆管中有两个直径与细管内径相同的小球(可视为质点)。A球的质量为m1, B球的质量为m2。它们沿环形圆管顺时针运动,经过最低点时的速度都为v0。设A球运动到最低点时,球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1,m2,R与v0应满足关系式是。
【错解】依题意可知在A球通过最低点时,圆管给A球向上的弹力N1为向心力,则有
B球在最高点时,圆管对它的作用力N2为m2的向心力,方向向下,则有
因为m2由最高点到最低点机械能守恒,则有
【错解原因】错解形成的主要原因是向心力的分析中缺乏规范的解题过程。没有做受力分析,导致漏掉重力,表面上看分析出了N1=N2,但实际并没有真正明白为什么圆管给m2向下的力。总之从根本上看还是解决力学问题的基本功受力分析不过关。
【分析解答】首先画出小球运动达到最高点和最低点的受力图,如图4-1所示。A球在圆管最低点必受向上弹力N1,此时两球对圆管的合力为零,m2必受圆管向下的弹力N2,且N1=N2。
据牛顿第二定律A球在圆管的最低点有
同理m2在最高点有
m2球由最高点到最低点机械能守恒
【评析】比较复杂的物理过程,如能依照题意画出草图,确定好研究对象,逐一分析就会变为简单问题。找出其中的联系就能很好地解决问题。
例3? 从地球上发射的两颗人造地球卫星A和B,绕地球做匀速圆周运动的半径之比为RA∶RB=4∶1,求它们的线速度之比和运动周期之比。
设A,B两颗卫星的质量分别为mA,mB。
【错解原因】这里错在没有考虑重力加速度与高度有关。根据万有引力定律知道:
可见,在“错解”中把A,B两卫星的重力加速度gA,gB当作相同的g来处理是不对的。
【分析解答】卫星绕地球做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有
【评析】我们在研究地球上的物体的运动时,地面附近物体的重力加速度近似看做是恒量。但研究天体运动时,应注意不能将其认为是常量,随高度变化,g值是改变的。
例4? 使一小球沿半径为R的圆形轨道从最低点上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点?
【错解】如图4-2所示,根据机械能守恒,小球在圆形轨道最高点A时的势能等于它在圆形轨道最低点B时的动能(以B点作为零势能位置),所以为
【错解原因】小球到达最高点A时的速度vA不能为零,否则小球早在到达A点之前就离开了圆形轨道。要使小球到达A点(自然不脱离圆形轨道),则小球在A点的速度必须满足
式中,NA为圆形轨道对小球的弹力。上式表示小球在A点作圆周运动所需要的向心力由轨道对它的弹力和它本身的重力共同提供。当NA=0时,
【分析解答】以小球为研究对象。小球在轨道最高点时,受重力和轨道给的弹力。
小球在圆形轨道最高点A时满足方程
根据机械能守恒,小球在圆形轨道最低点B时的速度满足方程
解(1),(2)方程组得
轨道的最高点A。
例5? 用长L=1.6m的细绳,一端系着质量M=1kg的木块,另一端挂在固定点上。现有一颗质量m=20g的子弹以v1=500m/s的水平速度向木块中心射击,结果子弹穿出木块后以v2=100m/s的速度前进。问木块能运动到多高?(取g=10m/s2,空气阻力不计)
【错解】在水平方向动量守恒,有
mv1=Mv+mv2????????????????????????????????? (1)
