大电容充电电阻纯电容电路的平均功率率怎么算

大电容充电电阻平均功率怎么算?
大电容充电电阻平均功率怎么算?
<span class="xi1" style="color:#ff
zhuuuuu离线LV4初级工程师积分:340|主题:8|帖子:110积分:340LV4初级工程师 12:26:15
<td class="t_f" id="postmessage_6UF电容充电到750V,串联一个12R的电阻。
请教各位大侠怎么计算?
12R绕线电阻功率为7W,5S以内可以耐受700W
请问各位大侠这么计算电阻的损耗?
|zhuuuuu离线LV4初级工程师积分:340|主题:8|帖子:110积分:340LV4初级工程师 12:28:44&我自己来顶一下吧 平均功率可以这么算?P=Q(750*0.63)/T(RC) ||
zhuuuuu离线LV4初级工程师积分:340|主题:8|帖子:110积分:340LV4初级工程师 12:50:18&这么没有人回复哦,我再顶一下 ||
sinochip离线LV3助理工程师积分:285|主题:39|帖子:29积分:285LV3助理工程师 13:43:48倒数2&
并不总是电源中的浪涌电流限制器(ICL)的必然选择。在有着特 别严格温度和功率要求的应用场合,PTC热敏电阻能够提供更为可靠的防护。华巨科技(SINOCHIP) PTC ICL额外的好处是能够提供短路防护能力。
在开启驱动系统、逆变器或电源等电气设备时总会出现大电流,由于过大的 浪涌电流会损坏敏感元件如电源中的整流器或者烧坏保险丝,因此需要采取防护措施(图1)。对于浪涌电流的限制有两 种基本方式:在电源电路中简单地布置防护设备作为浪涌电流限制器(ICL),或者在浪涌电流峰值消退后使用主动旁路电 路。这两种方式也分别被称为被动和主动ICL电路。对于特定应用来说,浪涌电流抑制技术的选择取决于多个因素。最重 要的是电源功率、设备遭受的浪涌电流的频率、工作温度范围以及系统成本要求。
图1:使用及不使用ICL时的浪涌电流
被动浪涌电流限制
对于额定功率最多为几瓦的小功率电源,最简单实用的浪涌电流限制方案是与负载串联一个普通电阻器,不过对于有着 更高额定功率的电源,固定电阻的功率损耗会显著影响整体效率。在这些情况下,NTC热敏电阻用作被动电流限制业已 成为标准的ICL解决方案(图2)。
图2:使用NTC ICL的被动浪涌电流限制
一旦受热,其初始时较高的阻值会降低至可忽略不计的水平,这一特性使得NTC ICL在额定功率最高约为500W的电源中成为标准ICL解决方案。NTC热敏电阻在温度较低时阻值较高,在温度较高时阻值较低。在温度较低的状态,NTC ICL较高的初始电阻能够有效 地吸收峰值浪涌电流。由于电流负载的作用以及随之而来的自热作用,ICL阻值接着会降低为其室温阻值的百分之几。这 一特性能够减小ICL在连续运行下的功率消耗,因此NTC ICL可以在电容器完全充满电后仍留在电路中。最后,使用NTC ICL的成本较低,方案也易于实现。
专注于更高功率水平应用的低损耗解决方案 电源的设计越来越集中于尽可能地消除功率损耗。一旦额定功率超过越500W,被动电路解决方案的缺点就变得非常明显。如果ICL总是与负载串联,则其带来的功率损耗会非常大。设备的额定功率越高,典型工作时间越长,附带功率损耗便越明显。假设NTC ICL的功率损耗占设备总功率的1%,电源的效率为92%,则大约12.5%的总损耗都是由NTC引起的。
