eternal flamee retardants是什么意思

flame-retardants的用法和样例:
Will Halogenated Flame Retardants Be Replaced in the Future?
卤系阻燃剂会被取代吗?
Most textile flame retardants change or interrupt the normal thermal decomposition process of the polymer.
多数的纺织用阻燃剂改变或干涉聚合物(织物)正常的热分解过程。
Hydrous magnesium oxysulfate whisker is a new type of fibroid material used as flame retardants and reiforcers.
摘要碱式硫酸镁晶须是新型的阻燃、增强纤维材料,有著广阔的应用前景。
Flame retardants are typically added to the formulation because of safety and regulation concerns.
(翻译)由于要考虑安全和有关法规,一般地,配方要添加阻燃剂。
Sony developed a walkman with PVC-free cables and print plates without lead or bromide flame retardants.
索尼研发出一种用无聚氯乙烯电线和不含铅和溴化阻燃物的电路板制成的随身听。
In addition, sodium pyrosulfite, flame retardants, precision steel castings, such as over a hundred kinds of products.
另外,还有焦亚硫酸钠、阻燃剂、精密铸钢件等百余种产品。
flame-retardants的海词问答与网友补充:
flame-retardants的相关资料:
相关词典网站:很抱歉,该文档已经被删除了...先到其它地方遛一圈吧!
您可以在豆丁搜索您要找的内容
您可能感兴趣的文档
&2008- Inc. All Rights Reserved 豆丁网
扫描下载APP
扫描关注豆丁网
微信号:doudingwang
随时赢取精美礼品BFRs_百度百科
本词条缺少概述、名片图,补充相关内容使词条更完整,还能快速升级,赶紧来吧!
BFRs,英文全称:Brominated Flame Retardants,中文名称:溴系阻燃剂
溴系阻燃剂(BFR)是消费量最大的有机阻燃剂,广泛的存在各种外壳,缆线和电路板中。其全球总用量达250~300kt/a,占阻燃剂总量的15%~20%。全球电子电气产品所用的阻燃剂,仍有80%是BFR。
BFRs,溴化阻燃剂的总称,主要种类为PBB、PBDE、HBCDD、TBBPA,另外,通过溴化反应,可形成不同树脂基体的溴系阻燃剂系列,如溴化聚苯乙烯(Brominated Polystyrene, BPS)、聚溴化苯乙烯、溴化环氧树脂齐聚物(Brominated Epoxy Oligomer,BEO)、溴化聚碳酸酯低聚物(Brominated Carbonated Oligomer,BCO)、聚溴化基丙烯酸酯(Poly(pentabromobenzyl acrylate),PPBA)等;CFRs,Chlorinated Flame Retardants,氯系阻燃剂;CFRs,氯化阻燃剂的总称,主要种类为SCCP、PCB、TCBPA等;含氯增塑剂,氯系增塑剂的总称,主要包括氯化石蜡(SCCP、MCCP)、五氯硬脂酸甲酯(MPCS)等。由于BFRs、CFRs、含氯增塑剂均包含了多种物质,如果要限制这些物质,将会给企业管控带来成本激增。例如,BFRs就有几十种之多,要判定材料中是否含有BFRs,首先要确定材料中是否有Br,如果没有Br,则材料中肯定不会有BFRs,如果确定材料中有Br,麻烦来了,需要进一步对BFRs的几十种物质进行逐一排查,一一检测是否有PBB、PBDE、HBCDD、TBBPA等,才能确定材料中是否含有BFRs。
因此,修订草案提议限制BFRs、CFRs,含氯增塑剂这些大类物质,面临管控困难。
尽管对溴系阻燃剂在燃烧时产生的有毒物质数量和性质仍有争议,例如不含阻燃剂的高聚物更容易燃烧,并同样施放出有害物质。但有机溴化阻燃剂对人类健康的影响仍然是无法否认的,因此成为被限制使用的对象。
1998年有关大西洋东北部海洋环境的部长级会议上,溴化阻燃剂已被规定包括在需最先采取行动停止释放,发散和损耗的化学物质中。不过日欧盟《电子电气设备中危害物质禁用指令》(RoHS指令)正式豁免了十溴二苯醚,使得这个用量最大的溴系阻燃剂品种得以继续使用。 因此符合RoHS标准的并不一定是无溴产品。
溴化阻燃剂包括各种有机溴化复合物,它们被用在各种塑料和别的材料中阻止燃烧和火势蔓延。PBDEs,HBCD,TBBA这三种溴化复合物使用最多。大多数溴化阻燃剂在环境中很稳定,尤其是有些PBDEs的生物积聚性很强。长期接触会妨碍大脑和骨骼的发育,这可能会导致对神经系统和行为能力永久性的影响,如学习能力和记忆力的减退。溴化阻燃剂还会危害荷尔蒙系统,它们也是在雌激素通道上对内分泌潜在的阻碍。通过动物试验发现某些溴化阻燃剂还会导致发育迟缓,青春期滞后以及对肝部和胎儿发育以及免疫系统的不良影响。所有含溴化阻燃剂的产品在被焚化时都会形成二恶英和呋喃,它们是严重的致癌物。 世界阻燃技术主要是以添加溴类阻燃剂为主,十溴二苯醚是最主要的品种。这种阻燃剂含溴量高,分解温度高于350℃,与各种高聚物的分解温度相匹配,添加量小,阻燃效果好。聚物的阻燃技术,当前主要以添加型溴系阻燃剂为主,常用的有十溴二苯醚、八溴醚、四溴双酚a,六溴环十二烷等,其中尤以十溴二苯使用量为最大。在各种高聚物外壳,以及电路板中都需要用到聚溴类材料充当阻燃剂,在高温下它们可以阻止燃烧和火势蔓延。
溴系阻燃剂的分解温度大多在200~300摄氏度左右,与各种高聚物的分解温度相匹配,因此能在最佳时刻与气相及凝聚相同时起到阻燃作用,且添加量小、阻燃效果好。早些年欧洲一些“绿色”环保组织曾经以溴系阻燃剂有毒为由,要求政府放宽对部分塑料制品(如电视机外壳)的严格阻燃标准,结果导致当时电视机成为欧洲国家引起火灾的主要原因之一。From Wikipedia, the free encyclopedia
This article is about chemical flame retardants used in textiles, plastics and resins.