式①中v为木块被子弹击中后的速度。木块被子弹击中后便以速度v开始摆动。由于绳子对木块的拉力跟木块的位移垂直,对木块不做功,所以木块的机械能守恒,即
h为木块所摆动的高度。解①,②联立方程组得到
【错解原因】这个解法是错误的。h=3.2m,就是木块摆动到了B点。如图4-3所示。则它在B点时的速度vB。应满足方程
这时木块的重力提供了木块在B点做圆周运动所需要的向心力。解
如果vB<4 m/s,则木块不能升到B点,在到达B点之前的某一位置以某一速度开始做斜向上抛运动。而木块在B点时的速度vB=4m/s,是不符合机械能守恒定律的,木块在 B点时的能量为(选A点为零势能点)
两者不相等。可见木块升不到B点,一定是h<3.2 m。
实际上,在木块向上运动的过程中,速度逐渐减小。当木块运动到某一临界位置C时,如图4-4所示,木块所受的重力在绳子方向的分力恰好等于木块做圆周运动所需要的向心力。此时绳子的拉力为零,绳子便开始松弛了。木块就从这个位置开始,以此刻所具有的速度vc作斜上抛运动。木块所能到达的高度就是C点的高度和从C点开始的斜上抛运动的最大高度之和。
【分析解答】? 如上分析,从式①求得vA=v=8m/s。木块在临界位置C时的速度为vc,高度为
h′=l(1+cosθ)
如图所示,根据机船能守恒定律有
木块从C点开始以速度vc做斜上抛运动所能达到的最大高度h″为
【评析】? 物体能否做圆运动,不是我们想象它怎样就怎样这里有一个需要的向心力和提供向心力能否吻合的问题,当需要能从实际提供中找到时,就可以做圆运动。所谓需要就是符合牛顿第二定律F向=ma向的力,而提供则是实际中的力若两者不相等,则物体将做向心运动或者离心运动。
?
第六章? 机械运动、机械波错题集
?
一、主要内容
本章内容包括机械振动、回复力、振幅、周期、频率、简谐振动、受迫振动、共振、机械波、波长、波速、横波、纵波、波的干涉和衍射等基本概念,以及单摆振动的周期规律、简谐运动的图像、简谐运动中的能量转化规律、波的图像、波长和频率与波速之间的关系等规律。
二、基本方法
本章中所涉及到的基本方法有:由于振动和波动的运动规律较为复杂,且限于中学数学知识的水平,因此对于这部分内容不可能像研究直线运动、平抛、圆周运动那样从运动方向出发描述和研究物体的运动,而是利用图象法对物体做简谐运动的运动规律及振动在介媒中的传播过程进行描述与研究。图像法具有形象、直观等优点,其中包含有丰富的物理信息,在学习时同学们要注意加以体会;另外,在研究单摆振动的过程中,对于单摆所受的回复力特点的分析,采取了小摆角的近似的处理,这是一种理想化物理过程的方法。
三、错解分析
在本章知识应用的过程中,初学者常犯的错误主要表现在:对于诸如机械振动、简谐运动、受迫振动、共振、阻尼振动、等幅振动等众多的有关振动的概念不能深刻的理解,从而造成混淆;不能从本质上把握振动图象和波的图象的区别和联系,这主要是由于振动的图象与波的图象形式上非常相似,一些学生只注意图象的形状,而忽略了图象中坐标轴所表示的物理意义,因此造成了将两个图象相混淆。另外,由于一些学生对波的形成过程理解不够深刻,导致对于波在传播过程中时间和空间的周期性不能真正的理解和把握;由于干涉和衍射的发生条件、产生的现象较为抽象,所以一些学生不能准确地把握相关的知识内容,表现为抓不住现象的主要特征、产生的条件混淆不清。
例1? 一个弹簧振子,第一次被压缩x后释放做自由振动,周期为T1,第二次被压缩2x后释放做自由振动,周期为T2,则两次振动周期之比T1∶T2为???????????? [??? ]
A.1∶1????????????????????????????? B.1∶2