主动浪涌电流限制 因此对较高的功率水平,标准的做法是一旦浪涌电流峰值已经消退便使用继电器或可控硅旁路ICL。根据应用要求的不同,主动浪涌电流限制电路可以采用功率电阻、NTC热敏电阻或PTC热敏电阻(图3)作为ICL部件。比如PTC热敏电阻经常用于混合动力或电动汽车的插入式车载充电器(OBC),此类充电器的额定功率通常达到了几千瓦。虽然主动浪涌电流限制的益处对于额定功率大于500W的情况下才最为明显,不过该方法对于提高较低功率水平应用的性能可能也是必要的。尽管主动浪涌电流限制自身系统成本稍微偏高,但是对于较低的额定功率应用,其可以减少功率损耗,而且可以采用 相对便宜的额定值较小的开关和半导体器件。
图3:主动浪涌电流限制
何时适宜采用PTC热敏电阻作为ICL在某些应用中,使用作为ICL可提供优异的性能。NTC ICL在电源打开时的阻值取决于环境温度。在较低的环境温度下NTC热敏电阻的阻值会比较高,导致充电电流较低、充电时间较长。而另一方面,较高的环境温度会限制NTC ICL抑制浪涌电流的能力,因为NTC热敏电阻已经处于低阻状态。这种温度依赖性会对部分应用,特别是工作温度 范围较宽的应用造成问题。比如,在北方冬季使用的户外电源,可能永远难以升得足够热以使电阻值降得足够低。相反,热水循环泵在启动时可能已经很热了,这会使得NTC热敏电阻无法限制浪涌电流。在系统关闭后,NTC热敏电阻 的冷却时间通常在30S至120S间变动,具体时间取决于特定的设备、安装方式以及环境温度。仅当NTC ICL完全冷却后才能够再次限制充电电流。在很多情况下,该冷却时间已经足够快;但是有时在NTC充分冷却之前便需要对浪涌电流进行有效的限制。这可能出现在直流母线电容器的快速放电中,在逆变器驱动的家用电气如新型洗衣机和烘干机中便会出 现这种情况。在短暂的断电之后必要的冷却时间是非常关键的。因此,主动浪涌电流限制设计必须总是考虑到所有可能 的NTC ICL仍在低阻状态时浪涌电流峰值出现的情况。在这两种情况下,华巨科技(SINOCHIP) PTC热敏电阻都可以提供有效的浪涌电流限制方案。
内置自我保护功能
在正常的工作条件下,PTC ICL作为一个普通电阻使用。当电源打开,元件温度与环境温度相同时,PTC ICL依型号不同 阻值在20 欧至500 欧之间变动。这已足够限制浪涌电流峰值。一旦直流母线电容器完全充电,PTC ICL便被旁路掉,
如果充电电路出现故障,的特殊功能便可发挥作用保护电路。当电流通过该元件,PTC热敏电阻温度会升 高,阻值也会显著增加。因此,得益于其自保护功能,PTC热敏电阻在以下失效模式下有着先天的优势:
– 电容器短路
– 当直流母线电容器充电后电流限制元件未被旁路(开关元件失效)。
所有这些失效模式都有一个共同点:电流限制元件受到热应力。有两种方式可以保证ICL元件不会在类似情况下损坏:使 用一个具有足够额定功率的功率电阻或者使用PTC热敏电阻。华巨科技(SINOCHIP) PTC ICL的设计使得其在直接连接至最 大额定电压的供电电压时也能工作,且无需额外的电流限制措施,因为PTC ICL具有自保护功能。在出现过大电流如短 路的情况下,PTC温度会升高,从而导致其阻值显著上升,这样PTC热敏电阻自己便可以将电流限制至非临界水平(图4)。
图4:电容器短路时的电流曲线
如果出现了电容器短路情况,通过PTC陶瓷电阻的电流会迅速下降至非临界值(蓝色)。不过,若使用普通电阻,电流会维持 在较高的恒定值(红色)。
华巨科技(SINOCHIP) PTC在一些应用中作为主动浪涌电流限制的ICL元件有着一些关键优势:
– 其ICL功能不会受到极端工作温度的影响。
– 一旦负载关闭便可以实现有效的浪涌电流限制,冷却已经在正常工作时进行。
– 对由电路故障引发的电流过载有着自保护功能。
得益于华巨科技(SINOCHIP) ICL广泛的产品组合,您可在苛刻的温度条件下,实现对电源高浪涌电流和短路的可靠保护。
储能电容的充电控制电路
自我防护式充电电阻器以PTC(正温度系数)陶瓷为基础,用于平滑电源中的电容器。当发生短路时,它们会将电流限定在安全水平。