For chemicals used to fight structure fires and wildfires, see .
Flame retardants are compounds added to manufactured materials, such as
and textiles, and surface finishes and coatings that inhibit, suppress, or delay the production of flames to prevent the spread of fire. They may be mixed with the base material (additive flame retardants) or chemically bonded to it (reactive flame retardants). Mineral flame retardants are typically additive while organohalogen and organophosphorus compounds can be either reactive or additive.
Both Reactive and Additive Flame retardants types, can be further separated into several different classes:
Minerals such as
and , various , , and
compounds, mostly .
Organohalogen compounds. This class includes
(decaBDE), decabromodiphenyl ethane (a replacement for decaBDE), polymeric brominated compounds such as brominated polystyrenes, brominated carbonate oligomers (BCOs), brominated epoxy oligomers (BEOs), tetrabromophthalic anyhydride,
(TBBPA) and
(HBCD). Most but not all halogenated flame retardants are used in conjunction with a synergist to enhance their efficiency. Antimony trioxide is widely used but other forms of antimony such as the pentoxide and sodium antimonate are also used.
Organophosphorus compounds. This class includes
(TPP), resorcinol bis(diphenylphosphate) (RDP), bisphenol A diphenyl phosphate (BADP), and
(DMMP); and
such as aluminum diethyl phosphinate. In one important class of flame retardants, compounds contain both phosphorus and a halogen. Such compounds include
(brominated tris) and chlorinated organophosphates such as
(chlorinated tris or TDCPP) and tetrekis(2-chlorethyl)dichloroisopentyldiphosphate (V6).
The Mineral flame retardants mainly act as additive flame retardants and do not become chemically attached to the surrounding system. Most of the Organohalogen and Organophosphate compounds also do not react permanently attach themselves into their surroundings but further work is now underway to graft further chemical groups onto these materials to enable them to become integrated without losing their retardant efficiency. This also will make these materials non emissive into the environment. Certain new non halogenated products, with these reactive and non emissive characteristics have been coming onto the market since late 2009 but are only being seriously looked at in 2010, because of the public debate about flame retardant emissions. Some of these new Reactive materials have even received EPA approval for their low environmental impacts.
The basic mechanisms of flame retardancy vary depending on the specific flame retardant and the substrate. Additive and reactive flame-retardant chemicals can both function in the vapor (gaseous) or condensed (solid) phase.
Some compounds break down
when subjected to high temperatures. Magnesium and aluminium hydroxides are an example, together with various carbonates and
such as mixtures of
and . The reaction removes heat from the substrate, thereby cooling the material. The use of hydroxides and hydrates is limited by their relatively low decomposition temperature, which limits the maximum processing temperature of the polymers (typically used in polyolefins for wire and cable applications).
A way to stop spreading of the flame over the material is to create a thermal insulation barrier between the burning and unburned parts.
additive their role is to turn the polymer into a char, which separates the flame from the material and slows the heat transfer to the unburned fuel. Non-halogenated organophosphate flame retardants typically act through this mechanism by generating a polymeric layer of phosphoric acid.
Inert gases (most often
and ) produced by thermal degradation of some materials act as diluents of the combustible gases, lowering their partial pressures and the partial pressure of oxygen, and slowing the reaction rate.
Chlorinated and brominated materials undergo thermal degradation and release
or, if used in the presence of a synergist like antimony trioxide, antimony halides. These react with the highly reactive H· and OH·
in the flame, resulting in an inactive molecule and a Cl· or Br· radical. The halogen radical is much less reactive compared to H· or OH·, and therefore has much lower potential to propagate the radical oxidation reactions of .
Flame retardants are typically added to consumer products to meet
standards for furniture, textiles, electronics, and insulation.
In 1975, California began implementing Technical Bulletin 117 (TB 117), which requires that materials such as polyurethane foam used to fill furniture be able to withstand a small open flame, equivalent to a candle, for at least 12 seconds. In polyurethane foam, furniture manufacturers typically meet TB 117 with additive halogenated organic flame retardants. Although no other U.S. states have a similar standard, because California has such a large market many manufacturers meet TB 117 in products that they distribute across the United States. The proliferation of flame retardants, and especially halogenated organic flame retardants, in furniture across the United States is strongly linked to TB 117.
In response to concerns about the health impacts of flame retardants in upholstered furniture, in February 2013 California proposed modifying TB 117 to require that fabric covering upholstered furniture meet a smolder test and to eliminate the foam flammability standards. Gov.
signed the modified TB117-2013 in November and it became effective in 2014. The modified regulation does not mandate a reduction in flame retardants.
