两个MOSFET并联,其Qg和热阻串并联应该怎么变化

资讯列表Enterprise
电话:86-5
传真:86-0
当前位置:
什么是功率MOSFET?
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 什么是功率MOSFET?
我们都懂得如何利用二极管来实现开关,但是,我们只能对其进行开关操作,而不能逐渐控制信号流。
此外,二极管作为开关取决于信号流的方向;我们不能对其编程以通过或屏蔽一个信号。对于诸如“流控
制”或可编程开关之类的应用,我们需要一种三端器件和双极型三极管。我们都听说过Bardeen &
Brattain,是他们偶然之间发明了三极管,就像许多其它伟大的发现一样。
结构上,它由两个背靠背的结实现(这不是一笔大交易,早在Bardeen 之前,我们可能就是采用相同的结
构实现了共阴极),但是,在功能上它是完全不同的器件,就像一个控制发射极电流流动的“龙头”—操作
龙头的“手”就是基极电流。双极型三极管因此就是电流受控的器件。
场效应三极管(FET)尽管结构上不同,但是,提供相同的“龙头”功能。差异在于:FET 是电压受控器件;
你不需要基极电流,而是要用电压实施电流控制。双极型三极管诞生于1947 年,不久之后一对杰出的
父子Shockley 和Pearson 就发明了(至少是概念)FET。为了与较早出现的双极型“孪生兄弟”相区别,FET
的三个电极分别被称为漏极、栅极和源极,对应的三极管的三个电极分别是集电极、基极和发射极。FET
有两个主要变种,它们针对不同类型的应用做了最优化。JFET(结型FET)被用于小信号处理,而
MOSFET(金属氧化物半导体FET)主要被用于线性或开关电源应用。
他们为什么要发明功率MOSFET?
当把双极型三极管按照比例提高到功率应用的时候,它显露出一些恼人的局限性。确实,你仍然可以在
洗衣机、空调机和电冰箱中找到它们的踪影,但是,对我们这些能够忍受一定程度的家用电器低效能的
一般消费者来说,这些应用都是低功率应用。在一些UPS、电机控制或焊接机器人中仍然采用双极型三
极管,但是,它们的用途实际上被限制到小于10KHz 的应用,并且在整体效率成为关键参数的技术前沿
应用中,它们正加速退出。
作为双极型器件,三极管依赖于被注入到基极的少数载流子来“击败”(电子和空穴)复合并被再次注入集电
极。为了维持大的集电极电流,我们要从发射极一侧把电流注入基极,如果可能的话,在基极/集电极的
边界恢复所有的电流(意味着在基极的复合要保持为最小)。
但是,这意味着当我们想要三极管打开的时候,在基极中存在复合因子低的大量少数载流子,开关在闭
合之前要对它们进行处理,换言之,与所有少数载流子器件相关的存储电荷问题限制了最大工作速度。
FET 的主要优势目前带来了一线曙光:作为多数载流子器件,不存在已存储的少数电荷问题,因此,其
工作频率要高得多。MOSFET 的开关延迟特性完全是因为寄生电容的充电和放电。
人们可能会说:在高频应用中需要开关速度快的MOSFET,但是,在我的速度相对较低的电路中,为什
么要采用这种器件?答案是直截了当的:改善效率。该器件在开关状态的持续时间间隔期间,既具有大
电流,又具有高电压;由于器件的工作速度更快,所以,所损耗的能量就较少。在许多应用中,仅仅这
个优势就足以补偿较高电压MOSFET 存在的导通损耗稍高的问题,例如,如果不用它的话,频率为
150KHz 以上的开关模式电源(SMPS)根本就无法实现。
双极型三极管受电流驱动,实际上,因为增益(集电极和基极电流之比)随集电极电流(IC)的增加而大幅度
降低,我们要驱动的电流越大,则我们需要提供给基极的电流也越大。一个结果使双极型三极管开始消
耗大量的控制功率,从而降低了整个电路的效率。
使事情更糟糕的是:这种缺点在工作温度更高的情况下会加重。另外一个结果是需要能够快速泵出和吸
收电流的相当复杂的基极驱动电路。相比之下,(MOS)FET 这种器件在栅极实际上消耗的电流为零;甚
至在125°C 的典型栅极电流都小于100nA。一旦寄生电容被充电,由驱动电路提供的泄漏电流就非常低。
此外,用电压驱动比用电流驱动的电路简单,这正是(MOS)FET 为什么对设计工程师如此有吸引力的另
外一个原因。
另一方面,其主要优点是不存在二次损坏机制。如果尝试用双极型三极管来阻塞大量的功率,在任何半
导体结构中的不可避免的本地缺陷将扮演聚集电流的作用,结果将局部加热硅片。因为电阻的温度系数
是负的,本地缺陷将起到低阻电流路径的作用,导致流入它的电流更多,自身发热越来越多,最终出现
不可逆转的破坏。相比之下,MOSFET 具有正的电阻热系数。
另一方面,随着温度的升高,RDS(on)增加的劣势可以被感察觉到,由于载子移动性在25°C 和125°C
之间降低,这个重要的参数大概要翻番。再一方面,这同一个现象带来了巨大的优势:任何试图像上述
那样发生作用的缺陷实际上都会从它分流—我们将看到的是“冷却点”而不是对双极器件的“热点”特性!这