C.2∶1????????????????????????????? C.1∶4
【错解】? 压缩x时,振幅为x,完成一次全振动的路程为4x。压缩2x时,振幅即为2x,完成一次全振动的路程为8x。由于两种情况下全振动的路程的差异,第二次是第一次的2倍。所以,第二次振动的周期一定也是第一次的2倍,所以选B。
【错解原因】? 上述解法之所以错误是因为把振子的运动看成是匀速运动或加速度恒定的匀加速直线运动了。用了匀速或匀加速运动的规律。说明这些同学还是没有掌握振动的特殊规律。
【分析解答】? 事实上,只要是自由振动,其振动的周期只由自身因素决定,对于弹簧振子而言,就是只由弹簧振子的质量m和弹簧的劲度系数k决定的,而与形变大小、也就是振幅无关。所以只要弹簧振子这个系统不变(m,k不变),周期就不会改变,所以正确答案为A。
【评析】? 本题给出的错解是初学者中最常见的错误。产生这一错误的原因是习惯于用旧的思维模式分析新问题,而不善于抓住新问题的具体特点,这反映了学习的一种思维定势。只有善于接受新知识、新方法,并将其运用到实际问题中去,才能开阔我们分析、解决问题的思路,防止思维定势。
例2? 一个单摆,如果摆球的质量增加为原来的4倍,摆球经过平
A.频率不变,振幅不变???????????????? B.频率不变,振幅改变
C.频率改变,振幅不变???????????????? D.频率改变,振幅改变
【错解】? 错解一:因为单摆的周期(频率)是由摆长l和当地重
变(指平衡位置动能也就是最大动能),由机械能守恒可知,势能也不变。所以振幅也不变,应选A。
而振幅与质量、速度无关(由上述理由可知)所以振幅不变,应选C。
错解三:认为频率要改变,理由同错解二。而关于振幅的改变与否,除了错解一中所示理由外,即总能量不变,而因为重力势能EP=mgh,EP不变,m变为原来的4倍,h一定变小了,即上摆到最高点的高度下降了,所以振幅要改变,应选D。
【错解原因】? 此题主要考查决定单摆频率(周期)和振幅的是什么因素,而题中提供了两个变化因素,即质量和最大速度,到底频率和振幅与这两个因素有没有关系。若有关系,有什么关系,是应该弄清楚的。
而错解二和错解三中都认为频率不变,这是因为为不清楚决定单摆的因素是摆长l和当地重力加速度g,而与摆球质量及运动到最低点的速度无关。
错解二中关于频率不变的判断是正确的,错误出现在后半句的结论上。判断只从能量不变去看,当E总不变时,EP=mgh,m变大了,h一定变小。说明有些同学考虑问题还是不够全面。
【分析解答】? (1)实际上,通过实验我们已经了解到,决定单
单摆的周期与质量无关,与单摆的运动速度也无关。当然,频率也与质量和速度无关,所以不能选C,D。
(2)决定振幅的是外来因素。反映在单摆的运动中,可以从能量去观察,从上面分析我们知道,在平衡位置(即最低点)时的动能EK
的重力势能也不变。但是由于第二次摆的质量增大了(实际上单摆已经变成另一个摆动过程了),势能EP=mgh不变,m大了,h就一定变小了,也就是说,振幅减小了。因此正确答案应选B。
【评析】? 本题的分析解答提醒我们,一是考虑要全面,本题中m,v两因素的变化对确定的单摆振动究竟会产生怎样的影响,要进行全面分析;二是分析问题要有充分的理论依据,如本题中决定单摆振动的频率
例3? 如图6-1所示,光滑圆弧轨道的半径为R,圆弧底部中点为O,两个相同的小球分别在O正上方h处的A点和离O很近的轨道B点,现同时释放两球,使两球正好在O点相碰。问h应为多高?