However, these questions of eliminating emissions into the environment from flame retardants can be solved by using a new classification of highly efficient flame retardants, which do not contain halogen compounds, and which can also be keyed permanently into the chemical structure of the foams used in the furniture and bedding industries. The resulting foams have been certified to produce no flame retardant emissions. This new technology is based on entirely newly developed "Green Chemistry" with the final foam containing about one third by weight of natural oils. Use of this technology in the production of
foams, would allow continued protection for the consumer against open flame ingition whilst providing the newly recognized and newly needed protection, against chemical emissions into home and office environments. More recent work during 2014 with this "Green Chemistry" has shown that foams containing about fifty percent of natural oils can be made which produce far less smoke when involved in fire situations. The ability of these low emission foams to reduce smoke emissions by up to 80% is an interesting property which will aid escape from fire situations and also lessen the risks for first responders i.e. emergency services in general and fire department personnel in particular.
In Europe, flame retardant standards for furnishings vary, and are their most stringent in the UK and Ireland. Generally the ranking of the various common flame retardant tests worldwide for furniture and soft furnishings would indicate that the California test Cal TB117 - 2013 test is the most straightforward to pass, there is increasing difficulty in passing Cal TB117 -1975 followed by the British test BS 5852 and followed by Cal TB133. One of the most demanding flammability tests worldwide is probably the US Federal Aviation Authority test for aircraft seating which involves the use of a kerosene burner which blasts flame at the test piece. The 2009 Greenstreet Berman study, carried out by the UK government, showed that in the period between 2002 and 2007 the UK Furniture and Furnishings Fire Safety Regulations accounted for 54 fewer deaths per year, 780 fewer non-fatal casualties per year and 1065 fewer fires each year following the introduction of the UK furniture safety regulations in 1988.
The effectiveness of flame retardant chemicals at reducing the flammability of consumer products in house fires is disputed. Advocates for the flame retardant industry, such as the American Chemistry Council’s North American Flame Retardant Alliance, cite a study from the National Bureau of Standards indicating that a room filled with flame-retarded products (a polyurethane foam-padded chair and several other objects, including cabinetry and electronics) offered a 15-fold greater time window for occupants to escape the room than a similar room free of flame retardants. However, critics of this position, including the lead study author, argue that the levels of flame retardant used in the 1988 study, while found commercially, are much higher than the levels required by TB 117 and used broadly in the United States in upholstered furniture.
Another study concluded flame retardants are an effective tool to reduce fire risks without creating toxic emissions.
Several studies in the 1980s tested ignition in whole pieces of furniture with different upholstery and filling types, including different flame retardant formulations. In particular, they looked at maximum heat release and time to maximum heat release, two key indicators of fire danger. These studies found that the type of fabric covering had a large influence on ease of ignition, that cotton fillings were much less flammable than polyurethane foam fillings, and that an interliner material substantially reduced the ease of ignition. They also found that although some flame retardant formulations decreased the ease of ignition, the most basic formulation that met TB 117 had very little effect. In one of the studies, foam fillings that met TB 117 had equivalent ignition times as the same foam fillings without flame retardants. A report from the Proceedings of the Polyurethane Foam Association also showed no benefit in open-flame and cigarette tests with foam cushions treated with flame retardants to meet TB 117. However, other scientists support this open-flame test.
In 2009, the U.S.
released a report on polybrominated diphenyl ethers (PBDEs) and found that, in contrast to earlier reports, they were found throughout the U.S. coastal zone. This nationwide survey found that New York’s Hudson Raritan Estuary had the highest overall concentrations of PBDEs, both in sediments and shellfish. Individual sites with the highest PBDE measurements were found in shellfish taken from Anaheim Bay, California, and four sites in the Hudson Raritan Estuary. Watersheds that include the Southern California Bight, Puget Sound, the central and eastern Gulf of Mexico off the coast of Tampa and St. Petersburg, in Florida, and the waters of Lake Michigan near Chicago and Gary, Indiana, also were found to have high PBDE concentrations.
The earliest flame retardants,
(PCBs), were banned in the U.S. in 1977 when it was discovered that they were toxic. Industries used
instead, but these are now receiving closer scrutiny. In 2004 and 2008 the EU banned several types of
(PBDEs). Negotiations between the EPA and the two U.S. producers of DecaBDE (a flame retardant that has been used in electronics, wire and cable insulation, textiles, automobiles and airplanes, and other applications),
and , and the largest U.S. importer, , Inc., resulted in commitments by these companies to phase out decaBDE for most uses in the United States by December 31, 2012, and to end all uses by the end of 2013. The state of California has listed the flame retardant chemical chlorinated Tris (tris(1,3-dichloro-2-propyl) phosphate or TDCPP) as a chemical known to cause cancer. In December 2012, the California nonprofit Center for Environmental Health filed notices of intent to sue several leading retailers and producers of baby products for violating California law for failing to label products containing this cancer-causing flame retardant. While the demand for brominated and chlorinated flame retardants in North America and Western Europe is declining, it is rising in all other regions.
Nearly all Americans tested have trace levels of flame retardants in their body. Recent research links some of this exposure to dust on television sets, which may have been generated from the heating of the flame retardants in the TV. Careless disposal of TVs and other appliances such as microwaves or old computers may greatly increase the amount of environmental contamination. A recent study conducted by Harley et al. 2010 on , living in a low-income, predominantly Mexican-immigrant community in California showed a significant decrease in fecundity associated with PBDE exposure in women.
