自然界的氮循环过程

东海沉积物中氮循环的关键过程--《中国海洋大学》2013年博士论文
东海沉积物中氮循环的关键过程
【摘要】:氮元素作为海洋环境中的重要生源要素之一,通常被认为是初级生产力的限制因子,加之全球氮循环与碳循环在气候变化中的密切耦合以及人类活动对于氮元素排放的逐渐增加,海洋氮循环也就成为整个海洋生物地球化学循环中最为关键的一环。海洋中化合态氮的收支取决于游离态氮气的固定和化合态氮的丢失(N-loss),前者主要由固氮生物执行,而后者主要由反硝化细菌和厌氧铵氧化细菌所实现。由于海洋氮循环受到多种过程的控制以及在量化各种过程速率方面存在很大的不确定性,全球氮的收支是否处于平衡仍然存在很大的争议。海洋沉积物是化合态氮丢失的一个重要场所,约50~70%的化合态氮在此被移除,而其中50%以上的氮丢失又发生在陆架海沉积物中(Bohlen et al.2012; Gruber2008),尽管该区域只占全球海洋面积的7.5%(MenardSmith1966)。由此可见陆架海沉积物在全球海洋氮循环中所起的关键性作用。
反硝化、厌氧铵氧化和异化硝酸盐还原为铵(DNRA)是沉积物厌氧环境中氮循环的三种关键过程。前两个过程控制着沉积物中化合态氮的丢失,而DNRA则将NO_3~-转化为NH_4~+使得化合态氮在沉积物中得以保留并继续参与氮循环过程。反硝化是指在厌氧微生物作用下,从NO_3~-开始,经过一系列的异化还原反应,将NO_3~-,NO_2~-,NO和N_2O最终还原为游离态的N_2的过程,从而实现生态系统中化合态氮的移除。厌氧铵氧化是指在厌氧条件下,无机化能自养细菌以NO_2~-为电子受体,NH_4~+为电子给体的微生物氧化还原过程,此过程的最终产物同样是游离态的N_2。DNRA过程是指NO_3~-在异化硝酸盐还原细菌的作用下,经过一系列的还原过程将NO_3~-直接还原为NH_4~+的转化过程,并未实现氮丢失。三种过程在沉积物中的配比程度决定了沉积物中氮的收支,但同时对这三种过程进行的研究目前报道尚不多见。
东海作为世界上最大的陆架边缘海之一,有着较高的初级生产力。同时,西面受到世界最大河流之一—长江的输入,东南又有大洋性质的黑潮水入侵,因此使其成为最为典型的陆架海之一。由于长江流域和长江三角洲地区人类活动的加剧,大量工农业废水和生活污水随长江冲淡水输送到东海陆架,使东海近岸海区的化合态氮浓度显著升高,导致赤潮频发,且长江口外底层水体缺氧现象愈发严重。据推测,东海陆架沉积物可能是化合态氮丢失的一个“热点区域”(Seitzingeret al.2006),但是目前对于此方面的实测研究还非常匮乏。
~(15)N同位素对技术(~(15)N Isotope Pairing Technique,简记为~(15)N IPT)已经成为研究沉积物氮循环过程的一个有效手段,并得到广泛应用。但现有的~(15)N IPT只考虑到了一种(反硝化)或两种(反硝化和厌氧铵氧化、厌氧铵氧化和DNRA)氮的转化过程(Jensen et al.2011; Nielsen1992; Risgaard-Petersen et al.2003;ThamdrupDalsgaard2002),如果同时存在三种过程,且每种过程的贡献均不可忽略,则此种方法在计算每个转化过程的各自贡献量时面临着挑战。因为DNRA所产生的~(15)NH_4~+与~(15)NO_2~-结合同样可以产生30N_2,但传统上认为该产物只能由反硝化产生,这样使得现有的计算方法不能有效区分各自过程的贡献。尽管亦有方法可以解决在DNRA与厌氧铵氧化和反硝化共存条件下区分各自的贡献(SpottStange,2007),但需要建立开放的稳态实验体系,在海洋沉积物研究中尚未广泛应用。同时沉积物中细胞内硝酸盐储存生物的存在对于~(15)N IPT也产生一定的影响(Sokoll et al.,2012),多重过程的共同存在无疑增加了研究沉积物氮循环的复杂性。
有鉴于此,本文首先从理论上量化了DNRA对厌氧铵氧化和反硝化速率计算的影响,同时提出了3种方法来校正或者消除DNRA的影响,并用实测数据对该数学模型进行了验证。其次,本文利用泥浆培养考虑到DNRA的影响后深入研究了东海陆架沉积物中厌氧铵氧化、反硝化和DNRA过程以及各自在东海沉积物氮循环过程的相对贡献。然后,在对东海沉积物氮循环过程有了初步了解的基础上,结合沉积物泥浆和整柱培养技术测定了东海沉积物中的氮丢失速率。此外,因夏季长江口底层水体缺氧已被广泛报道,且底栖氮循环又与氧气水平密切相关,故利用两个航次的对比和受控实验探讨了底层水体缺氧对沉积物氮循环的影响。基于以上研究所获得的主要认识如下:
(1)基于~(15)N IPT的原理,在考虑到DNRA的影响之后,发展了一个量化的模型用于评估DNRA对于厌氧铵氧化和反硝化的影响。模型结果表明:在DNRA与厌氧铵氧化和反硝化共存的情况下,沉积物泥浆培养使用ThampdrupDalsgaard (2002)提出的方法所计算出的厌氧铵氧化速率被低估,且这种低估与体系中~(15)NH_4~+的摩尔分数(FA)成正比;反硝化速率被高估,高估的程度与FA和厌氧铵氧化对总的氮丢失的贡献(ra)有关。在ra相对固定时,对反硝化速率的高估同样与FA成正比;在FA相对固定时,对反硝化速率的高估随着ra的增加而增大。而DNRA对于总的氮丢失速率并没有影响,这主要是因为在泥浆培养中加入了~(15)NO_3~-使得硝酸盐不再是硝酸盐异化还原的限制因子,同时也说明DNRA的存在对于厌氧铵氧化的低估和对于反硝化的高估二者可以抵消,DNRA只是改变了~(15)N在各个过程中的配对形式并未对总的氮丢失产生影响。而对于整柱培养来说,在DNRA存在的情况下,按照Risgaard-Petersen等(2003)的计算方法计算出的氮丢失速率将会被高估,因为DNRA在硝酸盐还原层中与反硝化和厌氧铵氧化存在竞争关系,消耗了一部分硝酸盐从而降低了真实的氮丢失速率。针对泥浆培养过程中DNRA的影响,本文提出了3种方法用于校正或者消除该影响。在第一种方法中,采用分步计算方式将泥浆培养过程每个时间点所获取的FA考虑在内,得到每个时间点由厌氧铵氧化产生的30N_2的量,然后再分步计算每个时间点由厌氧铵氧化和反硝化所产生的实际的N_2量;在第二种方法中,如果FA随时间呈现线性增加,则采用平均的FA来计算由厌氧铵氧化贡献的30N_2产生速率,从而计算厌氧铵氧化和反硝化速率;在第三种方法中,泥浆培养加入~(15)NO_3~-的同时,再加入较高浓度的14NH_4~+以保证FA处于较低的水平(5%)来消除DNRA的影响。利用黄海和东海的实测数据验证了该模型的合理性,且三种方法均可用来校正或者消除DNRA对厌氧铵氧化和反硝化的影响。同时该模型的结果表明在ra比较低(10%)的河口与近岸沉积物中,DNRA的影响可以不予考虑,但根据现有的ra分布规律来看,随着水深的增加,ra也逐渐增加,因此在ra比较大的陆架和陆坡沉积物中,DNRA的影响则必须要谨慎对待。此外,该模型不仅仅可以用于沉积物中校正DNRA对厌氧铵氧化和反硝化的影响,也可以在大洋缺氧水体中使用。
(2)针对东海沉积物中所存在的硝酸盐还原过程的区分与量化,于2010年6月搭乘科学3号调查船在东海进行了5个站位的沉积物泥浆厌氧培养实验。~(15)NH_4~+、~(15)NH_4~++~(14)NO_3~-和~(15)NO_3~-分别作为~(15)N示踪剂加入培养体系中,通过检测不同的N_2同位素产物来判别不同的硝酸盐还原过程。实验结果表明加入~(15)NH_4~+的控制组,在O_2和NO_3~-均消耗殆尽的条件下,既无29N_2的生成亦无30N_2的产生,说明无有效的电子受体对~(15)NH_4~+进行厌氧氧化;而在加入~(15)NH_4~++~(14)NO_3~-的培养体系中,仅检测到了29N_2的产生,并无显著的30N_2产生,说明在所研究的沉积物中存在显著的厌氧铵氧化过程;在加入~(15)NO_3~-的培养体系中,显著的30N_2生成表明反硝化过程的存在,同时~(15)NH_4~+的产生证明DNRA过程也显著存在。通过对比~(15)NH_4~++~(14)NO_3~-和~(15)NO_3~-培养组的厌氧铵氧化速率,表明细胞内硝酸盐储存与释放过程也同时存在。在加入~(15)NO_3~-的培养体系中,在使用目前通用的ThampdrupDalsgaard (2002)提出的方法进行计算时,细胞内硝酸盐的释放会稀释~(15)NO_3~-,从而造成反硝化速率被低估,厌氧铵氧化速率被高估;而DNRA会造成反硝化速率被高估,而厌氧铵氧化速率被低估,从而使厌氧铵氧化在氮丢失过程中的贡献被低估。两种影响同时存在且作用相反,增加了计算过程的复杂性。将细胞内硝酸盐释放与DNRA的影响同时进行考虑后,结果表明,按照目前通用的ThampdrupDalsgaard (2002)提出的计算方法,在加入~(15)NO_3~-的培养体系中,如果仅仅考虑硝酸盐的释放,东海沉积物中反硝化速率将会被低估6%,而厌氧铵氧化速率将会被高估42%。考虑DNRA的影响之后,反硝化速率的低估将会被抵消,而厌氧铵氧化速率的高估程度可被降低14%。在加入~(15)NH_4~++~(14)NO_3~-的培养体系中,由于高浓度的~(15)NH_4~+加入作为背景,DNRA对厌氧铵氧化速率无显著影响。经过校正计算出的反硝化、厌氧铵氧化和DNRA速率表明,厌氧铵氧化在氮丢失过程中的贡献由较浅近岸的13%上升到较深外海的50%,说明厌氧铵氧化在东海沉积物氮丢失过程中起着重要作用。同时DNRA在硝酸盐还原过程中也起着重要的作用,其所占据的比例高达20~31%。