【错解】? 对B球,可视为单摆,延用单摆周期公式可求B球到达O点的时间:
对A球,它做自由落体运动,自h高度下落至O点
【错解原因】? 上述答案并没有完全错,分析过程中有一点没有考虑,即是振动的周期性,因为B球在圆形轨道上自B点释放后可以做往
上述解答漏掉一些解,即上述解答只是多个解答中的一个。
对B球振动周期
到达O点的时间为
显然,前面的解仅仅是当n=0时的其中一解而已。
【评析】? 在解决与振动有关的问题时,要充分考虑到振动的周期性,由于振动具有周期性,所以此类问题往往答案不是一个而是多个。
例4? 水平弹簧振子,每隔时间t,振子的位移总是大小和方向都相
【错解】? 1.首先排除A,认为A是不可能的。理由是:水平弹簧振子的运动轨迹可简化为如图6-2,O为平衡位置,假设计时开始时,振子位于A点,每隔时间t,振子的位移总是大小和方向都相同,所以t
B之间非A即B点,而这两点距平衡位置都等于振幅,所以加速度都等
所以振子的动能总是相同的,所以选C是对的。
同的,都等于振幅,所以D是对的。
综上所述,应选B,C,D。
【错解原因】? 错解1是排除A,之所以产生错误,是因为在头脑中形成思维定势,认为在时间t内,振子只能在一个周期内振动。很多学生在解决振动和波的问题时,习惯上把所有问题都限定在一个周期内,而没有考虑到在时间t内,振子可能已经完成多个全振动了。
错解2的产生主要是对加速度的矢量性认识不够或头脑中根本就没有这个概念,认为位置对称,加速度大小一样就是加速度相同。
3.选择C是对的。
4.对弹簧振子这样一个物理模型认识不全面,所谓水平弹簧振子的弹簧是哪段没弄清楚。
【分析解答】? 1.由题意可知,t=nt,n可以是1,2,3…,
选项A是正确的。
相反,且对称于平衡位置,所以加速度的方向是相反的。
3.同错解3。
4.水平弹簧振子的弹簧应为如图6-3a或6-3b的样子。当振子的位置在平衡位置两侧时,弹簧长度是不同的。所以选项D不对。
另外,符合题意条件的不一定非选最大位移处的两点,也可以选其他的点分析,如图6-4P,Q两点,同样可以得出正确结论。
所以此题的正确答案为A,C。
例5? 一个做简谐运动的弹簧振子,周期为T,振幅为A,设振子
A.t1=t2??????????????????????????????????????????????? B.t1<t2
C.t1>t2??????????????????????????????????????????????? D.无法判断
度也大,因而时间短,所以t1>t2,应选C。
错解三:因为这是一个变加速运动问题,不能用匀速运动或匀变速运动规律求解,因而无法判断t1和t2的大小关系,所以选D。
【错解原因】? 主要是对简谐运动的特殊运动规律不清楚,只记住了周期公式,没注意分析简谐运动的全过程,没能深入地理解和掌握这种运动形式的特点。因而解题时错误地沿用了匀速或匀变速运动的规律,选择A的同学就是用匀速运动规律去解,而选择C的同学用了匀变速运动规律去解,因而错了。事实上,简谐运动的过程有其自身的许多规律,我们应该用它的特殊规律去求解问题,而不能用匀速或匀变速运动规律去求解。
【分析解答】? 方法一:用图象法,画出x-t图象,从图象上,我们可以很直观地看出:t1<t2,因而正确答案为:B。
方法二:从图象为正弦曲线和数学知识可写出位移随时间的函数关系式,物理学上称为振动方程,从平衡位置开始,振子的振动方程为:
【评析】? 以上两种方法,第一种方法是定性分析,在选择题练习时,是要重点掌握的。第二种方法可以进行定量计算,但由于要涉及振动方程,所以不做统一要求。
t&#39;=nT+t2。此处,为了题目简明起见,题文中用了“第一次”和“最短时间”等字样。否则就无法比较两个过程所用时间的长短。
