解偏微分方程程xyⁿ=y'

解微分方程 求大神解我惑啊_百度知道
解微分方程 求大神解我惑啊
解微分方程xy’-y=y^3 会的牺牲下您的时间写下您的解题过程吧亲 急急急啊!!
我有更好的答案
→ dy/)=dx/x;(1+y²x → dy[(1/y)-1/dx)=y+y³两边分别积分得; → x(dy/-y=y³)]=dx/(y+y&#179xy&#39
其他类似问题
为您推荐:
微分方程的相关知识
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁登录网易通行证
使用网易通行证(含网易邮箱)帐号登录
提交您的投诉或建议
视频画面花屏
视/音频不同步
播放不流畅
登录后才能查看我的笔记
暂时没有笔记!
确定删除笔记?
即将播放下一集,请您保存当前的笔记哦!
对字幕纠错要登录哦!
内容不能少于3个字
不同于一般常微分方程课程千篇一律地从分离变量和一阶线性方程讲起,MIT《微分方程》第一讲就以独特的视角从全局的角度诠释了微分方程的内涵。课程从方向场和积分曲线入手,深入透彻地剖析了微分方程的实质。一上来,撇开那些有解的特殊的微分方程不谈,却从几何方向通俗易懂,而又全面深入地告诉我们什么是微分方程,解微分方程其实是什么。
老头爽约了,他没有按之前说的,讲线性方程的解法,而是开始讲数值方法。按他自己的话说:“线性方程还是推迟到下一讲吧,多数微分方程都是通过数值方法解出来的,先讲这个更好”。他还说:“现在已经是二十一世纪了,计算机都能帮你搞定”。听了他的课才领略,数学不只是那几个臭公式,更重要的是应用。听了他的课,让人深刻地意识到,计算机和数学之间的联系如此紧密。
这一讲的主要内容是一阶线性ODE:y'+p(x)y=q(x),及其解法积分因子法。这一讲通过两个实际问题——“热传导问题”和“溶液浓度扩散问题”,引出了ODE中“最重要”的一节线性微分方程,并透彻讲解。
这一讲介绍换元法(或译作代换法,substitution method),并以此为思想将某些特定形式的一阶方程转化为可分离变量方程或线性方程。本讲用换元法解决了两类特定的一阶方程,即伯努利方程和齐次方程。伯努利方程y'=p(x)y+q(x)yⁿ,通过换元化为可分离变量方程。齐次方程y'=F(y/x),令z=y/x可化为线性方程。
这一讲的主题是一阶自治方程y'=f(y)。这一讲不涉及到此类方程的解法,转而考虑在不求解方程的前提下,进行定性分析,直观地获得方程的相关信息,从而避免了由于积分复杂造成不必要的无用功。这一讲还详细讲解了自治方程的一些实用模型:银行存款模型、人口增长模型。
复数在ODE中应用相当广泛。这一讲从复数的运算着手,落脚于复数的极坐标形式。围绕欧拉公式e^iθ=cosθ+isinθ展开,从各个方面详细介绍了这种美妙形式的由来。这一讲还利用复指数巧妙地解决了∫e^x(sinx)dx这种指数、三角函数混合型积分,方法效率远大于常规的分部积分法。
这一讲特别介绍了一阶常系数线性方程y'+ky=q(t),并解释了k&0时稳态和暂态的内涵。特别地,这一讲强调了y'+ky=kq(t)形式的方程及在相应模型中的应用,并引入输入-响应的概念。最后以正弦波输入作为例子,讲解了分析和求解此类方程的复方法。
这一讲继续强调一阶常系数线性方程和复数思想。特别强调了正弦输入的情况,并巧妙地通过向量法和复数法给出了三角恒等式acosθ+bsinθ=Ccos(θ-φ)的证明。这一讲的最后,用温度、混合、RC电路、衰变和增长等多个模型为一阶常系数线性方程画上了完美的句号。
这一讲的主题是二阶常系数齐次线性ODE:y''+Ay'+By=0。这种方程在实际中对应弹簧-质量-阻尼系统,其一般性解法是代入e^(rt),然后通过特征方程r²+Ar+B=0求出r。根据特征方程根的性质,分为两个不同实根、二重实根和复根三种情况,分别对应过阻尼、临界阻尼和欠阻尼三种情况。
这一讲首先深入讲解了二阶常系数齐次线性常微分方程y''+Ay'+By=0的解如何在实解和复解之间进行转换。然后将方程化为具有物理意义的形式的振动方程y''+2py'+ω²y=0,分别讨论了无阻尼情形(p=0)时解的性质和意义,以及阻尼情况下解的性质和振动的情况。
