已知a,b为最小的正整数是几,M=3*(a平方)-a*(b平方)-2*b-4,求M的最小最小的正整数是几值 (20

1.已知a^m=3,b^n=4,求a^3m+b^2n的值.2.若n为正整数,且x^2n=7,求(3x^3n)^2-4(x^2)^2n的值.
超萌哒啉6bl
1.a^3m+b^2n=(a^m)^3+(b^n)^2=3^3+4^2=432.(3x^3n)^2-4(x^2)^2n=9x^6n-4x^4n=1
为您推荐:
其他类似问题
a^3m+b^2n=27+16=43(3x^3n)^2-4(x^2)^2n=3^6n*7^3-4*7^2
(1)∵a^3m=(a^m)^3=3^3=27
b^2n=(b^n)^2=4^2=16
∴原式=27+16=43(2)原式=9x^6n-4x^4n
=9(x^2n)^3-4(x^2n)2
=9*7^3-4*7^2
扫描下载二维码当前位置:
>>>已知圆C:(x-2)2+(y-2)2=m,点A(4,6),B(s,t).(1)若3s-4t=-12,..
已知圆C:(x-2)2+(y-2)2=m,点A(4,6),B(s,t).(1)若3s-4t=-12,且直线AB被圆C截得的弦长为4,求m的值;(2)若s,t为正整数,且圆C上任意一点到点A的距离与到点B的距离之比为定值λ(λ>1),求m的值.
题型:解答题难度:中档来源:不详
(1)因为A(4,6),B(s,t).由3s-4t=-12,说明点B(s,t)适合直线3x-4y=-12,由把A(4,6)代入直线3x-4y=-12成立,所以A,B共线3x-4y=-12,则圆心(2,2)到直线3x-4y=-12的距离为d=|3×2+(-4)×2+12|32+(-4)2=2,又直线AB被圆C截得的弦长为4,根据垂径定理知:m=22+22=8;(2)设P(x,y)为圆C:(x-2)2+(y-2)2=m上任意一点,则(x-4)2+(y-6)2(x-s)2+(y-t)2=λ2,整理得:(1-λ2)x2+(1-λ2)y2-(8-2λ2s)x-(12-2λ2t)y+52-λ2s2-λ2t2=0,则该圆的方程即为(x-2)2+(y-2)2=m,所以4=8-2λ2s4=12-2λ2t①,整理得:λ2(t-s)=2,因为s,t为正整数,且λ>1,所以t-s=2λ2≤1,若t-s为小于等于0的整数,则λ2(t-s)=2不成立,所以,t-s=1.则λ2=2.代入①得:s=3,t=4.把λ2=2,s=3,t=4代入方程(1-λ2)x2+(1-λ2)y2-(8-2λ2s)x-(12-2λ2t)y+52-λ2s2-λ2t2=0,得:(x-2)2+(y-2)2=10.所以m=10.
马上分享给同学
据魔方格专家权威分析,试题“已知圆C:(x-2)2+(y-2)2=m,点A(4,6),B(s,t).(1)若3s-4t=-12,..”主要考查你对&&直线与圆的位置关系&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
直线与圆的位置关系
直线与圆的位置关系:
由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:(1)相交:直线与圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线。(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,唯一的公共点叫做切点。(3)相离:直线和圆没有公共点时,叫做直线和圆相离。 其图像如下: 直线和圆的位置关系的性质:
(1)直线l和⊙O相交d<r(2)直线l和⊙O相切d=r;(3)直线l和⊙O相离d>r。直线与圆位置关系的判定方法:
(1)代数法:判断直线Ax+By+C=0和圆x2+y2+Dx+Ey+F=0的位置关系,可由&推出mx2+nx+p=0,利用判别式△进行判断.△&0则直线与圆相交;△=0则直线与圆相切;△&0则直线与圆相离.(2)几何法:已知直线Ax+By+C=0和圆,圆心到直线的距离 d&r则直线和圆相交;d=r则直线和圆相切;d&r则直线和圆相离.特别提醒:(1)上述两种方法,以利用圆心到直线的距离进行判定较为简捷,而判别式法也适用于直线与椭圆、双曲线、抛物线位置关系的判断.(2)直线与圆相交,应抓住半径、弦心距、半弦长组成的直角三角形,可使解法简单.
直线与圆位置关系的判定方法列表如下:
直线与圆相交的弦长公式:
(1)几何法:如图所示,直线l与圆C相交于A、B两点,线段AB的长即为l与圆相交的弦长。设弦心距为d,半径为r,弦为AB,则有|AB|= (2)代数法:直线l与圆交于直线l的斜率为k,则有当直线AB的倾斜角为直角,即斜率不存在时,|AB|=
发现相似题
与“已知圆C:(x-2)2+(y-2)2=m,点A(4,6),B(s,t).(1)若3s-4t=-12,..”考查相似的试题有:
243823401165448727400351406030497950当前位置:
>>>如图,以A为顶点的抛物线与y轴交于点B,已知A、B两点的坐标分别为..
如图,以A为顶点的抛物线与y轴交于点B,已知A、B两点的坐标分别为(3,0)、(0,4)。
(1)求抛物线的解析式;(2)设M(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧,若以M、B、O、A为顶点的四边形四条边的长度是四个连续的正整数,求点M的坐标;(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P,PA2+PB2+PM2>28是否总成立?请说明理由。