例6? 图6-6中实线是一列简谐波在某一时刻的波形图线,虚线是0.2s后它的波形图线。这列波可能的传播速度是_______。
【错解】? 从图上可以看出波长λ=4m,而从两次的波形图可知:
【错解原因】
面的。实际上,只有当波向右(沿x正方向)传播时,上述关系才成立。
【分析解答】? 从图上可以看出λ=4m。
当波沿x正方向传播时,两次波形之间间隔的时间为:
此题的答案为:(20n+5)m/s和(20m+15)m/s,(n=0,1,2,…)
【评析】? 对于这种已知条件较为含糊的波的问题,要从波的传播方向、时间和空间的周期性等方面进行全面周到的分析,这也是解决机械波问题时,初学者经常忽略的问题。
例7? 一简谐波的波源在坐标原点o处,经过一段时间振动从o点向右传播20cm到Q点,如图6-7所示,P点离开o点的距离为30cm,试判断P质点开始振动的方向。
传到P点,所以画出如图6-8所示的波形图。因为波源在原点,波沿x轴正方向传播,所以可判定,P点开始振动的方向是沿y轴正方向(即向上)。
【错解原因】? 主要原因是把机械波的图象当成机械振动的图象看
面的波形也变化了。
【分析解答】? 因为原图中的波形经历了半个周期的波形如图6-9所示,在此波形基础上,向前延长半个波形即为P点开始振动时的波形图,因为波源在原点处,所以介质中的每个质点都被其左侧质点带动,所以P点在刚开始时的振动方向沿y轴负方向(即向下)从另外一个角度来看,原图中Q点开始振动时是向下的,因为所有质点开始振动时的情况均相同,所以P点开始振动的方向应是向下的。
【评析】? 本题中的错解混淆了振动图象与波的图象,那么这两个图象有什么不同呢?(1)首先两个图象的坐标轴所表示的物理意义不同:振动图象的横坐标表示时间,而波动图象的横坐标表示介质中各振动质点的平衡位置。(2)两个图象所描述的对象不同:振动图象描述的是一个质点的位移随时间的变化情况,而波的图象描述的是介质中的一群质点某一时刻各自振动所到达的位置情况。通俗地说:振动图象相当于是在一般时间内一个质点运动的“录像”,而波的图象则是某一时刻一群质点振动的“照片”。(3)随着时间的推移,振动图象原来的形状(即过去质点不同时刻所到达的位置不再发生变化,而波的图象由于各质点总在不断地振动,因此随着时间的推移,原有的图象将发生周期性变化。
例8? 图6-10是某时刻一列横波在空间传播的波形图线。已知波是沿x轴正方向传播,波速为4m/s,试计算并画出经过此时之后1.25s的空间波形图。
=62.5个波长,其波形如图6-13。
【错解原因】? 错解一、错解二没有重视单位的一致性,在此题中波长从图中只能得出λ=8cm,而波速给出的却是国际单位4m/s。因此,求周期时,应先将波长的单位统一到国际单位制上来。
错解三虽然计算对了,但是,在波向前(沿x轴正方向)传播了62.5个波长时的波形,应是在原来的波形基础上向x正方扩展62.5个波长。
播一个波长。经过62.5个周期,波向前传播了62.5个波长。据波的周期性,当经过振动周期的整数倍时,波只是向前传播了整数倍个波长,而
形,如图6-14。再将此图向前扩展62个波长即为题目要求,波形如图6-15。
【评析】? 波形图反映了波在传播过程中某时刻在波的传播方向上各质点离开平衡位置的位移情况,由于波只能以有限的速度向前传播,所以离振源远的质点总要滞后一段时间,滞后的时间与传播的距离成正比,即滞后一个周期。两个质点之间的平衡位置距离就是一个波长,经过多少个周期,波就向前传播了多少个波长,而振源就做了多少次全振动,这就是此类问题的关键所在。
例9? 如图6-16所示,一列简谐横波沿x轴正方向传播,从波传到x=5m的M点时开始计时,已知P点相继出现两个波峰的时间间隔为0.4s,下面说法中正确的是????? [??? ]
A.这列波的波长是4m
B.这列波的传播速度是10m/s
C.质点Q(x=9m)经过0.5s才第一次到达波峰