普通电阻在电容充电时常用来限制电流。不过,这常有技术风险。举例来说,当短接电容器时,如果电容器短路或者继电器失灵,电阻器将持续暴露在大功率电平下。这可能导致电阻器或者整个系统遭到破坏。华巨电子采用基于PTC陶瓷的新式MZFLY系列充电电阻器,现已研发出一种专业解决方案:在自我防护的同时,还实现了相对紧凑的尺寸。如下表所示,
引线型主要技术参数
零功率电阻R25
最大不作动能量@60℃
WMZ12A-25D120T4R7H
[td=1,106,92]
WMZ12A-25D120T6R8H
WMZ12A-25D120T15RH
WMZ12A-25D120T22RH
WMZ12A-25D120T33RH
WMZ12A-25D120T47RH
WMZ12A-25D120T50RH
WMZ12A-25D120T68RH
WMZ12A-25D120T101RH
WMZ12A-25D120T151RH
WMZ12A-25D120T201RH
WMZ12A-25D120T251RH
WMZ12A-25D120T301RH
WMZ12A-25D120T102RH
WMZ12A-25D120T4R7HTS1
WMZ12A-25D120T6R8HTS1
WMZ12A-25D120T10RHTS1
WMZ12A-25D120T15RHTS1
WMZ12A-25D120T30RHTS1
WMZ12A-25D120T40RHTS1
WMZ12A-25D120T15RHTS2
WMZ12A-25D120T25RHTS2
WMZ12A-25D120T30RHTS2
WMZ12A-25D120T40RHTS2
WMZ12A-25D130T33RH
WMZ12A-25D135T4R7H
WMZ12A-25D135T6R8H
WMZ12A-25D135T15RH
WMZ12A-25D135T22RH
WMZ12A-25D135T33RH
WMZ12A-25D135T47RH
WMZ12A-22D120T4R7H
WMZ12A-22D120T5R5H
WMZ12A-22D120T10RH
WMZ12A-22D120T20RH
WMZ12A-22D120T33RH
WMZ12A-22D120T68RH
WMZ12A-22D120T80RH
WMZ12A-22D120T101RH
WMZ12A-22D120T121RH
WMZ12A-22D120T151RH
WMZ12A-22D120T181RH
WMZ12A-20D130T33R
WMZ12A-20D120T33RHA
WMZ12A-20D120T47R
WMZ12A-20D120T68R
WMZ12A-20D120T101R
WMZ12A-20D120T101RHTS2
WMZ12A-20D120T151R
WMZ12A-20D120T201R
WMZ12A-20D120T251R
WMZ12A-20D120T301R
WMZ12A-19D110T10R
WMZ12A-19D105T5R0H
WMZ12A-19D105T6R8H
WMZ12A-19D105T10RH
WMZ12A-19D105T22RH
WMZ12A-19D105T33RH
WMZ12A-19D120T4R7H
WMZ12A-19D120T6R8H
WMZ12A-19D120T15TH
WMZ12A-19D120T22RH
WMZ12A-19D120T33RH
WMZ12A-19D120T47RH
WMZ12A-19D135T3R3H
WMZ12A-19D135T4R7H
WMZ12A-19D135T6R8H
WMZ12A-19D135T10RH
WMZ12A-19D135T15RH
WMZ12A-19D135T22RH
WMZ12A-19D135T33RH
WMZ12A-19D135T47RH
WMZ12A-19D135T68RH