Another study conducted by Chevrier et al. 2010 measured the concentration of 10 PBDE congeners, free thyroxine (T4), total T4, and thyroid-stimulating hormone (TSH) in 270 pregnant women around the 27th week of gestation. Associations between PBDEs and free and total T4 were found to be statistically insignificant. However, authors did find a significant association amongst exposure to PBDEs and lower TSH during pregnancy, which may have implications for maternal health and fetal development.
A prospective, longitudinal cohort study initiated after , including 329 mothers who delivered in one of three hospitals in lower Manhattan, New York, was conducted by Herbstman et al. 2010. Authors of this study analyzed 210 cord blood specimens for selected PBDE congeners and assessed neurodevelopmental effects in the children at 12–48 and 72 months of age. Results showed that children who had higher cord blood concentrations of polybrominated diphenyl ethers (PBDEs) scored lower on tests of mental and motor development at 1–4 and 6 years of age. This was the first study to report any such associations in humans.
A similar study was conducted by Roze et al. 2009 in Netherlands on 62 mothers and children to estimate associations between 12 Organohalogen compounds (OHCs), including polychlorinated biphenyls (PCBs) and brominated diphenyl ether (PBDE) flame retardants, measured in maternal serum during the 35th week of pregnancy and motor performance (coordination, fine ), cognition (intelligence, visual perception,
integration, inhibitory control, verbal memory, and attention), and behavior scores at 5–6 years of age. Authors demonstrated for the first time that transplacental transfer of polybrominated flame retardants was associated with the development of children at school age.
Another study was conducted by Rose et al. in 2010 to measure circulating PBDE levels in 100 children between 2 to 5 years of age from California. The PBDE levels according to this study, in 2- to 5-year-old California children was 10 to 1,000 fold higher than European children, 5 times higher than other U.S. children and 2 to 10 times higher than U.S. adults. They also found that diet, indoor environment, and social factors influenced children's body burden levels. Eating poultry and pork contributed to elevated body burdens for nearly all types of flame retardants. Study also found that lower maternal education was independently and significantly associated with higher levels of most flame retardant
in the children.
San Antonio Statement on Brominated and Chlorinated Flame Retardants 2010: A group of 145 prominent scientists from 22 countries signed the first-ever consensus statement documenting health hazards from flame retardant chemicals found at high levels in , , , and other products. This statement documents that, with limited fire safety benefit, these flame retardants can cause serious health issues, and, as types of flame retardants are banned, the alternatives should be proven safe before being used. The group also wants to change widespread policies that require use of flame retardants.
A number of recent studies suggest that dietary intake is one of the main routes to human exposure to PBDEs. In recent years, PBDEs have become widespread environmental pollutants, while body burden in the general population has been increasing. The results do show notable coincidences between the China, Europe, Japan, and United States such as dairy products, fish, and seafood being a cause of human exposure to PBDEs due to the environmental pollutant.
A February 2012 study genetically engineered female mice to have mutations in the x-chromosome
gene, linked to , a disorder in humans similar to autism. After exposure to BDE-47 (a PDBE) their offspring, who were also exposed, had lower birth weights and survivability and showed sociability and learning deficits.
A January 2013 study of mice showed brain damage from BDP-49, via inhibiting of the
process necessary for brain cells to get energy. Toxicity was at very low levels. The study offers a possible pathway by which PDBEs lead to .
Many halogenated flame retardants with aromatic rings, including most brominated flame retardants, are likely
(T4) carry iodine atoms, another halogen, and are structurally similar to many aromatic halogenated flame retardants, including PCBs, TBBPA, and PBDEs. Such flame retardants therefore appear to compete for binding sites in the thyroid system, interfering with normal function of thyroid
(such as ) in vitro
and thyroid . A 2009 in vivo animal study conducted by the US Environmental Protection Agency (EPA) demonstrated that deiodination, active transport, , and
may be involved in disruption of thyroid homeostasis after perinatal exposure to PBDEs during critical developmental time points in utero and shortly after birth. Disruption of
as reported in the Szabo et al., 2009 in vivo study was supported in a follow-up in vitro study. The adverse effects on hepatic mechanism of thyroid hormone disruption during development have been shown to persist into adulthood. The EPA noted that PBDEs are particularly toxic to the developing brains of animals. Peer-reviewed studies have shown that even a single dose administered to mice during development of the brain can cause permanent changes in behavior, including hyperactivity.
Based on in vitro laboratory studies, several flame retardants, including PBDEs, TBBPA, and BADP, likely also mimic other hormones, including , , and . Bisphenol A compounds with lower degrees of bromination seem to exhibit greater estrogenicity. Some halogenated flame retardants, including the less-brominated PBDEs, can be direct neurotoxicants in in vitro cell culture studies: By altering calcium homeostasis and signalling in , as well as
release and uptake at , they interfere with normal . Mitochondria may be particularly vulnerable to PBDE toxicity due to their influence on oxidative stress and calcium activity in mitochondria. Exposure to PBDEs can also alter neural cell differentiation and migration during development.
Many flame retardants degrade into compounds that are also toxic, and in some cases the degradation products may be the primary toxic agent:
Halogenated compounds with aromatic rings can degrade into , particularly when heated, such as during production, a fire, recycling, or exposure to sun. Chlorinated dioxins are among the highly toxic compounds listed by the .
Polybrominated diphenyl ethers with higher numbers of bromine atoms, such as decaBDE, are less toxic than PBDEs with lower numbers of bromine atoms, such as pentaBDE. However, as the higher-order PBDEs degrade biotically or abiotically, bromine atoms are removed, resulting in more toxic PBDE congeners.