D.M点以后各质点开始振动时的方向都是向下
【错解】? 错解一:由题中说P点相继出现两个波峰的时间间隔为
错解二:质点Q(x=9m),经过0.4s(此处用了正确的周期结果
错解三:M点以后各质点的振动有的向上,有的向下,所以D不对。
【错解原因】? 错解一对“相继出现两个波峰”理解有误。
错解二对质点Q(x=9m)处,当波传到它以后,该点应如何振动不会分析,实际上也就是对波的传播原理不明白。不知道波的传播是机械振动在介质中传递的过程,质点要依次被带动形成波。
同理,错解三对M点以后各点运动情况分析有误,实际上M点以后各点运动情况向上还是向下取决于波的传播方向。
【分析解答】? (1)从图6-16上可以看出波长为4m,选A。
(2)实际上“相继出现两个波峰”应理解为,出现第一波峰与出现第二个波峰之间的时间间隔。因为在一个周期内,质点完成一次全振动,而一次全振动应表现为“相继出现两个波峰”,即T=0.4s。则v=
(3)质点Q(x=9m)经过0.4s开始振动,而波是沿x轴正方向传播,即介质中的每一个质点都被它左侧的质点所带动,从波向前传播的波形图6-17可以看出,0.4s波传到Q时,其左侧质点在它下方,所以Q点在0.5s时处于波谷。再经过0.2ss即总共经过0.7s才第一次到达波峰,所以选项C错了。
(4)从波的向前传播原理可以知道,M以后的每个质点都是先向下振动的。所以选项D是对的。
此题正确答案为A,B,D。
例10? 如图6-18所示,一根张紧的水平弹性长绳上的a,b两点,相距14.0m,b点在a点的右方,当一列简谐横波沿此长绳向右传播时,若a点的位移达到正最大时,b点的位移恰为零且向下运动。经过1.00s后a点的位移为零,且向下运动,而b点的位移恰达到负最大,则这简谐波的波速可能等于????????????????????????????????????????????????????????????????????????????????????????????? [??? ]
A.4.67m/s???????????????????????????? B.6m/s
C.10m/s??????????????????????????????? D.4m/s
v=4.67m/s选择A。
但此题可能多选,考虑到a,b之间满足条件的情况还可
解得:v=10m/s? 选择C
解得:v=11.5m/s显然不符合题目中的选项,且通过分析可知v=14m/s也是不对的,所以正确答案为A,C。
【错解原因】以上答案并没有错,但分析问题的过程出现了明显的
漏了不少结论。而此题做为选择题,学生能用错误的思维方式得出符合答案的结果,纯属偶然。
波长λ有一系列数据,周期T也有一系列数据,从波的概念出发,两者并无一一对应,因而波速应为
其解为当n=0,N=0,1,2……
n=1,N=0,1,2……
n=2,N=0,1,2……
我们可以通过列表来看一看波速的各种可能值:
N
n
0
1
2
3

0
4.67
2
1.27
0.933
?
1
23.3
10
6.36
4.67
?
2
42
18
11.5
8.4
?
3
60.7
26
16.6
12.1
?






从表中可以看出,4.67m/s及10m/s即为正确答案。所以正确答案应选A,C。
【评析】这是1996年一道高考题,当年不少考生考试时也选对了答案,但这些考生思考问题时有着明显的片面性,只从n=N的情况去考虑问题,当n=N=0时,4.67m/s,当n=N=1时,v=10m/s,当n=N=2时v=11.5m/s……,把长度的周期性与时间的周期性混为一谈。若此题的四个选项中变化一个为v=2m/s(即n=1,N=0时),上述思维片面的考生可能就会漏选,因此,一定要对题目进行全面周到的分析。
第七章? 热学错题集
?
