函数题 已知2的48次方函数f(x)=(2-a)(x-1)-2lnx,g(x)=e的x次方-x-b,(1)

当前位置:
>>>已知函数f(x)=2sinωxocosωx+2bcos2ωx-b(其中b>0,ω>0)的最大值为..
已知函数f(x)=2sinωxocosωx+2bcos2ωx-b(其中b>0,ω>0)的最大值为2,直线x=x1、x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为π2.(1)求b,ω的值;(2)若f(a)=23,求sin(5π6-4a)的值.
题型:解答题难度:中档来源:广州一模
(1)f(x)=2sinωxocosωx+2bcos2ωx-b=sin2ωx+bcos2ωx=1+b2sin(2ωx+?),…(2分),由题意可得,函数f(x)的周期 T=2×π2=π,…(3分),再由函数的解析式可得周期T=2π2ω=πω,所以ω=1.…(4分)再由函数的最大值为 1+b2=2,可得 b=±3,…(5分),因为b>0,所以b=3. …(6分)(2)由 f(x)=2sin(2x+π3)&以及f(a)=23,求得sin(2a+π3)=13.…(8分),∴sin(5π6-4a)=sin[3π2-2(2a+π3)]=-cos2(2a+π3)&…(10分)=2sin2(2a+π3)-1&&…(11分),=-79. …(12分).
马上分享给同学
据魔方格专家权威分析,试题“已知函数f(x)=2sinωxocosωx+2bcos2ωx-b(其中b>0,ω>0)的最大值为..”主要考查你对&&函数y=Asin(wx+φ)的图象与性质,两角和与差的三角函数及三角恒等变换&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
函数y=Asin(wx+φ)的图象与性质两角和与差的三角函数及三角恒等变换
函数的图象:
1、振幅、周期、频率、相位、初相:函数,表示一个振动量时,A表示这个振动的振幅,往返一次所需的时间T=,称为这个振动的周期,单位时间内往返振动的次数称为振动的频率,称为相位,x=0时的相位叫初相。 2、用“五点法”作函数的简图主要通过变量代换,设X=由X取0,来找出相应的x的值,通过列表,计算得出五点的坐标,描点后得出图象。 3、函数+K的图象与y=sinx的图象的关系: 把y=sinx的图象纵坐标不变,横坐标向左(φ>0)或向右(φ<0),y=sin(x+φ) 把y=sin(x+φ)的图象纵坐标不变,横坐标变为原来的,y=sin(ωx+φ) 把y=sin(ωx+φ)的图象横坐标不变,纵坐标变为原来的A倍,y=Asin(x+φ)把y=Asin(x+φ)的图象横坐标不变,纵坐标向上(k>0)或向下(k<0),y=Asin(x+φ)+K; 若由y=sin(ωx)得到y=sin(ωx+φ)的图象,则向左或向右平移个单位。 函数y=Asin(x+φ)的性质:
1、y=Asin(x+φ)的周期为; 2、y=Asin(x+φ)的的对称轴方程是,对称中心(kπ,0)。两角和与差的公式:
倍角公式:
半角公式:
万能公式:
三角函数的积化和差与和差化积:
三角恒等变换:
寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角恒等变换的特点。三角函数式化简要遵循的"三看"原则:
(1)一看"角".这是最重要的一点,通过角之间的关系,把角进行合理拆分与拼凑,从而正确使用公式.(2)二看"函数名称".看函数名称之间的差异,从而确定使用的公式.(3)三看"结构特征".分析结构特征,可以帮助我们找到变形得方向,常见的有"遇到分式要通分"等.
(1)解决给值求值问题的一般思路:①先化简需求值得式子;②观察已知条件与所求值的式子之间的联系(从三角函数名及角入手);③将已知条件代入所求式子,化简求值.(2)解决给值求角问题的一般步骤:①求出角的某一个三角函数值;②确定角的范围;③根据角的范围确定所求的角.
发现相似题
与“已知函数f(x)=2sinωxocosωx+2bcos2ωx-b(其中b>0,ω>0)的最大值为..”考查相似的试题有:
411386331103287994618529256648257484当前位置:
>>>设函数f(x)=lnx-ax+1-ax-1.(Ⅰ)当a=1时,求曲线f(x)在x=1处的切线..
设函数f(x)=lnx-ax+1-ax-1.(Ⅰ)当a=1时,求曲线f(x)在x=1处的切线方程;(Ⅱ)当a=13时,求函数f(x)的单调区间;(Ⅲ)在(Ⅱ)的条件下,设函数g(x)=x2-2bx-512,若对于?x1∈[1,2],?x2∈[0,1],使f(x1)≥g(x2)成立,求实数b的取值范围.
题型:解答题难度:中档来源:不详
函数f(x)的定义域为(0,+∞),f′(x)=1x-a-1-ax2(2分)(Ⅰ)当a=1时,f(x)=lnx-x-1,∴f(1)=-2,f′(x)=1x-1,∴f'(1)=0,∴f(x)在x=1处的切线方程为y=-2(5分)(Ⅱ)f′(x)=-x2-3x+23x2=-(x-1)(x-2)3x2(6分)令f'(x)<0,可得0<x<1,或x>2;令f'(x)>0,可得1<x<2故当a=13时,函数f(x)的单调递增区间为(1,2);单调递减区间为(0,1),(2,+∞).(8分)(Ⅲ)当a=13时,由(Ⅱ)可知函数f(x)在(1,2)上为增函数,∴函数f(x)在[1,2]上的最小值为f(1)=-23(9分)若对于?x1∈[1,2],?x2∈[0,1]使f(x1)≥g(x2)成立,等价于g(x)在[0,1]上的最小值不大于f(x)在(0,e]上的最小值-23(*)&&&&&&&&&(10分)又g(x)=x2-2bx-512=(x-b)2-b2-512,x∈[0,1]①当b<0时,g(x)在[0,1]上为增函数,[g(x)]min=g(0)=-512>-23与(*)矛盾②当0≤b≤1时,[g(x)]min=g(b)=-b2-512,由-b2-512≤-23及0≤b≤1得,12≤b≤1③当b>1时,g(x)在[0,1]上为减函数,[g(x)]min=g(1)=712-2b<-1712<-23,此时b>1(11分)综上,b的取值范围是[12,+∞)(12分)
马上分享给同学
据魔方格专家权威分析,试题“设函数f(x)=lnx-ax+1-ax-1.(Ⅰ)当a=1时,求曲线f(x)在x=1处的切线..”主要考查你对&&函数的单调性与导数的关系,函数的极值与导数的关系,函数的最值与导数的关系&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
函数的单调性与导数的关系函数的极值与导数的关系函数的最值与导数的关系
导数和函数的单调性的关系:
(1)若f′(x)&0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)&0的解集与定义域的交集的对应区间为增区间; (2)若f′(x)&0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)&0的解集与定义域的交集的对应区间为减区间。 利用导数求解多项式函数单调性的一般步骤:
①确定f(x)的定义域; ②计算导数f′(x); ③求出f′(x)=0的根; ④用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)&0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)&0,则f(x)在对应区间上是减函数,对应区间为减区间。
函数的导数和函数的单调性关系特别提醒:
若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)&0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)&0是f(x)在此区间上为增函数的充分条件,而不是必要条件。&极值的定义:
(1)极大值: 一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点; (2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点。
极值的性质:
(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小; (2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个; (3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值; (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点。 判别f(x0)是极大、极小值的方法:
若x0满足,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点, 是极值,并且如果在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值。
求函数f(x)的极值的步骤:
(1)确定函数的定义区间,求导数f′(x); (2)求方程f′(x)=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值。
对函数极值概念的理解:
极值是一个新的概念,它是研究函数在某一很小区域时给出的一个概念,在理解极值概念时要注意以下几点:①按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).如图②极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小,如图.&&③若fx)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.④若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,⑤可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点,&&&函数的最大值和最小值:
在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值,分别对应该区间上的函数值的最大值和最小值。
&利用导数求函数的最值步骤:
(1)求f(x)在(a,b)内的极值; (2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值。
&用导数的方法求最值特别提醒:
①求函数的最大值和最小值需先确定函数的极大值和极小值,因此,函数极大值和极小值的判别是关键,极值与最值的关系:极大(小)值不一定是最大(小)值,最大(小)值也不一定是极大(小)值;②如果仅仅是求最值,还可将上面的办法化简,因为函数fx在[a,b]内的全部极值,只能在f(x)的导数为零的点或导数不存在的点取得(下称这两种点为可疑点),所以只需要将这些可疑点求出来,然后算出f(x)在可疑点处的函数值,与区间端点处的函数值进行比较,就能求得最大值和最小值;③当f(x)为连续函数且在[a,b]上单调时,其最大值、最小值在端点处取得。&生活中的优化问题:
生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题,解决优化问题的方法很多,如:判别式法,均值不等式法,线性规划及利用二次函数的性质等,不少优化问题可以化为求函数最值问题.导数方法是解这类问题的有效工具.
用导数解决生活中的优化问题应当注意的问题:
(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去;(2)在实际问题中,有时会遇到函数在区间内只有一个点使f'(x)=0的情形.如果函数在这点有极大(小)值,那么不与端点比较,也可以知道这就是最大(小)值;(3)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.
利用导数解决生活中的优化问题:
&(1)运用导数解决实际问题,关键是要建立恰当的数学模型(函数关系、方程或不等式),运用导数的知识与方法去解决,主要是转化为求最值问题,最后反馈到实际问题之中.&(2)利用导数求f(x)在闭区间[a,b]上的最大值和最小值的步骤,&&①求函数y =f(x)在(a,b)上的极值;& ②将函数y=f(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.&&(3)定义在开区间(a,b)上的可导函数,如果只有一个极值点,该极值点必为最值点.
发现相似题
与“设函数f(x)=lnx-ax+1-ax-1.(Ⅰ)当a=1时,求曲线f(x)在x=1处的切线..”考查相似的试题有:
847132518201818822471537815616746966& 2013 - 2014 作业宝. All Rights Reserved. 沪ICP备号-9已知函数f(x)=x-b/x-1,它的图像过点(2,-1)求函数f(x)的解析式
已知函数f(x)=x-b/x-1,它的图像过点(2,-1)求函数f(x)的解析式 5
不区分大小写匿名
f(x)=x-b/x-1-1=2-b/2-1b=4f(x)=x-4/x-1f(x)=(x-b)/(x-1)-1=(2-b)/(2-1)b=3f(x)=(x-3)/(x-1)现在的孩子怎么了
设K&1,解关于X的不等式f(x)x-k/x-1&0。还有这个怎么解?谢谢解答。
f(2)=(2-b)/(2-1)=2-b=-1
b=3
f(x)=(x-3)/(x-1)&
等待您来回答
数学领域专家}

我要回帖

更多关于 已知10的m次方 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信