When some halogenated flame retardants such as PBDEs are metabolized, they form
metabolites that can be more toxic than the parent compound. These hydroxylated metabolites, for example, may compete more strongly to bind with transthyretin or other components of the thyroid system, can be more potent estrogen mimics than the parent compound, and can more strongly affect neurotransmitter receptor activity.
Bisphenol-A diphenyl phosphate (BADP) and tetrabromobisphenol A (TBBPA) likely degrade to
(BPA), an endocrine disruptor of concern.
People can be exposed to flame retardants through several routes, consumer products in the home, vehicle, or environmental contamination near their home or workplace. Residents in North America tend to have substantially higher body levels of flame retardants than people who live in many other developed areas, and around the world human body levels of flame retardants have increased over the last 30 years.
Exposure to PBDEs has been studied the most widely. As PBDEs have been phased out of use due to health concerns, organophosphorus flame retardants, including halogenated organophosphate flame retardants, have frequently been used to replace them. In some studies, indoor air concentrations of phosphorus flame retardants has been found to be greater than indoor air concentrations of PBDEs. The European Food Safety Authority (EFSA) issued in 2011 scientific opinions on the exposure to HBCD and TBBPA and its derivates in food and concluded that current dietary exposure in the European Union does not raise a health concern
The body burden of PBDEs in Americans correlates well with the level of PBDEs measured in swabs of their hands, likely picked up from dust. Dust exposure may occur in the home, car, or workplace. Levels of PBDEs can be as much as 20 times higher in vehicle dust as in household dust, and heating of the vehicle interior on hot summer days can break down flame retardants into more toxic degradation products. However, blood serum levels of PBDEs appear to correlate most highly with levels found in dust in the home. Perhaps 20% to 40% of adult U.S. exposure to PBDEs is through food intake, with the remaining exposure largely due to dust inhalation or ingestion.
Infants and toddlers are particularly exposed to halogenated flame retardants found in breast milk and dust. Because many halogenated flame retardants are fat-soluble, they accumulate in fatty areas such as breast tissue and are mobilized into breast milk, delivering high levels of flame retardants to breast-feeding infants. And, as consumer products age, small particles of material become dust particles in the air and land on surfaces around the home, including the floor. Young children crawling and playing on the floor frequently bring their hands to their mouths, ingesting about twice as much house dust as adults per day in the United States. Young children in the United States tend to carry higher levels of flame retardants per unit body weight than do adults.
Some occupations expose workers to higher levels of halogenated flame retardants and their degradation products. A small study of U.S. foam recyclers and carpet installers, who handle padding often made from recycled polyurethane foam, showed elevated levels of flame retardants in their tissues. Workers in electronics recycling plants around the world also have elevated body levels of flame retardants relative to the general population. Environmental controls can substantially reduce this exposure, whereas workers in areas with little oversight can take in very high levels of flame retardants. Electronics recyclers in Guiyu, China, have some of the highest human body levels of PBDEs in the world. A study conducted in Finland determined the occupational exposure of workers to brominated flame retardants and chlorinated flame retardants (TBBPA, PBDEs, DBDPE, HBCD, Hexabromobenzene and Dechlorane plus). In 4 recycling sites of waste electrical and electronic equipment (WEEE), the study concluded that control measures implemented on site significantly reduced the exposure. Workers making products that contain flame retardants (such as vehicles, electronics, and baby products) may be similarly exposed. U.S. firefighters can have elevated levels of PBDEs and high levels of brominated furans, toxic degradation products of brominated flame retardants.
Flame retardants manufactured for use in consumer products have been released into environments around the world. The flame retardant industry has developed a voluntary initiative to reduce emissions to the environment (VECAP) by promoting best practices during the manufacturing process. Communities near electronics factories and disposal facilities, especially areas with little environmental oversight or control, develop high levels of flame retardants in air, soil, water, vegetation, and people.
Organophosphorus flame retardants have been detected in wastewater in Spain and Sweden, and some compounds do not appear to be removed thoroughly during water treatment.
When products with flame retardants reach the end of their usable life, they are typically recycled, incinerated, or landfilled.
Recycling can contaminate workers and communities near recycling plants, as well as new materials, with halogenated flame retardants and their breakdown products. Electronic waste, vehicles, and other products are often melted to recycle their metal components, and such heating can generate toxic dioxins and furans. When wearing Personal Protection Equipment (PPE) and when a ventilation system is installed, exposure of workers to dust can be significantly reduced, as shown in the work conducted by the recycling plant Stena-Technoworld AB in Sweden. Brominated flame retardants may also change the physical properties of plastics, resulting in inferior performance in recycled products and in “downcycling” of the materials. It appears that plastics with brominated flame retardants are mingling with flame-retardant-free plastics in the recycling stream and such downcycling is taking place.
Poor-quality incineration similarly generates and releases high quantities of toxic degradation products. Controlled incineration of materials with halogenated flame retardants, while costly, substantially reduces release of toxic byproducts.
Many products containing halogenated flame retardants are sent to landfills. Additive, as opposed to reactive, flame retardants are not chemically bonded to the base material and leach out more easily. Brominated flame retardants, including PBDEs, have been observed leaching out of landfills in industrial countries, including Canada and South Africa. Some landfill designs allow for leachate capture, which would need to be treated. These designs also degrade with time.