WMZ12A-16D120T27R
WMZ12A-16D120T35R
WMZ12A-16D120T47R
sinochip离线LV3助理工程师积分:285|主题:39|帖子:29积分:285LV3助理工程师最新回复 13:46:48倒数1&
引线型主要技术参数
WMZ12A-16D120T27R
WMZ12A-16D120T35R
WMZ12A-16D120T47R
WMZ12A-16D120T50R
WMZ12A-16D120T68R
WMZ12A-16D120T101R
WMZ12A-16D120T151R
WMZ12A-16D120T101RTS
WMZ12A-14D120T15R
WMZ12A-14D120T22R
WMZ12A-14D120T30R
WMZ12A-14D120T45R
WMZ12A-14D105T18R
WMZ12A-11D120T15R
WMZ12A-13D80T47R
WMZ12A-13D80T68R
WMZ12A-13D80T101R
WMZ12A-13D80T151R
WMZ12A-13D120T47R
WMZ12A-13D120T68R
WMZ12A-13D120T101R
WMZ12A-13D120T151R
WMZ12A-13D120T201R
WMZ12A-11D115T25R
WMZ12A-11D115T50R
WMZ12A-11D115T80R
WMZ12A-19D100T50R
WMZ12A-11D115T121R
WMZ12A-11D115T151R
WMZ12A-14D130T121R
WMZ12A-19D100T102R
WMZ12A-16D120T251R
WMZ12A-11D115T501R
当电容器充电时,通常需要串联一个电阻器来限制充电电流,以免产生超过允许范围的强电流峰值。一般是采用固定式普通电阻或负温度系数(NTC)电阻实现这一功能。在大多数情况下,会在充电之后使用一个由时间或电压控制的继电器来短接限流元件。充电电流的制约对整流器和转换器系统来说非常重要,因为产生的冲击电流峰值如果未得到限制,可能会触发熔丝或使整流器遭受超过允许范围的强电流。图1所示为传统整流器或转换器系统的方块图。
如果运行时没有干扰,那么上述普通电阻器和继电器的组合足以限制充电电流。不过,在充电期间或充电后发生的干扰可能会导致这些电阻器彻底失灵,并因此导致系统其它元件的全面故障。
为处理典型故障,比如电容器短路或短路开关失灵,建议使用MZFLY系列自我防护式充电电阻器。在无故障充电中,这些元件的作用就像固定式普通电阻器,可制约充电电流的峰值。当发生故障时,PTC陶瓷的温度和内阻将随加大的欧姆损耗一同增加(见图2),并将电流限定在安全级别。
相比之下,如果将固定电阻器用作充电电流限制器,上述故障将导致电阻器产生相当高的功率耗损,这会要求元件要有一定大的尺寸,这很不经济。以下特殊实例(见图3)可清楚说明这一功能原理。
上述电路采用三相桥式整流器,并将其接至相导线电压为400 VRMS的电源中。其中平滑电容器的电容为940 μF。并联电路含有两个WMZ12A-14D130T100R 型充电电阻器,用于限定冲击电流。亦称为零电位电阻器,其额定电阻在25℃的环境温度下为100 Ω。在这种情况下,需要并联两元件:因为电能必须在充电期间内传到电容器,这会使单个WMZ12A-14D130T100R 电阻器开始发热,直至温度高出允许范围,结果便导致电阻大大加强。这一情况应当避免,否则将无法对链路电容器进行彻底充电。
可以使用下面的公式计算出所需MZFLY系列元件的数量:
如果说元件WMZ12A-14D130T100R 大约有2 J/K的热容,参考温度为130℃,那么既可串联也可并联两元件。满足上述等式可确保PTC陶瓷在充电完毕之前不会超出参考温度,并且维持在低电阻范围内。