种自冷却机制的同等重要的结果是便于并联MOSFET 以提升某种器件的电流性能。
双极型三极管对于并联非常敏感,要采取预防措施以平分电流(发射极稳定电阻、快速响应电流感应反馈
环路),否则,具有最低饱和电压的器件会转移大部分的电流,从而出现上述的过热并最终导致短路。
要注意MOSFET,除了设计保险的对称电路和平衡栅极之外,它们不需要其它措施就可以被并联起来,
所以,它们同等地打开,让所有的三极管中流过相同大小的电流。此外,好处还在于如果栅极没有获得
平衡,并且沟道打开的程度不同,这仍然会导致稳态条件下存在一定的漏极电流,并且比其它的要稍大。
对设计工程师有吸引力的一个有用功能是MOSFET 具有独特的结构:在源极和漏极之间存在“寄生”体二
极管。尽管它没有对快速开关或低导通损耗进行最优化,在电感负载开关应用中,它不需要增加额外的
成本就起到了箝位二极管的作用。
MOSFET 结构
JFET 的基本想法(图1)是通过调节(夹断)漏-源沟道之间的截面积来控制流过从源极到漏极的电流。利用
反相偏置的结作为栅极可以实现这一点;其(反相)电压调节耗尽区,结果夹断沟道,并通过减少其截面
积来提高它的电阻。由于栅极没有施加电压,沟道的电阻数值最低,并且流过器件的漏极电流最大。随
着栅极电压的增加,两个耗尽区的开头前进,通过提高沟道电阻降低了漏极电流,直到两个耗尽区的开
头相遇时才会出现总的夹断。
图1:JFET 结构。
MOSFET 利用不同类型的栅极结构开发了MOS 电容的特性。通过改变施加在MOS 结构的顶端电极的
偏置的数值和极性,你可以全程驱动它下面的芯片直到反转。图2 显示了一个N 沟道MOSFET 的简化
结构,人们称之为垂直、双扩散结构,它以高度浓缩的n 型衬底开始,以最小化沟道部分的体电阻。
在它上面要生长了一层n-epi,并制成了两个连续的扩散区,p 区中合适的偏置将产生沟道,而在它里面
扩散出的n+区定义了源极。下一步,在形成磷掺杂多晶硅之后,要生长薄的高品质栅极氧化层,从而形
成栅极。要在定义源极和栅电极的顶层上开接触窗口,与此同时,整个晶圆的底层使漏极接触。由于在
栅极上没有偏置,n+源和n 漏被p 区分隔,并且没有电流流过(三极管被关闭)。
如果向栅极施加正偏置,在p 区中的少数载流子(电子)就被吸引到栅极板下面的表面。随着偏置电压的
增加,越来越多的电子被禁闭在这块小空间之中,本地的“少子”集中比空穴(p)集中还要多,从而出现“反
转”(意味着栅极下面的材料立即从p 型变成n 型)。现在,在把源极连接到漏极的栅结构的下面的p 型材
料中形成了n“沟道”;电流可以流过。就像在JFET(尽管物理现象不同)中的情形一样,栅极(依靠其电压
偏置)控制源极和漏极之间的电流。
图2:MOSFET 结构和符号。
MOSFET 制造商很多,几乎每一家制造商都有其工艺优化和商标。IR是HEXFET 先锋,摩托罗拉构建
了TMOS,Ixys 制成了HiPerFET 和MegaMOS,西门子拥有SIPMOS 家族的功率三极管,而Advanced
Power Technology 拥有Power MOS IV 技术,不一而足。不论工艺被称为VMOS、TMOS 或DMOS,
它都具有水平的栅结构且电流垂直流过栅极。
功率 MOSFET 的特别之处在于:包含像图2 中并行连接所描述的那样的多个“单元”的结构。具有相同
RDS(on)电阻的MOSFET 并联,其等效电阻为一个MOSFET 单元的RDS(on)的1/n。裸片面积越大,
其导通电阻就越低,但是,与此同时,寄生电容就越大,因此,其开关性能就越差。
如果一切都是如此严格成正比且可以预测的话,有什么改进的办法吗?是的,其思路就是最小化(调低)
基本单元的面积,这样在相同的占位空间中可以集成更多的单元,从而使RDS(on)下降,并维持电容不
变。为了成功地改良每一代MOSFET 产品,有必要持续地进行技术改良并改进晶体圆制造工艺(更出色
的线蚀刻、更好的受控灌注等等)。
但是,持续不断地努力开发更好的工艺技术不是改良MOSFET 的唯一途径;概念设计的变革可能会极
大地提高性能。这样的突破就是飞利浦去年11 月宣布:开发成功TrenchMOS 工艺。其栅结构不是与裸
片表面平行,现在是构建在沟道之中,垂直于表面,因此,占用的空间较少并且使电流的流动真正是垂
直的(见图3)。在RDS(on)相同的情况下,飞利浦的三极管把面积减少了50%;或者,在相同的电流处
理能力下,把面积减少了35%。
图3:Trench MOS 结构。
我们把MOSFET 与更为著名、更为常用的双极型三极管进行了比较,我们看到MOSFET 比BJT 所具备
的主要优势,我们现在也意识到一些折衷。最重要的结论在于:整个电路的效率是由具体应用决定的;
工程师要在所有的工作条件下仔细地评估传导和开关损耗的平衡,然后,决定所要使用的器件是常规的
双极型、MOSFET 或可能是IGBT?