一、主要内容
本章内容包括两部分,一是微观的分子动理论部分,一是宏观的气体状态变化规律。其中分子动理论部分包括分子动理论的基本观点、分子热运动的动能、分子间相互作用的势能和物体的内能等概念,及分子间相互作用力的变化规律、物体内能变化的规律、能量转化和守恒定律等基本规律;气体状态变化规律中包括热力学温度、理想气体和气体状态参量等有关的概念,以及理想气体的等温、等容、等压过程的特点及规律(包括公式和图象两种描述方法)。
二、基本方法
本章中所涉及到的基本方法是理想化的模型方法,其中在分子动理论中将微观分子的形状视为理想的球体,这是通过阿伏伽德罗常数对微观量进行估算的基础;在气体状态变化规律中,将实际中的气体视为分子没有实际体积且不存在相互作用力的理想气体,从而使气体状态变化的规律在误差允许的范围内得以大大的简化。
三、错解分析
在本章知识应用的过程中,初学者常犯的错误主要表现在:对较为抽象的分子热运动的动能、分子相互作用的势能及分子间相互作用力的变化规律理解不到位,导致这些微观量及规律与宏观的温度、物体的体积之间关系不能建立起正确的关系。对于宏观的气体状态的分析,学生的问题通常表现在对气体压强的分析与计算方面存在着困难,由此导致对气体状态规律应用出现错误;另外,本章中涉及到用图象法描述气体状态变化规律,对于p―V,p―T,V―T图的理解,一些学生只观注图象的形状,不能很好地理解图象上的点、线、斜率等的物理意义,因此造成从图象上分析气体温度变化(内能变化)、体积变化(做功情况)时出现错误,从而导致利用图像分析气体内能变化等问题时的困难。
例1? 设一氢气球可以自由膨胀以保持球内外的压强相等,则随着气球的不断升高,因大气压强随高度而减小,气球将不断膨胀。如果氢气和大气皆可视为理想气体,大气的温度、平均摩尔质量以及重力和速度随高度变化皆可忽略,则氢所球在上升过程中所受的浮力将______(填“变大”“变小”“不变”)
【错解】错解一:因为气球上升时体积膨胀,所以浮力变大。
错解二:因为高空空气稀薄,所以浮力减小。
【错解原因】因为浮力的大小等于气球排开大气所受的重力,F=p空?g?V,当气球升入高空时,密度p减小,体积V增大,错解一和二都是分别单一地强调一方面的变化,没有综合考虑,因此导致错解。
【分析解答】以氢气为研究对象,设地面附近和高空h处的压强和体积分别为p1,p2,V1,V2。因为温度不变,由玻-马定律可知:p1V1=p2V2
以大气为研究对象,在地面附近和高空h处的压强和大气密度分别为户p1,p2(与氢气对应相等)p1,p2因为大气密度和压强都与高度
设氢气球在地面附近和高空h处的浮力分别为F1,F2则F1=p1?g?V1F2=p2?gV2
所以正确答案为浮力不变。
【评析】如上分析,解决变化问题,需要将各种变化因素一一考虑,而不能单独只看到一面而忽略另一面。
此题也可以利用克拉珀龙方程求解:
在高度h处:对氢气列克拉珀龙方程
对排开空气列克拉珀龙方程
因为p,V,R,T均相同
所以联立①②得:
我们知道,空气、氢气的摩尔质量是不变的,此题气球中的氢气质量也是一定的,所以排开空气的质量不随高度h而变,又因为重力加速度也不变(由题目知)所以,气球所受浮力不变。
利用克拉珀龙方程处理浮力,求解质量问题常常比较方便。
例2? 如图7-1所示,已知一定质量的理想气体,从状态1变化到状态2。问:气体对外是否做功?