当达到电容器95%的极限充电电压时,并联的MZFLY元件将被短路,同时将接入负荷(以260 Ω固定电阻器为代表)。因此两个MZFLY元件构成的并联电路的性能与一个50 Ω的固定电阻相当。有关无故障充电的情况,请参见图4所示电流时间图。
在这两种情况下,充电电流的时间曲线几乎相同。PTC陶瓷与固定电阻在电流特性方面的细微差别的产生原因是:
* PTC的电阻温度特性形状特殊;另外,
* PTC陶瓷在开启时的对电压的依赖性非常强。在计算峰值冲击电流时,一定要考虑电压依赖性。
约过190 ms之后,充电完毕,充电电阻器便会短路。能量吸收曲线以及加热程度同样相差无几(见图5)。二者的最高点均与电容器在短路时的能量相对应。
当发生故障时,PTC用作限流元件的优势就会十分明显。如果继电器接通失败,负荷电流将流经充电电阻器,并产生强大的热应力,这要求电阻器有相应的尺寸。若采用基于PTC陶瓷的充电电阻器,其电阻会由于强大的起始功率损耗而升至数10 k,从而能够在故障发生期间限定电流(参见图6)。在约三秒之后,先流经两电阻器然后流经总体电路的电流已跌至数10 mA。有关吸取能量的比较,请参见图7。
在进入高阻状态后,PTC陶瓷将能量吸收限定为非关键值,而固定欧姆电阻器的吸收能量则呈直线上升。在该实例中,考虑到温度降额,固定电阻器必须具有200 W以上的额定功率,才能防止过热以及随后的损坏。
故障——电容器在充电开始时发生短路
强大的冲击电流在约150 ms之后使两个自我防护式充电电阻器产生高电阻性,进而限制电流。而流经固定电阻器的电流则仅由极低的电源线电阻进行限定,因此固定电阻器中会产生非常高功率的能量转换。
在短时间内,并联的两个自我防护式充电电阻器与外界达到热平衡,同时由于PTC陶瓷的高电阻值,吸收的能量仅有略微上升。最终产生的能量吸收与图7所示类似。
上述故障——电容器在充电开始时发生短路——表示:充电电阻器上存在极高的负荷。因此,J201充电电阻器需要额外使用一个固定电阻器限定短路电流。不过充电电阻器J202和J204的应用则无需使用固定电阻器作任何额外保护。
主电路为电压型、交直交能量转换方式的变频器,因整流与逆变电路之间有大容量电容的储能回路,因电容两端电压不能突变的特性,在上电初始阶段,电容器件形同“短路”,将形成极大的浪涌充电电流,会对整流模块很大的电流冲击而损坏,也会使变频器供电端连接的空气断路器因过流而跳闸。
常规处理方式,是在整流和电容储能回路之间串入充电了限流电阻和充电接触器(继电器),对电容充电过程的控制是这样的:
变频器上电,先由充电电阻对电容进行限流充电,抑制了最大充电电流,随着充电过程的延伸,电容上逐渐建立起充电电压,其电压幅值达到530V的80%左右时,出现两种方式的控制过程,一为变频器的开关电源电路起振,由开关电源的24V输出直接驱动充电继电器,或由此继电器,接通充电接触器的线圈供电回路,充电接触器(继电器)闭合,当充电限流电阻短接,变频器进入待机工作状态。电容器上建立一定电压后,其充电电流幅度大为降低,充电接触器的闭合/切换电流并不是太大,此后储能电容回路与逆变电路的供电,由闭合的接触器触点供给,充电电阻被接触器常开触点所短接。二是随着电容上充电电压的建立,开关电源起振工作,CPU检测到由直流回路电压检检测电路送来电压幅度信号,判断储能电容的充电过程已经完毕,输出一个充电接触器动作指令,充电接触器得电闭合,电容上电充电过程结束。
变频器常见主电路形式及充电接触器控制电路如下图:
部分变频器及大功率变频器,整流电路常采用三相半控桥的电路方式,即三相整流桥的下三臂为整流二极管,而上三臂采用三只单向可控硅,用可控硅这种“无触点开关”,代替了充电接触器。节省了安装空间,提高了电路的可靠性。电路形式如下图所示:
虽然省掉了充电接触器,但工作原理还是一样的,只不过控制电路有所差异。变频器上电期间,先由D1∽D6整流,R限流为C1、C2充电,在充电过程接近结束时,CPU输出SCR1∽SCR3三只可控硅的开通指令,控制电路强制三只可控硅导通,由D1、D2、D3、R构成的上电预充电回路使用作用,SCR1∽SCR3与D4、D5、D6构成三相整流桥,此时可控硅处于全导通状态下,等效于整流二极管。
可控硅的开通需要两个条件:1、阳极和阴极之间承受正向电压;2、K、G之间形成触发电流回路。电路接在交流输入电源的三个端子上,提供单向可控整流,在三相交流电的三个正半波电压作用期间,若触发电流同时形成,则三只可控硅就能被开通。第一个条件已经自然形成,控制其开通只要提供第二个条件就可以了。
简单点说,只要在可控硅承受正向电压期间——在交流电压过零处,为可控硅提供一个触发电流(脉冲或直流均可),可控硅即可在交流电的正半波期间良好导通,对输入交流电压进行整流(同二极管一样)。最简单的触发电路,是经一只电阻从阳级引入到G极,在交流电正半波期间(过零点后),为可控硅同步引入触发电流,使可控硅开通。如东远300kW变频器,主电路形式同图三,而触发电路相对简单:
图四为可控硅触发电路一电路之一,另两路触发电路是一样的。两控硅阳极、阴极两端并联的R45、C30、C31等元件为尖峰电压吸取网络,为可控硅提供过压保护。KA2触点、D15、R44、24R形成触发电流通路,D15的作用是将输入电压半波整流,避免可控硅G、K间承受反向触发电压/电流的冲击,R44、24R为限流电阻,限制峰值触发电流,保护可控硅的安全,R43为PTC消噪电阻,增加可控硅工作的可靠性。
当CPU发出可控硅接通指令时,继电器KA2得电闭合,输入正半波电压,经D15整流,R44、24R限流,流入可控硅的G极,由K极流出,形成触发电流通路,可控硅开通。电路中的可控硅并不是处于调压的工作区域,导通角最大,处于“全导通整状态”,好像是一只开关器件,只处于导通和截止两个状态,没有移相(调压)第三种状态。这是需要注意的地方。因而控制电路与常规移相控制电路有所不同,相对简单一些。
再稍复杂一点的可控硅控制电路,如台达37kW变频器可控硅的触发电路,见下图:
由开关电源的一个独立的供电绕组整流滤波后,作为可控硅触发电路的供电电源。控制电路由NE555时基电路、DPH2、DQ22、DQ3触发脉冲通/断电路,D、R三路触发流回路构成。开关电源工作后,NE555时基电路接成多谐振振荡器即得电工作,从3脚输出的振荡脉冲,是否送入后级三个触发回路,取决于CPU的指令控制。CPU的指令信号经由控制排线端子DJ8的24脚引入到光电耦合器DPH2的输入侧。当光耦输出侧三极管导通时,NE555振荡器的脉冲信号经三极管DQ22、DQ3送入后级D、R触发电路回路。在CPU发出可控硅开通指令后,DPH2、DQ22、DQ3三器件一直处于导通状态,将触发脉冲一直加于三只可控硅的G、K上,峰值触发电流约为100mA。
另外,在松下、富士小功率变频器机型中,还采用另一形式的主电路结构,来完成对主电路电容器的初始充电控制,这是型号为7MBR35SD120一体化功率模块的内部电路结构图。电路见图六:
电路的不同之处在于,在三相整流桥之后,增加了一只可控器器件,在端子21、26引脚上须并联充电电阻,在主回路电容上建立起一定的充电电压后,从端子25、26输入触发电流,则可控硅导通,变频器进入待机工作状态。
控制电路一般是由开关变压器的一个独立的24V绕组,取得控制电路的供电,以取得具有“悬浮地”的控制用电。控制电路多为一振荡电路,提价可控硅器件的脉冲触发电流,振荡电路也不是常规的移相触发电路,而提供高频率/密度的随机触发脉冲,令可控硅处于全导通状态下,此处的可控硅,已高密度触发触冲作用下,已仿佛一只“扳到接通位置”的开关了。这种机型的触发电路,手头并未有实际测绘电路,只能根据电路结构画出简图,以供参考。
