设偶函数f x 满足(x)=xΙx+aΙ+b满足f(-x)=-f(x)的条件是

下载作业帮安装包
扫二维码下载作业帮
1.75亿学生的选择
已知函数(Ι)&&求f(x)的定义域;(ΙΙ)&判断的奇偶性并给出证明.
(Ⅰ)由a-xa+x>0得x-aa+x<0,若a>0,则-a<x<a;若a<0,则a<x<-a;∴a>0时,f(x)的定义域为{x|-a<x<a};a<0时,f(x)的定义域为{x|a<x<-a};(Ⅱ)f(x)=lna-xa+x为奇函数.证明:∵f(-x)+f...
为您推荐:
(Ⅰ)由>0可求得f(x)的定义域;(Ⅱ)由f(-x)+f(x)=0可判断f(x)为奇函数.
本题考点:
对数函数的定义域;函数奇偶性的判断.
考点点评:
本题考查对数函数的定义域与奇偶性,对a分类讨论是难点,由f(-x)+f(x)=0判断该题的奇偶性是好方法,属于中档题.
扫描下载二维码解:(1)f′(x)=.
由x=0是f(x)的极值点得f′(0)=0,所以m=1.
于是f(x)=ex-ln(x+1),定义域为(-1,+∞),f′(x)=.
函数f′(x)=在(-1,+∞)单调递增,且f′(0)=0.
因此当x∈(-1,0)时,f′(x)<0;
当x∈(0,+∞)时,f′(x)>0.
所以f(x)在(-1,0)单调递减,在(0,+∞)单调递增.
(2)当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时,f(x)>0.
当m=2时,函数f′(x)=在(-2,+∞)单调递增.
又f′(-1)<0,f′(0)>0,
故f′(x)=0在(-2,+∞)有唯一实根x0,且x0∈(-1,0).
当x∈(-2,x0)时,f′(x)<0;
当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.
由f′(x0)=0得=,ln(x0+2)=-x0,
故f(x)≥f(x0)=+x0=>0.
综上,当m≤2时,f(x)>0.
请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一题计分,做答时请写清题号.
《》其他试题
您感兴趣的《》试卷
Copyright ? 2011- Inc. All Rights Reserved. 17教育网站 版权所有 备案号:已知函数f(x)=ex-ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0. - 跟谁学
在线咨询下载客户端关注微信公众号
搜索你想学的科目、老师试试搜索吉安
在线咨询下载客户端关注微信公众号&&&分类:已知函数f(x)=ex-ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.已知函数f(x)=ex-ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.科目:难易度:最佳答案(Ⅰ)解:∵′(x)=ex-1x+m,x=0是f(x)的极值点,∴′(0)=1-1m=0,解得m=1.所以函数f(x)=ex-ln(x+1),其定义域为(-1,+∞).∵′(x)=ex-1x+1=ex(x+1)-1x+1.设g(x)=ex(x+1)-1,则g′(x)=ex(x+1)+ex>0,所以g(x)在(-1,+∞)上为增函数,又∵g(0)=0,所以当x>0时,g(x)>0,即f′(x)>0;当-1<x<0时,g(x)<0,f′(x)<0.所以f(x)在(-1,0)上为减函数;在(0,+∞)上为增函数;(Ⅱ)证明:当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时f(x)>0.当m=2时,函数′(x)=ex-1x+2在(-2,+∞)上为增函数,且f′(-1)<0,f′(0)>0.故f′(x)=0在(-2,+∞)上有唯一实数根x0,且x0∈(-1,0).当x∈(-2,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0,得x0=1x0+2,ln(x0+2)=-x0.故f(x)≥0)=1x0+2+x0=0+1)2x0+2>0.综上,当m≤2时,f(x)>0.解析(Ⅰ)求出原函数的导函数,因为x=0是函数f(x)的极值点,由极值点处的导数等于0求出m的值,代入函数解析式后再由导函数大于0和小于0求出原函数的单调区间;(Ⅱ)证明当m≤2时,f(x)>0,转化为证明当m=0时f(x)>0.求出当m=2时函数的导函数,可知导函数在(-2,+∞)上为增函数,并进一步得到导函数在(-1,0)上有唯一零点x0,则当x=x0时函数取得最小值,借助于x0是导函数的零点证出f(x0)>0,从而结论得证.知识点:&&&&基础试题拔高试题热门知识点最新试题
关注我们官方微信关于跟谁学服务支持帮助中心下载作业帮安装包
扫二维码下载作业帮
1.75亿学生的选择
证明:若f(x)在[a,b]上可积,且f(x)≥m>0,则ln f(x)在[a,b]上可积.使用∑ωΔχ请不要复制别的提问中的答案
瘾君子ptY°
先证明lny满足李普希兹条件,利用振幅可以证明.参考资料中有详细过程
为您推荐:
其他类似问题
扫描下载二维码}

我要回帖

更多关于 已知函数fx满足当x4时 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信