MOSFET 的原意是:MOS(Metal Oxide Semiconductor金属氧化物半导体),FET(Field Effect Transistor 场效应晶体管),
即以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。
功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的MOS 型(Metal Oxide Semiconductor FET),简称功
率MOSFET(Power MOSFET)。结型功率场效应晶体管一般称作静电感应晶体管(Static Induction Transistor——SIT)。其特
点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电
流容量小,耐压低,一般只适用于功率不超过10kW 的电力电子装置。
2.功率MOSFET 的结构和工作原理
功率 MOSFET 的种类:按导电沟道可分为P 沟道和N 沟道。按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极
之间就存在导电沟道,增强型;对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET 主要是N
沟道增强型。
2.1 功率MOSFET 的结构
功率 MOSFET 的内部结构和电气符号如图1 所示;其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。
导电机理与小功率mos管相同,但结构上有较大区别,小功率MOS 管是横向导电器件,功率MOSFET 大都采用垂直导电结构,
又称为VMOSFET(Vertical MOSFET),大大提高了MOSFET 器件的耐压和耐电流能力。
按垂直导电结构的差异,又分为利用V 型槽实现垂直导电的VVMOSFET 和具有垂直导电双扩散MOS 结构的VDMOSFET
(Vertical Double-diffused MOSFET),本文主要以VDMOS 器件为例进行讨论。
功率 MOSFET 为多元集成结构,如国际整流器公司(International Rectifier)的HEXFET 采用了六边形单元;西门子公司
(Siemens)的SIPMOSFET 采用了正方形单元;摩托罗拉公司(Motorola)的TMOS 采用了矩形单元按“品”字形排列。
2.2 功率MOSFET 的工作原理
截止:漏源极间加正电源,栅源极间电压为零。P 基区与N漂移区之间形成的PN结J1 反偏,漏源极之间无电流流过。
导电:在栅源极间加正电压UGS,栅极是绝缘的,所以不会有栅极电流流过。但栅极的正电压会将其下面P 区中的空穴推
开,而将P 区中的少子—电子吸引到栅极下面的P 区表面
当UGS 大于UT(开启电压或阈值电压)时,栅极下P 区表面的电子浓度将超过空穴浓度,使P 型半导体反型成N型而成
为反型层,该反型层形成N沟道而使PN结J1消失,漏极和源极导电。
2.3 功率MOSFET 的基本特性
2.3.1静态特性;其转移特性和输出特性如图2 所示。
漏极电流ID 和栅源间电压UGS 的关系称为MOSFET 的转移特性,ID 较大时,ID 与UGS 的关系近似线性,曲线的斜率
定义为跨导Gfs
MOSFET 的漏极伏安特性(输出特性):截止区(对应于GTR 的截止区);饱和区(对应于GTR的放大区);非饱和区(对
应于GTR的饱和区)。电力MOSFET 工作在开关状态,即在截止区和非饱和区之间来回转换。电力MOSFET 漏源极之间有寄
生二极管,漏源极间加反向电压时器件导通。电力MOSFET 的通态电阻具有正温度系数,对器件并联时的均流有利。
2.3.2动态特性;其测试电路和开关过程波形如图3 所示。
开通过程;开通延迟时间td(on) —up前沿时刻到uGS=UT 并开始出现iD的时刻间的时间段;
上升时间tr— uGS 从uT 上升到MOSFET 进入非饱和区的栅压UGSP 的时间段;
iD 稳态值由漏极电源电压UE 和漏极负载电阻决定。UGSP 的大小和iD 的稳态值有关,UGS 达到UGSP 后,在up 作用下继
续升高直至达到稳态,但iD已不变。
开通时间ton—开通延迟时间与上升时间之和。
关断延迟时间td(off) —up 下降到零起,Cin 通过Rs和RG 放电,uGS 按指数曲线下降到UGSP 时,iD开始减小为零的时
下降时间tf— uGS 从UGSP 继续下降起,iD减小,到uGS
关断时间toff—关断延迟时间和下降时间之和。
2.3.3 MOSFET 的开关速度。MOSFET 的开关速度和Cin 充放电有很大关系,使用者无法降低Cin,但可降低驱动电路内阻Rs