题型:解答题难度:偏难来源:江苏省中考真题
解:(1)设,把B(0,4)代入,得,∴;(2)∵m,n为正整数,,∴应该是9的整数,∴m是3的倍数,又∵m&3,∴m=6,9,12...,当m=6时,n=4,此时MA=5,MB=6,∴四边形OAMB的四边长为3,4,5,6,当m≥9时,MB&6,∴四边形OAMB的四边长不能是四个连续的正整数,∴点M坐标只有一种可能(6,4);(3)设P(3,t),MB与对称轴交点为D,则,∴,∴当时,有最小值,∴总是成立。
马上分享给同学
据魔方格专家权威分析,试题“如图,以A为顶点的抛物线与y轴交于点B,已知A、B两点的坐标分别为..”主要考查你对&&求二次函数的解析式及二次函数的应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
求二次函数的解析式及二次函数的应用
求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式; (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式。 二次函数的应用:(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h&0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
③交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a&0时,开口方向向上;a&0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题。二次函数的其他表达形式:①牛顿插值公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 二次函数表达式的右边通常为二次三项式。双根式y=a(x-x1)*(x-x2)若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。③三点式已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)与X轴交点的情况当△=b2-4ac&0时,函数图像与x轴有两个交点。(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。Δ=b2-4ac&0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。
1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。点拨:解∵顶点坐标为(-1,-2),故设二次函数解析式为y=a(x+1)2-2 (a≠0)。把点(1,10)代入上式,得10=a·(1+1)2-2。∴a=3。∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。②典型例题二:如果a&0,那么当 时,y有最小值且y最小=;如果a&0,那么,当时,y有最大值,且y最大=。告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。∴抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x-4)2-3。将(1,0)代入得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73。③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。
发现相似题
与“如图,以A为顶点的抛物线与y轴交于点B,已知A、B两点的坐标分别为..”考查相似的试题有:
892142832141611181759271545971694401、已知正整数a、b、c满足不等式a平方+b平方+c平方+42〈ab+9b+8c,则a、b、c分别等于( )( )( )2、若a、b为实数,则m=2a平方-8ab+17b平方-16a-4b+1995的最小值=( )3、已知a〉0,b〈0,|a|〈|b|,则a、b、-a、-b之间的大小关系用不等号连接( )4、已知a+b+c=0,a平方+b平方+c平方=4,则a的四次方+b的四次方+c的四次方=( )
吖有蚊子197
a^2+b^2+c^2+42-a>ba+b+c=0 (a+b+c)^2 =a^2+b^2+c^2+2(ab+bc+ac) =0 因为a^2+b^2+c^2=4,则2(ab+bc+ac)=-4 ab+bc+ac=-2 a^2+b^2+c^2=4 (a^2+b^2+c^2)^2 =a^4+b^4+c^4+2(a^2b^2+b^2c^2+a^2c^2) =16 因为:2(a^2b^2+b^2c^2+a^2c^2) =2[(ab+bc+ac)^2-2(a^2bc+ab^2c+abc^2)] =2[(-2)^2-2abc(a+b+c)](注:a+b+c=0) =2*4 =8 所以 a^4+b^4+c^4 =16-2(a^2b^2+b^2c^2+a^2c^2) =16-8 =8这4个小问题~
为您推荐:
其他类似问题
扫描下载二维码}

我要回帖

更多关于 求最小的正整数n 使 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信