这一讲的讨论对象是二阶齐次线性方程y''+p(x)y'+q(x)y=0,讨论了其通解的性质,为何用两个线性独立的解就能表示所有解,而且所有解都在通解的集合内。并解释了叠加原理、唯一性定理、朗斯基行列式等概念。
这一讲的重点是二阶非齐次线性方程y''+p(x)y'+q(x)y=f(x)。首先是将f(x)看成输入或驱动,用弹簧和电路两个例子强调方程的重要性。然后用线性算子,描述了解的一般形式和结构。这一讲的另一个重点是暂态和稳态,在什么条件下对二阶线性方程成立,教授用一句精辟的结论总结了这个问题。
本讲用算子方法求解高阶非齐次线性方程p(D)y=e^(αx),α为复数,p(D)为D的多项式。考虑p(α)≠0时,特解为e^(αx)/p(α)[用到了代换法则];p(α)=0时,需要分情况讨论,其中单根时,特解xe^(αx)/p'(α)[用到指数位移法则]。
这一讲是关于共振的。为什么输入频率等于固有频率时,振幅会达到最大?教授从微分方程和数学的角度解释了这个问题。之后教授讲解了带阻尼情况下的&共振&,考虑了输入频率和阻尼伪频率之间什么关系时,才能实现这种&共振&。
傅里叶级数在数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学等领域都有着广泛的应用。这一讲首先介绍以2π为周期的函数f(t)可以写作c0+∑(ancosnt+bnsinnt)的傅里叶无穷级数形式。教授通过三角函数正交关系的证明,给出了an和bn的表达式。
这一讲是上一讲的续集,首先考虑了奇函数和偶函数两种情况,讲解了傅里叶级数在这些情况下如何简化运算(以及如果将积分简化到半个周期内)。然后将2π周期延伸到了任意周期2L的情况。最后课程介绍了非周期函数的延伸,任意有限区间都可以用到傅里叶级数。特别地,教授还讲到了傅里叶级数和泰勒级数着眼点的异同。
这一讲主题是利用傅里叶级数求x''+ω0²x=f(t)的特解,其中f(t)化为傅里叶级数,通过sin和cos的可解性来求特解。这一讲采用了方波的例子,告诉我们方程的输入响应系统是如何自然选出与固有频率最接近的共振项的,并以此简单介绍了人耳识别乐音的机理。
记得幂级数吧,如1/(1-x)=Σ(x^n)、e^x=∑(x^n/n!),考虑某种变换,让两个幂级数的系数1和1/n!分别对应于f(x)=1/(1-x)或f(x)=e^x,这很容易。其实拉普拉斯变换与这是对应的。教授用这种深入浅出的讲解,让我们了解了拉普拉斯变换的由来。然后分别计算了1、e^at、cos(at)等几种常见函数的变换,并讲解了指数位移的重要公式。大名鼎鼎的拉普拉斯变换,其实并不难。
这一讲的主要目标是用拉氏变换求解线性ODE,特别的,解y''+py'+qy=f(t)形式方程。为此,教授首先引入导数的拉氏变换公式,即已知y(t)经过拉氏变换得到Y(t),那么y'及y''如何用Y(t)来表示。拉氏变换解法也就是方程两边同时进行拉氏变换,然后求解得到的代数方程,之后运用部分分式,最后用拉氏逆变换求出解y(t)。
这一讲引入了卷积公式f(t)*g(t)=∫f(u)g(t-u)du。教授从两个方面介绍了卷积的由来和用途:理论方面,卷积和拉氏变换密切相关,L(f)L(g)=L(f*g),卷积由拉氏变换乘积关系的自然产生;实践方面,卷积最普遍的例子是用作放射物质倾泻的积累量问题。教授另外还举了三个实际例子。这一讲全面剖析了卷积公式,并做到了真正的深入浅出。
这一讲主要是讲跳跃式不连续函数u(t)=1(t&0); 0(t&0)的情况,重新定义拉普拉斯逆变换的唯一性,即L(u(t))=1/s。之后教授讲到了函数平移之后的拉普拉斯变换如何进行,之后推广到更一般的不连续输入问题。最后教授以几个实用的例题作结。
[第24课]-一阶常微分方程组简介
这是一阶方程组的第一讲,首先引入了形如x'=f(x,y,t);y'=g(x,y,t)的一阶方程组。教授讲了一些实际用到一阶方程组的例子,然后利用煮鸡蛋的例子,演示了如何用比较直观的消元法来求解。最后教授给出了速度场的几何解释。