减小时间常数,加快开关速度,MOSFET 只靠多子导电,不存在少子储存效应,因而关断过程非常迅速,开关时间在10—100ns
之间,工作频率可达100kHz以上,是主要电力电子器件中最高的。
场控器件静态时几乎不需输入电流。但在开关过程中需对输入电容充放电,仍需一定的驱动功率。开关频率越高,所需要
的驱动功率越大。
2.4动态性能的改进
在器件应用时除了要考虑器件的电压、电流、频率外,还必须掌握在应用中如何保护器件,不使器件在瞬态变化中受损害。
当然晶闸管是两个双极型晶体管的组合,又加上因大面积带来的大电容,所以其dv/dt 能力是较为脆弱的。对di/dt 来说,它还
存在一个导通区的扩展问题,所以也带来相当严格的限制。
功率 MOSFET 的情况有很大的不同。它的dv/dt 及di/dt 的能力常以每纳秒(而不是每微秒)的能力来估量。但尽管如此,
它也存在动态性能的限制。这些我们可以从功率MOSFET 的基本结构来予以理解。
图4是功率MOSFET 的结构和其相应的等效电路。除了器件的几乎每一部分存在电容以外,还必须考虑MOSFET 还并联
着一个二极管。同时从某个角度看、它还存在一个寄生晶体管。(就像IGBT 也寄生着一个晶闸管一样)。这几个方面,是研究
MOSFET 动态特性很重要的因素。
首先MOSFET 结构中所附带的本征二极管具有一定的雪崩能力。通常用单次雪崩能力和重复雪崩能力来表达。当反向di/dt
很大时,二极管会承受一个速度非常快的脉冲尖刺,它有可能进入雪崩区,一旦超越其雪崩能力就有可能将器件损坏。作为任
一种PN结二极管来说,仔细研究其动态特性是相当复杂的。它们和我们一般理解PN结正向时导通反向时阻断的简单概念很不
相同。当电流迅速下降时,二极管有一阶段失去反向阻断能力,即所谓反向恢复时间。PN结要求迅速导通时,也会有一段时间
并不显示很低的电阻。在功率MOSFET 中一旦二极管有正向注入,所注入的少数载流子也会增加作为多子器件的MOSFET 的
功率 MOSFET 的设计过程中采取措施使其中的寄生晶体管尽量不起作用。在不同代功率MOSFET 中其措施各有不同,但
总的原则是使漏极下的横向电阻RB 尽量小。因为只有在漏极N区下的横向电阻流过足够电流为这个N区建立正偏的条件时,
寄生的双极性晶闸管才开始发难。然而在严峻的动态条件下,因dv/dt 通过相应电容引起的横向电流有可能足够大。此时这个寄
生的双极性晶体管就会起动,有可能给MOSFET 带来损坏。所以考虑瞬态性能时对功率MOSFET 器件内部的各个电容(它是
dv/dt 的通道)都必须予以注意。
瞬态情况是和线路情况密切相关的,这方面在应用中应给予足够重视。对器件要有深入了解,才能有利于理解和分析相应
3.高压MOSFET 原理与性能分析
在功率半导体器件中,MOSFET 以高速、低开关损耗、低驱动损耗在各种功率变换,特别是高频功率变换中起着重要作用。
在低压领域,MOSFET 没有竞争对手,但随着MOS 的耐压提高,导通电阻随之以2.4-2.6 次方增长,其增长速度使MOSFET
制造者和应用者不得不以数十倍的幅度降低额定电流,以折中额定电流、导通电阻和成本之间的矛盾。即便如此,高压MOSFET
在额定结温下的导通电阻产生的导通压降仍居高不下,耐压500V 以上的MOSFET 的额定结温、额定电流条件下的导通电压很
高,耐压800V 以上的导通电压高得惊人,导通损耗占MOSFET 总损耗的2/3-4/5,使应用受到极大限制。
3.1降低高压MOSFET 导通电阻的原理与方法
3.1.1 不同耐压的MOSFET 的导通电阻分布。不同耐压的MOSFET,其导通电阻中各部分电阻比例分布也不同。如耐压
30V 的MOSFET,其外延层电阻仅为总导通电阻的29%,耐压600V 的MOSFET 的外延层电阻则是总导通电阻的96.5%。由
此可以推断耐压800V 的MOSFET 的导通电阻将几乎被外延层电阻占据。欲获得高阻断电压,就必须采用高电阻率的外延层,
并增厚。这就是常规高压MOSFET 结构所导致的高导通电阻的根本原因。
3.1.2 降低高压MOSFET 导通电阻的思路。增加管芯面积虽能降低导通电阻,但成本的提高所付出的代价是商业品所不允
许的。引入少数载流子导电虽能降低导通压降,但付出的代价是开关速度的降低并出现拖尾电流,开关损耗增加,失去了MOSFET
的高速的优点。
以上两种办法不能降低高压MOSFET 的导通电阻,所剩的思路就是如何将阻断高电压的低掺杂、高电阻率区域和导电通道
的高掺杂、低电阻率分开解决。如除导通时低掺杂的高耐压外延层对导通电阻只能起增大作用外并无其他用途。这样,是否可
以将导电通道以高掺杂较低电阻率实现,而在MOSFET 关断时,设法使这个通道以某种方式夹断,使整个器件耐压仅取决于低