变频器的主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类:
电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。
电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。
现主要介绍电压型变频器结构及原理,电压型变频器主电路包括:整流电路、中间直流电路、逆变电路三部分组,交-直-交型变频器结构见附图1
1)整流电路: VD1~VD6组成三相不可控整流桥,220V系列采用单相全波整流桥电路;380V系列采用桥式全波整流电路。
2)中间滤波电路:整流后的电压为脉动电压,必须加以滤波;滤波电容CF除滤波作用外,还在整流与逆变之间起去耦作用、消除干扰、提高功率因素,由于该大电容储存能量,在断电的短时间内电容两端存在高压电,因而要在电容充分放电后才可进行操作。
3)限流电路:由于储能电容较大,接入电源时电容两端电压为零,因而在上电瞬间滤波电容CF的充电电流很大,过大的电流会损坏整流桥二极管,为保护整流桥上电瞬间将充电电阻RL串入直流母线中以限制充电电流,当CF充电到一定程度时由开关SL将RL短路。
4)逆变电路: 逆变管V1~V6组成逆变桥将直流电逆变成频率、幅值都可调的交流电,是变频器的核心部分。常用逆变模块有:GTR、BJT、GTO、IGBT、IGCT等,一般都采用模块化结构有2单元、4单元、6单元
5)续流二极管D1~D6:其主要作用为:
(1)电机绕组为感性具有无功分量,VD1~VD7为无功电流返回到直流电源提供通道
(2)当电机处于制动状态时,再生电流通过VD1~VD7返回直流电路。
(3)V1~V6进行逆变过程是同一桥臂两个逆变管不停地交替导通和截止,在换相过程中也需要D1~D6提供通路。
6)缓冲电路
由于逆变管V1~V6每次由导通切换到截止状态的瞬间,C极和E极间的电压将由近乎0V上升到直流电压值UD,这过高的电压增长率可能会损坏逆变管,吸收电容的作用便是降低V1~V6关断时的电压增长率。
7)制动单元
电机在减速时转子的转速将可能超过此时的同步转速(n=60f/P)而处于再生制动(发电)状态,拖动系统的动能将反馈到直流电路中使直流母线(滤波电容两端)电压UD不断上升(即所说的泵升电压),这样变频器将会产生过压保护,甚至可能损坏变频器,因而需将反馈能量消耗掉,制动电阻就是用来消耗这部分能量的。制动单元由开关管与驱动电路构成,其功能是用来控制流经RB的放电电流IB。
华巨电子热敏电阻厂家:
||blueskyy离线LV10总工程师积分:25751|主题:121|帖子:13006积分:25751LV10总工程师 13:37:54& 电阻的耗能 = 0.5CU2 ||zhuuuuu离线LV4初级工程师积分:340|主题:8|帖子:110积分:340LV4初级工程师 13:42:38&那功率再除以充电时间?那这样的话就个电容大小没有关系了 ||
blueskyy离线LV10总工程师积分:25751|主题:121|帖子:13006积分:25751LV10总工程师 15:26:27&平均功率是和电容没有关系。
怎样选电阻,要考虑开始充电时瞬间最大功率 ||
zhuuuuu离线LV4初级工程师积分:340|主题:8|帖子:110积分:340LV4初级工程师 15:47:29&那瞬间功率超级大哦,一般电阻厂商也不会提供这个数据来参考吧 ||
zhuuuuu离线LV4初级工程师积分:340|主题:8|帖子:110积分:340LV4初级工程师 13:54:14&p=Q/T=0.5CU^2/RC=0.5U^2/R?