这一讲继续以矩阵形式x'=Ax讨论常系数齐次线性方程组。课堂上引入了重复实特征值和复特征值两种特殊情况,即特征方程解出重根或复根的情况,两种情况教授分别举出一个实际例子进行讨论。一个是鱼缸温度传递的例子,一个是苏飞传中的爱情例子,引起满堂哄笑。
这一讲教授讲到了2x2常系数齐次线性方程组各种情况的图像,以此希望给学生一个比较直观的感受,此类方程组解是什么样子。为此,教授引入了两州旅游竞争模型,分别就特征方程中存在两负实根、一正一负实根、以及复根的三种情况给出了方程组解的草图。
这一讲过渡到非齐次方程组,还是以2x2常系数方程组为例,以矩阵形式x'=Ax+r进行讲解。首先,教授介绍了两个相关定理,为求解做了铺垫。然后介绍了x'=Ax的基本矩阵X。最后通过参数变分的方法,给出了非齐次方程组的特解xp=X∫X^(-1)rdt。
这一讲给出了齐次微分方程组x'=Ax的解的一般公式,即用矩阵指数e^(At)表示基本矩阵X。同单个微分方程x'=ax中,a可以看作是1x1矩阵,其解是e^at。这里就是方程组在nxn矩阵上的推广,以此引入矩阵指数及其在解方程组中的应用。
这一讲给出了齐次线性微分方程组x'=Ax的解耦解法,这是第三种方法。由于在自科和工程领域,方程组通常具有物理意义,解耦解法能偶提供对解更为本质的认识,因此教授将其作为这一讲的主题。首先是一个实际例子,然后是一般方程组的解法。
这一讲介绍非线性的情况,主要是通过轻微阻尼的非线性摆的例子,介绍了该情况下如何求临界点,并作轨迹草图。简谐振动中,摆使用的是小角近似为线性情况,这一讲是一个推广,摆使用的不一定是小角,不过仍然通过线性化得到解释。
这一讲的主题是极限环,首先教授给出了极限环的定义,它首先是方程组的解形成的一条闭合轨迹,另外它不同于一般闭合轨迹,它必须是附近轨迹在t趋于无穷时逼近的轨迹。然后教授介绍了极限环何时不存在的两个准则,分别是本迪克松准则和临界点准则,证明本迪克松准则时,证明过程中涉及了反证法,以及逆否命题逻辑。最后教授介绍了极限环的一些历史,并用他经历的一个有趣故事结束了本课,与某位中国教授有关。
本课的一开始,教授介绍了非线性自治方程组和一阶常微分方程之间的关系,指出一阶常微分方程只是方程组消去时间t的信息的结果,同时也让大家明白了速度场与方向场、轨迹与积分曲线之间的联系。然后教授通过建立捕食者-猎物模型的一个非线性方程组,引出一个问题:边界线情形,即当方程组参数处于特征方程两个区域的边界时,参数小的变动可能造成临界点的几何类型完全不同,所以在做方程组线性化时,近似就会带来方程类型无法确定的问题。所以使方程组退化的一个优势就体现出来:消去t使得有时方程变得可解,并避开边界线情形,教授用这个方法解出了方程组,并引出一个结论:沃尔泰拉法则,即人类对自然盲目的干预,很可能造成灾难或适得其反的结果。
学校:麻省理工学院
讲师:Prof. Arthur Mattuck
授课语言:英文
类型:数学 国际名校公开课
课程简介:微分方程是一门表述自然法则的语言。理解微分方程解的性质,是许多当代科学和工程的基础。学习内容包括:利用解释、图形和数值方法求解一阶常微分方程,线性常微分方程,不定系数和参变数,正弦和指数信号,复数和幂,傅立叶级数,周期解,Delta函数、卷积和拉普拉斯变换方法,矩阵和一阶线性系统,非线性独立系统。
扫描左侧二维码下载客户端今天看啥 热点:
应该是第三个吧由y1=sin(x)可知y1为此方程的特解所以x^2 e^2x为方程的通解将第三个合并同类项可以得出 C1 x^2 + C2 e^2x + sinx 这个形式
查看原帖&&
回楼上,此方程是二阶方程,其通解必有两个任意常数,楼主写出的三个通解中,任意常数的个数不是1就是3,所以不对。你这么合并之后,只含有两个常数c1' 和 c2',是对的,但问题是楼主的第三种写法含有三个任意常数,是不能合并的。建议看看课本中关于通解的概念。
查看原帖&&
要是选择题 我就选第三个 呵呵
查看原帖&&