掺杂的N-外延层。基于这种思想,1988年INFINEON推出内建横向电场耐压为600V 的COOLMOS,使这一想法得以实现。
内建横向电场的高压MOSFET 的剖面结构及高阻断电压低导通电阻的示意图如图5所示。
与常规MOSFET 结构不同,内建横向电场的MOSFET 嵌入垂直P 区将垂直导电区域的N区夹在中间,使MOSFET 关断
时,垂直的P 与N之间建立横向电场,并且垂直导电区域的N掺杂浓度高于其外延区N-的掺杂浓度。
当VGS<VTH时,由于被电场反型而产生的N型导电沟道不能形成,并且D,S 间加正电压,使MOSFET 内部PN结反
偏形成耗尽层,并将垂直导电的N 区耗尽。这个耗尽层具有纵向高阻断电压,如图5(b)所示,这时器件的耐压取决于P 与
N-的耐压。因此N-的低掺杂、高电阻率是必需的。
当CGS>VTH 时,被电场反型而产生的N 型导电沟道形成。源极区的电子通过导电沟道进入被耗尽的垂直的N 区中和正
电荷,从而恢复被耗尽的N 型特性,因此导电沟道形成。由于垂直N 区具有较低的电阻率,因而导通电阻较常规MOSFET 将
明显降低。
通过以上分析可以看到:阻断电压与导通电阻分别在不同的功能区域。将阻断电压与导通电阻功能分开,解决了阻断电压
与导通电阻的矛盾,同时也将阻断时的表面PN结转化为掩埋PN结,在相同的N-掺杂浓度时,阻断电压还可进一步提高。
3.2 内建横向电场MOSFET 的主要特性
3.2.1 导通电阻的降低。INFINEON 的内建横向电场的MOSFET,耐压600V 和800V,与常规MOSFET 器件相比,相同
的管芯面积,导通电阻分别下降到常规MOSFET 的1/5, 1/10;相同的额定电流,导通电阻分别下降到1/2 和约1/3。在额定
结温、额定电流条件下,导通电压分别从12.6V,19.1V 下降到6.07V,7.5V;导通损耗下降到常规MOSFET 的1/2和1/3。由
于导通损耗的降低,发热减少,器件相对较凉,故称COOLMOS。
3.2.2 封装的减小和热阻的降低。相同额定电流的COOLMOS 的管芯较常规MOSFET 减小到1/3 和1/4,使封装减小两个
管壳规格,如表1 所示。
表1封装与电流、电压额定值
由于 COOLMOS 管芯厚度仅为常规MOSFET 的1/3,使TO-220 封装RTHJC 从常规1℃/W 降到0.6℃/W;额定功率从
125W 上升到208W,使管芯散热能力提高。
3.2.3 开关特性的改善。COOLMOS 的栅极电荷与开关参数均优于常规MOSFET,很明显,由于QG,特别是QGD的减少,
使COOLMOS 的开关时间约为常规MOSFET 的1/2;开关损耗降低约50%。关断时间的下降也与COOLMOS 内部低栅极电阻
(<1Ω=有关。
3.2.4 抗雪崩击穿能力与SCSOA。目前,新型的MOSFET 无一例外地具有抗雪崩击穿能力。COOLMOS 同样具有抗雪崩
能力。在相同额定电流下,COOLMOS 的IAS 与ID25℃相同。但由于管芯面积的减小,IAS 小于常规MOSFET,而具有相同
管芯面积时,IAS 和EAS 则均大于常规MOSFET。
COOLMOS 的最大特点之一就是它具有短路安全工作区(SCSOA),而常规MOS 不具备这个特性。COOLMOS 的SCSOA
的获得主要是由于转移特性的变化和管芯热阻降低。COOLMOS 的转移特性如图6 所示。从图6可以看到,当VGS>8V 时,
COOLMOS 的漏极电流不再增加,呈恒流状态。特别是在结温升高时,恒流值下降,在最高结温时,约为ID25℃的2 倍,即正
常工作电流的3-3.5 倍。在短路状态下,漏极电流不会因栅极的15V 驱动电压而上升到不可容忍的十几倍的ID25℃,使
COOLMOS 在短路时所耗散的功率限制在350V×2ID25℃,尽可能地减少短路时管芯发热。管芯热阻降低可使管芯产生的热量
迅速地散发到管壳,抑制了管芯温度的上升速度。因此,COOLMOS 可在正常栅极电压驱动,在0.6VDSS 电源电压下承受10ΜS
短路冲击,时间间隔大于1S,1000 次不损坏,使COOLMOS 可像IGBT 一样,在短路时得到有效的保护。
3.3 关于内建横向电场高压MOSFET 发展现状
继INFINEON1988 年推出COOLMOS 后,2000 年初ST 推出500V 类似于COOLMOS 的内部结构,使500V,12A 的
MOSFET 可封装在TO-220 管壳内,导通电阻为0.35Ω,低于IRFP450 的0.4Ω,电流额定值与IRFP450 相近。IXYS 也有使
用COOLMOS 技术的MOSFET。IR公司也推出了SUPPER220,SUPPER247封装的超级MOSFET,额定电流分别为35A,