The widespread use of flame retardants in the United States evolved after California enacted Technical Bulletin 117 (TB117) in 1975 requiring fillings in furniture such as
to resist an open flame for 12 seconds. In 2013, a
investigative series alleged that the chemical and tobacco industries mounted a campaign to increase the amount of flame retardants in homes while avoiding the need to manufacture a fire safe cigarette. US Senators asked the EPA to evaluate flame retardants for possible health risks. Firefighters concerned about high cancer rates in their profession have called for stricter regulation of use of flame retardants in homes.
's furniture flammability standards were changed in 2014. TB117-2013 allows manufacturers to market products that withstand a smolder test in lieu of the open flame test. There are legislative attempts to ban or restrict the use of certain flame retardants.
Flame retardants are effective in reducing the flammability of synthetic materials. The EPA has conducted an assessment of new flame retardants, such as 2,3,4,5-tetrabromo-ethylhexylbenzoate (TBB). However, long-term toxicological investigations into the cumulative effects of chronic TBB exposure were not done as they were outside the scope of the review.
was developed by the California Bureau of Home Furnishings through a consensus standards development process and first implemented in 1975. This regulation was intended to prevent ignition or slow the spread of the flame if the furniture is the first to ignite. When fires do occur, multiple studies show that foams treated with flame retardants burn much slower than untreated foam, giving occupants time to escape.
In a 1988 test program was conducted by the former
(NBS), now the
(NIST), to quantify the effects of fire retardant chemicals on total fire hazard. Five different types of products, each made from a different type of plastic were used. The products were made up in analogous fire-retardant (FR) and non-retarded variants (NFR).
The impact of FR (flame retardant) materials on the survivability of the building occupants was assessed in two ways:
First, comparing the time until a domestic space is not fit for occupation in the burning room, known as "untenability"; this is applicable to the occupants of the burning room. Second, comparing the total production of heat, toxic gases, and this is applicable to occupants of the building remote from the room of fire origin.
The time to untenability is judged by the time that is available to the occupants before either (a)
occurs, or (b) untenability due to toxic gas production occurs. For the FR tests, the average available escape time was more than 15-fold greater than for the occupants of the room without fire retardants.
Hence, with regard to the production of combustion products,
The amount of material consumed in the fire for the fire retardant (FR) tests was less than half the amount lost in the non-fire retardant (NFR) tests.
The FR tests indicated an amount of heat released from the fire which was 1/4 that released by the NFR tests.
The total quantities of toxic gases produced in the room fire tests, expressed in "CO equivalents," were 1/3 for the FR products, compared to the NFR ones.
The production of smoke was not significantly different between the room fire tests using NFR products and those with FR products.
Thus, in these tests, the fire retardant additives decreased the overall fire hazard.
In 2013, the world consumption of flame retardants was more than 2 million tonnes. The commercially most import application area is the construction sector. It needs flame retardants for instance for pipes and cables made of plastics. In 2008 the United States, Europe and Asia consumed 1.8 million tonnes, worth US$4.20-4.25 billion. According to , the market for flame retardants is increasing due to rising safety standards worldwide and the increased use of flame retardants. It is expected that the global flame retardant market will generate US$5.8 billion. In 2010, Asia-Pacific was the largest market for flame retardants, accounting for approximately 41% of global demand, followed by North America, and Western Europe.
U.S. Environmental Protection Agency (2005).
(Report). EPA 742-R-05-002A 2013.
Hollingbery, LA; Hull TR (2010). . Thermochimica Acta 509 (1–2): 1–11. :.
Hollingbery, LA; Hull TR (2010). . Polymer Degradation and Stability 95 (12): . :.
Hollingbery, LA; Hull TR (2012). . Polymer Degradation and Stability 97 (4): 504–512. :.
Hollingbery, LA; Hull TR (2012). . Thermochimica Acta 528: 45–52. :.
Hull, TR; Witkowski A; Hollingbery LA (2011). . Polymer Degradation and Stability 96 (8): . :.
van der Veen, I; de Boer, J (2012). "Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis". Chemosphere 88 (10): . :.  .
Weil, ED; Levchik, SV (2009). . Munich: Carl Hanser Verlag. p. 97.  .
Shaw, S.; Blum, A.; Weber, R.; Kannan, K.; Rich, D.; Lucas, D.; Koshland, C.; Dobraca, D.; Hanson, S.; Birnbaum, L. (2010). "Halogenated flame retardants: do the fire safety benefits justify the risks?". Reviews on Environmental Health 25 (4): 261–305. :.  .
California Department of Consumer Affairs, Bureau of Home Furnishings (2000).
(PDF) (Report). p. 1-8.
. Department of Consumer Affairs, Bureau of Electronic and Appliance Repair, Home Furnishings and Thermal Insulation.
. PBS Newshour. January 1, .
Guillame, E.; Chivas, C.; Sainrat, E. (2000).
(PDF) (Report). Fire Behaviour Division. p. 38-48.
Greenstreet Berman Ltd., "A statistical report to investigate the effectiveness of the Furniture and Furnishings (Fire) (Safety) Regulations 1988", (December 2009). The study was carried out for the UK Department of Business and Innovation skills (BIS).
North American Flame Retardant Alliance.
Babrauskas, V.; Harris, R.; Gann, R.; Levin, B.; Lee, B.; Peacock, R.; Paabo, M.; Twilley, W.; Yoklavich, M.; Clark, H. (1988).
(Report). National Bureau of Standards, Center for Fire Research, Fire Measurement and Research Division. p. 1-86.