回楼上,我写的C1 x^2 + C2 e^2x + sinx 这个形式和楼主的第三个形式是两码事哦,不一样的
查看原帖&&
任意常数的个数是不能通过合并而减少的
查看原帖&&
楼上的帮看下 ^_^C1 x^2 + C2 e^2x + C3 (x^2 + e^2x ) +sinx=(C1+C3)x^2+(C2+C3)e^2x+sin(x)令C1+C3=C1' C2+C3=C2'
查看原帖&&
考研网是中国最大的考研交流平台,为考研人提供一站式考研资讯服务。
y=3+C/x过程如下:方程的齐次方程:x*dy/dx+y=0;化为:dy/y=-dx/x;得ln|y|=-ln|x|+C;得齐次方程的解为:y=C/x;然后设原方程的通解为:y=h(x)/x;对上式两边积分得:dy/dx=h'(x)/x-h(x)/x^2;将上式代入你的原来的微分方程中,得:h'(x)=3;所以可得:h(x)=3x=C;将上式代入通解y=h(x)/x中,得y=3+C/x;这就是他的通解
y=3+C/x过程如下:方程的齐次方程:x*dy/dx+y=0;化为:dy/y=-dx/x;得ln|y|=-ln|x|+C;得齐次方程的解为:y=C/x;然后设原方程的通解为:y=h(x)/x;对上式两边积分得:dy/dx=h'(x)/x-h(x)/x^2;将上式代入你的原来的微分方程中,得:h'(x)=3;所以可得:h(x)=3x=C;将上式代入通解y=h(x)/x中,得y=3+C/x;这就是他的通解
是微分方程吧! 如果在一个微分方程中出现的未知函数只含一个自变量,这个方程就叫做常微分方程,也可以简单地叫做微分方程。  一般地说,n 阶微分方程的解含有 n个任意常数。也就是说,微分方程的解中含有任意常数的个数和方程的阶数数相同,这种解叫做微分方程的通解。通解构成一个函数族。  如果根据实际问题要求出其中满足某种指定条件的解来,那么求这种解的问题叫做定解问题,对于一个常微分方程的满足定解条件的解叫做特解。对于高阶微分方程可以引入新的未知函数,把它化为多个一阶微分方程组。  常微分方程的特点  常微分方程的概念、解法、和其它理论很多,比如,方程和方程组的种类及解法、解的存在性和唯一性、奇解、定性理论等等。下面就方程解的有关几点简述一下,以了解常微分方程的特点。  求通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就容易从中得到问题所需要的特解。也可以由通解的表达式,了解对某些参数的依赖情况,便于参数取值适宜,使它对应的解具有所需要的性能,还有助于进行关于解的其他研究。  后来的发展表明,能够求出通解的情况不多,在实际应用中所需要的多是求满足某种指定条件的特解。当然,通解是有助于研究解的属性的,但是人们已把研究重点转移到定解问题上来。  一个常微分方程是不是有特解呢?如果有,又有几个呢?这是微分方程论中一个基本的问题,数学家把它归纳成基本定理,叫做存在和唯一性定理。因为如果没有解,而我们要去求解,那是没有意义的;如果有解而又不是唯一的,那又不好确定。因此,存在和唯一性定理对于微分方程的求解是十分重要的。  大部分的常微分方程求不出十分精确的解,而只能得到近似解。当然,这个近似解的精确程度是比较高的。另外还应该指出,用来描述物理过程的微分方程,以及由试验测定的初始条件也是近似的,这种近似之间的影响和变化还必须在理论上加以解决。  现在,常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等。这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题。应该说,应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。
暂无相关文章
相关搜索:
相关阅读:
相关频道:
电脑知识最近更新}

我要回帖

更多关于 微分方程 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信