59A,导通电阻分别为0.082Ω,0.045Ω,150℃时导通压降约4.7V。从综合指标看,这些MOSFET 均优于常规MOSFET,并
不是因为随管芯面积增加,导通电阻就成比例地下降,因此,可以认为,以上的MOSFET 一定存在类似横向电场的特殊结构,
可以看到,设法降低高压MOSFET 的导通压降已经成为现实,并且必将推动高压MOSFET 的应用。
3.4 COOLMOS 与IGBT 的比较
600V、800V 耐压的COOLMOS 的高温导通压降分别约6V,7.5V,关断损耗降低1/2,总损耗降低1/2 以上,使总损耗为
常规MOSFET 的40%-50%。常规600V 耐压MOSFET 导通损耗占总损耗约75%,对应相同总损耗超高速IGBT 的平衡点达
160KHZ,其中开关损耗占约75%。由于COOLMOS 的总损耗降到常规MOSFET 的40%-50%,对应的IGBT 损耗平衡频率将
由160KHZ 降到约40KHZ,增加了MOSFET 在高压中的应用。
从以上讨论可见,新型高压MOSFET 使长期困扰高压MOSFET 的导通压降高的问题得到解决;可简化整机设计,如散热
器件体积可减少到原40%左右;驱动电路、缓冲电路简化;具备抗雪崩击穿能力和抗短路能力;简化保护电路并使整机可靠性
得以提高。
4.功率MOSFET 驱动电路
功率 MOSFET 是电压型驱动器件,没有少数载流子的存贮效应,输入阻抗高,因而开关速度可以很高,驱动功率小,电路
简单。但功率MOSFET 的极间电容较大,输入电容CISS、输出电容COSS 和反馈电容CRSS 与极间电容的关系可表述为:
功率 MOSFET 的栅极输入端相当于一个容性网络,它的工作速度与驱动源内阻抗有关。由于CISS 的存在,静态时栅极驱
动电流几乎为零,但在开通和关断动态过程中,仍需要一定的驱动电流。假定开关管饱和导通需要的栅极电压值为VGS,开关
管的开通时间TON 包括开通延迟时间TD和上升时间TR两部分。
开关管关断过程中,CISS 通过ROFF 放电,COSS 由RL 充电,COSS 较大,VDS(T)上升较慢,随着VDS(T)上升较
慢,随着VDS(T)的升高COSS 迅速减小至接近于零时,VDS(T)再迅速上升。
根据以上对功率MOSFET 特性的分析,其驱动通常要求:触发脉冲要具有足够快的上升和下降速度;②开通时以低电阻力
栅极电容充电,关断时为栅极提供低电阻放电回路,以提高功率MOSFET 的开关速度;③为了使功率MOSFET 可靠触发导通,
触发脉冲电压应高于管子的开启电压,为了防止误导通,在其截止时应提供负的栅源电压;④功率开关管开关时所需驱动电流
为栅极电容的充放电电流,功率管极间电容越大,所需电流越大,即带负载能力越大。
4.1几种MOSFET 驱动电路介绍及分析
4.1.1不隔离的互补驱动电路。图7(a)为常用的小功率驱动电路,简单可靠成本低。适用于不要求隔离的小功率开关设备。
图7(b)所示驱动电路开关速度很快,驱动能力强,为防止两个MOSFET 管直通,通常串接一个0.5~1Ω 小电阻用于限流,
该电路适用于不要求隔离的中功率开关设备。这两种电路特点是结构简单。
功率 MOSFET 属于电压型控制器件,只要栅极和源极之间施加的电压超过其阀值电压就会导通。由于MOSFET 存在结电
容,关断时其漏源两端电压的突然上升将会通过结电容在栅源两端产生干扰电压。常用的互补驱动电路的关断回路阻抗小,关
断速度较快,但它不能提供负压,故抗干扰性较差。为了提高电路的抗干扰性,可在此种驱动电路的基础上增加一级有V1、V2、
R组成的电路,产生一个负压,电路原理图如图8 所示。
当V1导通时,V2关断,两个MOSFET 中的上管的栅、源极放电,下管的栅、源极充电,即上管关断,下管导通,则被驱
动的功率管关断;反之V1 关断时,V2 导通,上管导通,下管关断,使驱动的管子导通。因为上下两个管子的栅、源极通过不
同的回路充放电,包含有V2 的回路,由于V2 会不断退出饱和直至关断,所以对于S1 而言导通比关断要慢,对于S2 而言导
通比关断要快,所以两管发热程度也不完全一样,S1比S2发热严重。
该驱动电路的缺点是需要双电源,且由于R 的取值不能过大,否则会使V1 深度饱和,影响关断速度,所以R 上会有一定
4.1.2隔离的驱动电路
(1)正激式驱动电路。电路原理如图9(a)所示,N3 为去磁绕组,S2为所驱动的功率管。R2 为防止功率管栅极、源极
端电压振荡的一个阻尼电阻。因不要求漏感较小,且从速度方面考虑,一般R2 较小,故在分析中忽略不计。
其等效电路图如图9(b)所示脉冲不要求的副边并联一电阻R1,它做为正激变换器的假负载,用于消除关断期间输出电
压发生振荡而误导通。同时它还可以作为功率MOSFET 关断时的能量泄放回路。该驱动电路的导通速度主要与被驱动的S2 栅