Flexible Polyurethane Foams: A Comparative Measurement of Toxic Vapours and Other Toxic Emissions in Controlled Combustion Environments of Foams With and Without Fire Retardants, Matt Blais, Fire Technology Journal, 2013
Babrauskas, V. (1983). . Journal of Fire Sciences 1: 9–32. :.
Schuhmann, J.; Hartzell, G. (1989). "Flaming combustion characteristics of upholstered furniture". Journal of Fire Sciences 7 (6): 386–402. :.
Talley, Hugh. . Polyurethane Foam Association 2013.
NOAA. (2009). An Assessment of Polybrominated Diphenyl Ethers (PBDEs) in Sediments and Bivalves of the U.S. Coastal Zone. . .
May 27, 2010 at the
ATSDR. (2001). — Retrieved 2 September 2013
, Environmental Health Perspectives, 116(5), May 2008
U.S. Environmental Protection Agency. 2010. DecaBDE Phase-out Initiative. Available:
December 11, 2012 at the
Seattle-Times. (2008) . Retrieved Sunday, May 11, 2008.
Harley, KG; Marks, AR; Chevrier, J; Bradman, A; Sj?din, A; Eskenazi, B (2010). . Environ Health Perspect 118 (5): 699–704. :.  .  .
Chevrier, J; Harley, KG; Bradman, A; Gharbi, M; Sj?din, A; Eskenazi, B (2010). . Environ Health Perspect 118 (10): . :.  .  .
Herbstman, JB; Sj?din, A; Kurzon, M; Lederman, SA; Jones, RS; Rauh, V; Needham, LL; Tang, D; et al. (2010). . Environ Health Perspect 118 (5): 712–719. :.  .  .
Roze, E; Meijer, L; Bakker, A; Van Braeckel, KN; Sauer, PJ; Bos, AF (2009). . Environ Health Perspect 117 (12): . :.  .  .
Rose, M; Bennett, DH; Bergman, A; F?ngstr?m, B; Pessah, IN; Hertz-Picciotto, I (2010). "PBDEs in 2- 5-year-old children from California and associations with diet and indoor environment". Environ. Sci. Technol 44 (7): . :.  .
DiGangi, J; Blum, A; Bergman, ?; de Wit, CA; Lucas, D; Mortimer, D Schecter, A Scheringer, M Shaw, Susan D.; Webster, Thomas F. (2010). . Environ Health Perspect 118 (12): 12. :.  .  .
. . February 16, 2012.
. . January 16, 2013.
Meerts, IA; van Zanden JJ, Luijks EA, van Leeuwen-Bol I, Marsh G, Jakobsson E, Bergman A, Brouwer A. (2000). "Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro". Toxicological Sciences 56 (1): 95–104. :.  .
Szabo DT, Richardson VM, Ross DG, Diliberto JJ, Kodavanti PR, Birnbaum LS (January 2009). "Effects of perinatal PBDE exposure on hepatic phase I, phase II, phase III, and deiodinase 1 gene expression involved in thyroid hormone metabolism in male rat pups" Toxicol. Sci 107 (1) 27–39. .: .
Butt, C; Wang D; Stapleton HM (2011). "Halogenated phenolic contaminants inhibit the in vitro activity of the thyroid-regulating deiodinases in human liver.". Toxicological Sciences 124 (2): 339–47. :.  .
Dingemans, MML; van den Berg M; Westerink RHS (2011). . Environmental Health Perspectives 119 (7): 900–907. :.  .  .
Meerts, IA; Letcher RJ; Hoving S; Marsh G; Bergman A; Lemmen JG; van der Burg B; Brouwer A (2001). . Environmental Health Perspectives 109 (4): 399–407. :.  .  .
Rahman, F; Langford, KH; Scrimshaw, MD; Lester, JN (2001). "Polybrominated diphenyl ether (PBDE) flame retardants". Science of the Total Environment 275 (1–3): 1–17. :.  .
Stapleton, H; Alaee, M; Letcher, RJ; Baker, JE (2004). "Debromination of the flame retardant decabromodiphenyl ether by juvenile carp (Cyprinus carpio) following dietary exposure". Environmental Science & Technology 38 (1): 112–119. :.
Stapleton, H; Dodder, N (2008). "Photodegradation of decabromodiphenyl ether in house dust by natural sunlight". Environmental Toxicology & Chemistry 27 (2): 306–312. :.  .
Department of Ecology, Washington S State of Washington Department of Health (2008).
(Report). 09-07-041.
McCormick, J; Paiva MS; H?ggblom MM; Cooper KR; White LA (2010). "Embryonic exposure to tetrabromobisphenol A and its metabolites, bisphenol A and tetrabromobisphenol A dimethyl ether disrupts normal zebrafish (Danio rerio) development and matrix metalloproteinase expression". Aquatic Toxicology 100 (3): 255–62. :.  .
Lorber, M. (2008). "Exposure of Americans to polybrominated diphenyl ethers.". Journal of Exposure Science & Environmental Epidemiology 18 (1): 2–19. :.  .
Johnson-Restrepo, B.; Kannan, K. (2009). "An assessment of sources and pathways of human exposure to polybrominated diphenyl ethers in the United States". Chemosphere 76 (4): 542–548. :.  .
Stapleton, H.; Sjodin, A.; Jones, R.; Niehuser, S.; Zhang, Y.; Patterson, D. (2008). "Serum levels of polybrominated diphenyl ethers (PBDEs) in foam recyclers and carpet installers working in the United States.". Environmental Science & Technology 42 (9): . :.  .
Costa, L.; Giordano, G. (2007). . NeuroToxicology 28 (6): . :.  .  .