这样的话功率很大啊,那应该怎么选择电阻呢? ||
zhuuuuu离线LV4初级工程师积分:340|主题:8|帖子:110积分:340LV4初级工程师 16:05:17&还是想不通哦 如果和电容没有关系,那电压不变,那启动电阻可以随便选? ||
blueskyy离线LV10总工程师积分:25751|主题:121|帖子:13006积分:25751LV10总工程师 16:07:47&不用怀疑,电阻消耗的能量就是这么多。我以前计算过 哈哈 ||
YTDFWANGWEI离线LV7版主积分:93194|主题:135|帖子:42214积分:93194版主 14:51:06&这个好像比较难计算,开始充电瞬间,电阻承受全部电压,这个时候电阻瞬时功率最大,但电阻的瞬时功率是远大于额定功率的。在充电后期,电阻的瞬时功率越来越小。 ||zhuuuuu离线LV4初级工程师积分:340|主题:8|帖子:110积分:340LV4初级工程师 15:06:04&嗯 这个难道只能对电流积分?p=∫RC△U/△T*△T/T=RC△U*0.63/RC=0.63△U?肯定算错了吧,应该和电容大小有关系吧? ||
YTDFWANGWEI离线LV7版主积分:93194|主题:135|帖子:42214积分:93194版主 15:24:04&肯定与C有关啊。 ||
zhuuuuu离线LV4初级工程师积分:340|主题:8|帖子:110积分:340LV4初级工程师 15:27:58&那怎么算呢?请王大师指点哦!因为要选择这颗电阻不能凭感觉哦 ||magic-young离线LV3助理工程师积分:218|主题:0|帖子:117积分:218LV3助理工程师 19:42:40&[img]
对如上这个公式积分,结果就是电阻上的功耗。
T=RC,是时间常数,3T时电容电压已建立稳定;
Vdc母线电压,按最高值选,因为T远小于工频10MS,所以可以认为在充电工程中,Vdc恒定;
Uc电容电压;
C*dUc/dt,电阻上的电流!
这个积分的过程应该很简单,因为从0-3T,Uc从0上升到Vdc,结果就是0.5*C*Vdc*Vdc
请大家指正!
积分的结果是: ||
blueskyy离线LV10总工程师积分:25751|主题:121|帖子:13006积分:25751LV10总工程师 07:50:41倒数9&不用设成(0,3T) ,就用成(0,无穷) 即可。 ||
blueskyy离线LV10总工程师积分:25751|主题:121|帖子:13006积分:25751LV10总工程师 08:10:09倒数8&(0,无穷) 计算也简单,以免又得解释3T时间后C的电压已经稳定了。。。 ||
magic-young离线LV3助理工程师积分:218|主题:0|帖子:117积分:218LV3助理工程师 08:51:39倒数7&但是这里有个前提条件,在充电的时间中,母线电压认为是恒定的,如果积分到无穷,感觉好像跟前提条件有点矛盾! ||
zhuuuuu离线LV4初级工程师积分:340|主题:8|帖子:110积分:340LV4初级工程师 09:00:10倒数5&母线电压怎么可能恒定哦 它是随着充电慢慢上升的哈 ||
magic-young离线LV3助理工程师积分:218|主题:0|帖子:117积分:218LV3助理工程师 09:03:59倒数4&不好意思,表述有问题,应该说是交流输入电压瞬时值认为恒定! ||
magic-young离线LV3助理工程师积分:218|主题:0|帖子:117积分:218LV3助理工程师 19:46:06&[img]
公式输入时是好的,回帖之后就成乱码了! ||
zhuuuuu离线LV4初级工程师积分:340|主题:8|帖子:110积分:340LV4初级工程师 07:45:54倒数10&magic兄,可以具体算一下? ||
magic-young离线LV3助理工程师积分:218|主题:0|帖子:117积分:218LV3助理工程师 08:54:41倒数6&计算应该很简单,公式编辑器不太好使,所以楼主可以自己推导下! ||
shyshihouyun离线LV8副总工程师积分:5494|主题:150|帖子:2362积分:5494LV8副总工程师 17:05:46倒数3&同意此观点啊,开始充电瞬间承受的功率是最大的 ||
热门技术、经典电源设计资源推荐
世纪电源网分部
广 东:(7 /()
北 京:(010) /()
上 海:(021) /()
香 港:HK(852)
中国电源学会
地 址:天津市南开区黄河道大通大厦5层
电 话:(022)
传 真:(022)
E-mail:cpss#(#换成@)}

我要回帖

更多关于 电容充电功率 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信