极、源极等效输入电容的大小、S1 的驱动信号的速度以及S1所能提供的电流大小有关。由仿真及分析可知,占空比D越小、
R1 越大、L 越大,磁化电流越小,U1 值越小,关断速度越慢。该电路具有以下优点:
①电路结构简单可靠,实现了隔离驱动。
②只需单电源即可提供导通时的正、关断时负压。
③占空比固定时,通过合理的参数设计,此驱动电路也具有较快的开关速度。
该电路存在的缺点:一是由于隔离变压器副边需要噎嗝假负载防振荡,故电路损耗较大;二是当占空比变化时关断速度变
化较大。脉宽较窄时,由于是储存的能量减少导致MOSFET 栅极的关断速度变慢。
(2)有隔离变压器的互补驱动电路。如图10 所示,V1、V2 为互补工作,电容C起隔离直流的作用,T1 为高频、高磁率
的磁环或磁罐。
导通时隔离变压器上的电压为(1-D)Ui、关断时为D Ui,若主功率管S 可靠导通电压为12V,而隔离变压器原副边匝比
N1/N2 为12/[(1-D)Ui]。为保证导通期间GS 电压稳定C 值可稍取大些。该电路具有以下优点:
①电路结构简单可靠,具有电气隔离作用。当脉宽变化时,驱动的关断能力不会随着变化。
②该电路只需一个电源,即为单电源工作。隔直电容C 的作用可以在关断所驱动的管子时提供一个负压,从而加速了功率
管的关断,且有较高的抗干扰能力。
但该电路存在的一个较大缺点是输出电压的幅值会随着占空比的变化而变化。当D 较小时,负向电压小,该电路的抗干扰
性变差,且正向电压较高,应该注意使其幅值不超过MOSFET 栅极的允许电压。当D大于0.5时驱动电压正向电压小于其负向
电压,此时应该注意使其负电压值不超过MOAFET 栅极允许电压。所以该电路比较适用于占空比固定或占空比变化范围不大以
及占空比小于0.5的场合。
(3)集成芯片UC 构成的驱动电路
电路构成如图11 所示。其中UC3724 用来产生高频载波信号,载波频率由电容CT 和电阻RT 决定。一般载波频率小于
600kHz,4脚和6脚两端产生高频调制波,经高频小磁环变压器隔离后送到UC3725芯片7、8两脚经UC3725进行调制后得
到驱动信号,UC3725 内部有一肖特基整流桥同时将7、8 脚的高频调制波整流成一直流电压供驱动所需功率。一般来说载波频
率越高驱动延时越小,但太高抗干扰变差;隔离变压器磁化电感越大磁化电流越小,UC3724 发热越少,但太大使匝数增多导
致寄生参数影响变大,同样会使抗干扰能力降低。根据实验数据得出:对于开关频率小于100kHz 的信号一般取(400~500)
kHz 载波频率较好,变压器选用较高磁导如5K、7K 等高频环形磁芯,其原边磁化电感小于约1 毫亨左右为好。这种驱动电路
仅适合于信号频率小于100kHz 的场合,因信号频率相对载波频率太高的话,相对延时太多,且所需驱动功率增大,UC3724
和UC3725 芯片发热温升较高,故100kHz 以上开关频率仅对较小极电容的MOSFET 才可以。对于1kVA 左右开关频率小于
100kHz的场合,它是一种良好的驱动电路。该电路具有以下特点:单电源工作,控制信号与驱动实现隔离,结构简单尺寸较小,
尤其适用于占空比变化不确定或信号频率也变化的场合。
MOSFET的开关轨迹线是判断MOSFET开关过程“软硬”程度的重要评估指标,MOSFET 的软硬程度对
于开关电源的性能、寿命、EMI水平都有至关重要的影响,本文介绍了一种简单实用的方法,利用泰克
TDS3000系列示波器,可以实时做出MOSFET的开关轨迹线,为改善MOSFET的开关状态提供依据。
开关电源中的开关器件(本文以MOSFET 为例)在任意时刻的损耗都可以用下式计算,
其中,ID为开关器件的电流,UDS为电压。一般地,我们希望开关器件工作在饱和或截止状态。为减小
开关损耗,在器件开关的动态过程中,总希望ID和UDS在任意时刻都至少有一个值接近或等于零。开关
轨迹线可以很好的体现出开关器件的电流和电压的关系,开关轨迹线以MOSFET 的漏源极电压UDS为
横轴,漏极电流ID为纵轴,标示出MOSFET 所承受的电流和电压的关系。典型开关轨迹线如图1 所示:
图1中a线表示了MOSFET 的一次开通过程,UDS逐渐降低,ID逐渐升高;b 线表示了一次关断过程,
UDS逐渐升高,ID逐渐降低。但是这样的开关过程中存在电压和电流都很高的时刻,将会造成很大的开
关损耗,这就是所谓的硬开关。硬开关不但增加了开关损耗,而且影响MOSFET 的寿命,更造成复杂
的EMI 问题,所以我们通常希望开关过程尽量“软”一点。c、d 线表示了一次理想的软开关过程,c 线表
示MOSFET 开通时,漏源极电压下降到零,漏极电流才开始从零上升,d 线表示MOSFET 关断时,漏
极电流先下降到零后,漏源极电压才开始上升。也就是说,开关轨迹线越是靠近坐标轴,开关过程就越