EFSA Panel on Contaminants in the Food Chain ‘Scientific Opinion on Hexabromocyclododecanes (HBCDDs) in Food’ 28 July 2011
and Scientific Opinion on Tetrabromobisphenol A (TBBPA) and its derivatives in food
Stapleton, H.; Eagle, S.; Sjodin, A.; Webster, T. (2012). . Environmental Health Perspectives 120 (7): . :.  .  .
Watkins, D.; McClean, M.; Fraser, A.; Weinberg, J.; Stapleton, H.; Sjodin, A.; Webster, T. (2012). "Impact of dust from multiple microenvironments and diet on PentaBDE body burden.". Environmental Science & Technology 46 (2): . :.  .
Besis, A.; Samara, C. (2012). "Polybrominated diphenyl ethers (PBDEs) in the indoor and outdoor environments--a review on occurrence and human exposure.". Environmental Pollution 169: 217–229. :.  .
U.S. Environmental Protection Agency (2011).
(PDF) (Report). p. 5-5. EPA/600/R-090/052F.
Sjodin, A.; Wong LY, Jones RS, Park A, Zhang Y, Hodge C, Dipietro E, McClure C, Turner W, Needham LL, Patterson DG Jr. (2008). "Serum concentrations of polybrominated diphenyl ethers (PBDEs) and polybrominated biphenyl (PBB) in the United States population: .". Environmental Science & Technology 42 (4): . :.  .
Lunder, S.; Hovander, L.; Athanassiadis, I.; Bergman, A. (2010). "Significantly higher polybrominated diphenyl ether levels in young U.S. children than in their mothers". Environmental Science & Technology 44 (13): . :.  .
Bi, X.; Thomas, K.; Jones, K.; Qu, W.; Sheng, G.; Martin, F.; Fu, J. (2007). "Exposure of electronics dismantling workers to polybrominated diphenyl ethers, polychlorinated biphenyls, and organochlorine pesticides in South China". Environmental Science & Technology 41 (16): . :.
Thomsen, C.; Lundanes, E.; Becher, G. (2001). "Brominated flame retardants in plasma samples from three different occupational groups in Norway". Journal of Environmental Monitoring 3 (4): 366–370. :.  .
Thuresson, K.; Bergman, K.; Rothenbacher, K.; Hermann, T.; Sjolin, S.; Hagmar, L.; Papke, O.; Jakobsson, K. (2006). "Polybrominated diphenyl ether exposure to electronics recycling workers--a follow up study.". Chemosphere 64 (11): . :.  .
Exposure to Flame Retardants in Electronics Recycling Sites , Rosenberg, C Haemeilae, M Tornaeus, J Saekkinen, K Puttonen, K Korpi, A Kiilunen, M Linnainmaa, M Hesso, Antti, Annals of Occupational Hygiene (2011), 55(6), 658-665
Wang, C.; Lin, Z.; Dong, Q.; Lin, Z.; Lin, K.; Wang, J.; Huang, J.; Huang, X.; He, Y.; Huang, C.; Yang, D.; Huang, C. (2012). "Polybrominated diphenyl ethers (PBDEs) in human serum from Southeast China.". Ecotoxicology and Environmental Safety 78 (1): 206–211. :.  .
Shaw, S.; Berger, M.; Harris, J.; Yun, S. H.; Wu, Q.; Liao, C.; Blum, A.; Stefani, A.; Kannan, K. (2013). "Persistent organic pollutants including polychlorinated and polybrominated dibenzo-p-dioxins and dibenzofurans in firefighters from Northern California.". Chemosphere 91 (10): 1386–94. :.  .
Wong, M.; Wu, S C; Deng, W J; Yu, X Z; Luo, Q; Leung, A O W; Wong, C S C; Luksemburg, W J; Wong, A S (2007). "Export of toxic chemicals - a review of the case of uncontrolled electronic-waste recycling.". Environmental Pollution 149 (2): 131–140. :.  .
Rodil, R.; Quintana, J.; Concha-Gra?a, E.; López-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D. (2012). "Emerging pollutants in sewage, surface and drinking water in Galicia (NW Spain).". Chemosphere 86 (10): . :.  .
Marklund, A.; Andersson, B.; Haglund, P. (2005). "Organophosphorus flame retardants and plasticizers in Swedish sewage treatment plants.". Environmental Science & Technology 39 (10): . :.  .
Guidelines for safe recycling BFR containing plastic developed by Stena recycling plant (Sweden) and BSEF, Autumn 1999.
. Chicago Tribune 2013.
. Chicago Tribune 2013.
. The Hill 2013.
. Philadelphia Inquirer 2013.
Lynne Peeples (March 27, 2014). .
Daniel Moraine, Chemical Industry Insider Comes Out, Sacramento Bee, Sacramento, California, Jan 26 2014.
 This article incorporates  from websites or documents of the . Senate subcommittee: Superfund, Toxics and Environmental Health (24 July 2012).
(Free PDF download). Oversight of EPA Authorities and Actions to Control Exposures to Toxic Chemicals. United States Senate 2014.
 This article incorporates  from websites or documents of the . Babrauskas, V.; Harris, R. H; Gann, R. G; et al. (July 1989),
(Free PDF download available), NBS Special Publication 749 (U.S. Commerce Dept. National Bureau of Standards (NBS)) 2014
Market Study Flame Retardants 2nd ed., Ceresana, 07/11
Produkte (Deutschland) GmbH
: Hidden categories:}

我要回帖

更多关于 flame of red 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信