【错解】错解一:因为判断不了气体体积情况,所以无法确定。
错解二:因为1状态与2状态在一条直线上.而p-T坐标上的等容线是直线.所以状态1与状态2的体积相等,气体对外不做功。
【错解原因】错解一是不会应用等容线,不知道如何利用p-V图比较两个状态的体积,因而感到无从下手。
错解二是把等容线的概念弄错了,虽然状态1和状态2在一条直线上,但并不是说p―T图上的所有直线都是等容线。只有延长线过原点的直线才表示一个等容过程。而此题的状态1与状态2所在的直线就不是一条等容线。
【分析解答】如图7-2所示,分别做出过1和2的等容线Ⅰ和Ⅱ,由图可知,直线Ⅰ的斜率大于直线Ⅱ的斜率,则VⅡ>VⅠ,即V2>V1,所以,从状态1变化到状态2,气体膨胀对外做功了。
【评析】从此题的解答可以看到,利用图象帮助解决问题,有时是很方便的,但这种方法首先必须按图象有一个清楚的了解,只有在“识别”图象的基础上,才能准确地“运用”图像。
例3? 一定质量的理想气体的三个状态在V-T图上用A,B,C三个点表示,如图7-3所示。试比较气体在这三个状态时的压强pA,pB,pC的大小关系有:(??? )
A.pC>pB>pC
B.pA<pC<pB
C.pC>pA>pB
D.无法判断。
【错解】错解一:因为一定质量的理想气体压强与温度成正比,哪个状态对应的温度高,在哪个状态时,气体的压强就大,即TC>TA>TB,所以有pC>pA>pB,应选C。
错解二:因为一定质量的理想气体的压强与体积成反比,体积越大,压强越小,从图上可以看出:VA>VC>VB,所以户pA<pC<pB,应选B。
【错解原因】以上两种错解,从分析思路上讲都错了,都没有了解到气体状态的三个参量(p,V,T)之间两两定量关系是有条件的。如压强与温度(当然应为热力学温度T)成正比的条件是体积不变,而压强与体积成反比的条件应是温度不变。如果不考虑第三个参量,而单纯只讲两个参量之间的关系,显然只能导致错误的结果,同时也培养了错误的思考问题方式,是不可取的。当第三个参量不是定量时,三者之
【分析解答】因为所给的是V-T图,A,B,C三点的温度体积都不一样,要想比较三个状态的压强,可以利用V-T图上的等压线辅助分析。
在V-T图上,等压线是一条延长线过原点的直线,可以通过A,B,C三点做三条等压线分别表示三个等压过程,如图7-4所示。一定质量的理想气体在等压过程中压强保持不变,体积与温度成正比,为了比较三个等压线所代表的压强的大小,可以做一条等温线(亦可作一条等容线,方法大同小异,以下略),使一个等温过程与三个等压过程联系起来,等温线(温度为T&#39;)与等压线分别交于A&#39;,B&#39;,C&#39;,在等温过程中,压强与体积成反比(玻意耳定律),从图上可以看出:VA&#39;>VB&#39;>VC&#39;,所以可以得出结论:pA&#39;<pB&#39;<pC’,而A与A&#39;,B与B&#39;,C与C分别在各自的等压线上,即pA=pA&#39;,pB=pB&#39;,pC=pC’,所以可以得出结论,即pA<pB<pC,所以正确答案为A。
例4? 如图7-5,A,B是体积相同的气缸,B内有一导热的、可在气缸内无摩擦滑动的、体积不计的活塞C,D为不导热的阀门。起初,阀门关闭,A内装有压强p1=2.0×105a温度T1=300K的氮气。B内装有压强P2=1.0×105Pa,温度T2=600K的氧气。打开阀门D,活塞C向右移动,最后达到平衡,以V1和V2分别表示平衡后氮气和氧气的体积,则V1∶V2=______(假定氧气和氮气均为理想气体,并与外界无热交换,连接气缸的管道体积可忽略)
【错解】开始是平衡状态,未态还是平衡状态,由理想气体状态方
此题答案为1∶4。
【错解原因】理想气体状态方程或气体定律,针对的对象应为一定质量的理想气体,而不能是两种(或两部分)气体各自的状态,必须是一定质量的理想气体初、末两种状态之间满足的关系,上述解法把}

我要回帖

更多关于 为什么大轮带小轮费劲 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信