开关轨迹线
利用开关轨迹线,可以评估MOSFET 的开关状态,为改善开关
过程提供定量依据。本文介绍了一种利用TDS3000 系列示波
器,可以实时做出MOSFET 的开关轨迹线,为改善MOSFET
的开关状态提供指标。试验电路为常见的回扫(flyback)电路,如
图2。CH1 通道接电压探头,采样MOSFET 漏极电压,CH2
通道接电流探头,采样MOSFET 的漏极电流。选择合适的水平
和垂直标度,将触发电平设置到CH1 上,可以得到如图3 所示
这个波形只是表示出电压和电流随时间变化的情况,没有直观地体现电压和电流的相互关系。我们可以
利用TDS 示波器的XY 显示模式,观察MOSFET 的开关轨迹线。将TDS 示波器调节到XY模式,调节
CH1 和CH2 的幅值标度到合适位置,即可得到如图3.b 所示波形。这个波形显示了一个完整的MOSFET
开关周期中的电流电压的相互关系,也就是开关轨迹线。其中ABC 为开通轨迹线,CDA为关断轨迹线。
也可以将MOSFET 的开通轨迹线单独显示在屏幕上,具体做法如下:将时域的波形逐渐拉宽,让整个
屏幕只显示开通过程的波形(此时除了调节时间标度,还可能需要调节一下触发电平),使开通瞬间地电
流电压波形处于屏幕正中间,如图4。
此时,将示波器调节到XY 模式下,即可可以看到MOSFET 的开通轨迹线。在回扫电路中,由于MOSFET
开通后,变压器原边电感限制漏极电流的突变,漏极电流从零上升,MOSFET 是软开通。这个特性在开
通轨迹线上,表现为电压先沿着或贴近X轴减小到零,漏极电流才开始上升。
图1. 典型开关轨迹线
同样的方法,可以观察到
MOSFET 的关断轨迹线。关
断前,漏极电流正处于峰值
电流出(此时,MOSFET 的
状态正处于开关轨迹线的C
点)。关断过程中,漏极电流
下降的同时,漏源极电压上
升,从图5.b 上看,表现为
关断轨迹线位置很高。
MOSFET 是硬关断,关断损
耗很大。并且,变压器原边
漏感中的能量对MOSFET
造成很大的电压冲击。
利用开关轨迹线减小开关
由以上分析可知,开关轨迹线可以直观地反映MOSFET 地开关损耗。我们总是希望MOSFET 的开关损
耗尽可能减小,为此,我们常常在MOSFET 周围添加一些辅助电路,开关轨迹线可以帮助我们评估改
善的效果。
以图示的回扫电路为例,为了改善MOSFET 的关断轨迹,在变压器原边绕组两端并联RC 缓冲支路(如
图6),限制MOSFET 关断时漏极电压的上升速度。
图6 中所示,R=1kΩ,C=200pF,图7a~d 为加入RC 电路后的开关轨迹线。与之前的开关轨迹线相比,
加入RC 电路后,MOSFET 的关断轨迹更靠近坐标轴了(图7.d)。这是因为在MOSFET 关断瞬间,由于
电容电压不能突变,依然保持输入电压,使得MOSFET 上电压保持为零。随着电容C 的放电,MOSFET
的电压才逐渐升高。这样,就限制了MOSFET 漏源极电压的上升速度,关断损耗得到减小,不过关断
损耗的减小是以开通损耗的增加为代价的。这是由于MOSFET 关断期间,电容C上电压为零,MOSFET
开通瞬间,电容C通过电阻R和MOSFET 充电引起的。从图7.c 开通轨迹线上可以看出,MOSFET 的
开通轨迹线向“上”移动了,也就是说,漏源极电压还没下降到零时就有漏极电流流过了。
应该权衡考虑开通损耗和关断损耗,选择适当的RC 值。利用开关轨迹线可以方便地找到这个平衡点,
以确保总损耗降至最低。
本文总结:
利用 TDS3000 系列示波器的XY 显示模式,可以方便地重现MOSFET 的开关轨迹线。利用这一功能,
我们可以定量地了解回扫电路中MOSFET 的开关情况,并为其吸收电路选择合理参数。这个方法也可
以方便地应用到其他功率开关和电路拓扑中去。
参考文献:
林渭勋 现代电力电子电路浙江大学出版社2002
图2. 被测试电路图
作者:张勇
奥尔特(上海)电子有限公司
图3.a MOSFET电流电压波形
图 3.b MOSFET的开关轨迹线
图4.a MOSFET的开通过程
图 4.b MOSFET的开通轨迹线
图5:a)MOSFET的开通过程。
图 5.b)MOSFET的开通轨迹线。
图6. 变压器原边并联RC缓冲电路
图 7 关断缓冲电路的效果a. 开关电压电流波形
b. 开关轨迹线
c. 开通轨迹线
d. 关断轨迹线
上一篇文章: 下一篇文章:
Copyright &
电話:86-5&&& 版权所有:深圳市心诺微电子有限公司
深圳:广东深圳市福田区八卦二路47号6楼607&&&香港:香港湾仔轩尼诗道250号卓能广场15层E}

我要回帖

更多关于 热阻并联 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信