(3)在初步了解东海沉积物中反硝化、厌氧铵氧化和DNRA过程的基础上,利用沉积物泥浆和整柱培养相结合的~(15)N同位素对技术分别于2010年6月和10~11月测定了东海沉积物中氮丢失速率。利用Risgaard-Petersen等(2003)所建议的方法计算出的氮丢失速率处于0.13到0.85mmol N m~(-2)d~(-1),平均0.37mmol N m~(-2)d~(-1),其中厌氧铵氧化的贡献处于11~50%,平均24%。DNRA的速率处于0~0.05mmol N m~(-2)d~(-1),平均0.02mmol N m~(-2)d~(-1)。利用Fick第一扩散定律的计算并结合文献数据表明,单纯使用沉积物柱培养形式的~(15)N IPT计算出的氮丢失和DNRA速率均存在一定程度的低估。在柱培养实验中,加入的~(15)NO_3~-受到扩散限制,在通常所进行的培养时间内(小于1天)~(15)NO_3~-最多渗透至表层1cm的沉积物中而不能够充分地与深层次间隙水中的~(14)NO_3~-充分混合,从而使得利用现有~(15)N IPT计算出的氮丢失速率存在低估。利用沉积物分层泥浆培养实验,计算了~(15)NO_3~-渗透深度以下硝酸盐还原层中的氮丢失速率,将其与前面计算出的氮丢失速率加和即为实际的氮丢失速率。该氮丢失速率与利用Risgaard-Petersen等(2003)方法计算出的氮丢失速率相比提高了0.8~2.2倍,平均1.6倍,推广到整个东海陆架则每年增加的氮丢失量大约有1.6TgN。校正后的DNRA平均速率为0.29mmol N m~(-2)d~(-1),提升了1个数量级。(·4)利用2011年5月和8月在长江口及其临近海区的两个航次探讨了底层水体缺氧对于沉积物中氮循环的影响。在该实验中,沉积物间隙水中的溶解氧和硝酸盐剖面、沉积物耗氧速率、NO_3~-和NH_4~+交换通量、厌氧铵氧化速率、反硝化速率、DNRA速率、硝化速率和矿化速率均在不同溶解氧条件下进行了测定,既考虑到了不同季节所造成的底层水体天然氧气含量变化对底栖氮循环的影响,同时又探讨了在受控培养的溶解氧条件下底栖氮循环的变化。结果表明,5月份的底层水体溶解氧含量一般处于~200μmolL~(-1),沉积物溶解氧渗透深度处于4.0~4.3mm,耗氧速率处于11.6~17.6mmol O_2m~(-2)d~(-1)。由于调查前受强台风的影响,8月份底层水体中的溶解氧未出现缺氧现象(DO62.5μmol L~(-1)),但与5月份相比,底层水体溶解氧降低至~100μmol L~(-1),沉积物耗氧速率降低至6.1~13.6mmol O_2m~(-2)d~(-1),氧气渗透深度则减小到1.6~3.8mm,沉积物耗氧速率和氧气渗透深度分别降低了23%和29%。伴随着氧气浓度的降低,NO_3~-剖面所表现出的硝化层消失,NO_3~-趋向于由水体向沉积物转移,而NH_4~+则趋向于由沉积物向水体释放。厌氧铵氧化速率由0.15mmol N m~(-2)d~(-1)降低至0.06mmol N m~(-2)d~(-1),对总的氮丢失的贡献平均由20%降低至7.4%。反硝化速率表现出轻微的上升使得总的氮丢失速率维持在0.85mmol N m~(-2)d~(-1)左右。DNRA速率则由0.02mmol N m~(-2)d~(-1)上升至0.10mmol N m~(-2)d~(-1),平均升高了5倍。由于在8月份的航次中没有发现天然的缺氧现象,因此通过受控培养研究了在不同氧条件下(氧化状态、原位氧状态和严重缺氧状态)底栖氮循环对于水体缺氧的响应,结果表明,当底层水体溶解氧由氧化状态(DO=~200μmol L~(-1))降低至严重缺氧状态(DO=~16μmol L~(-1))时,沉积物耗氧速率急剧降低,平均降低了91%。NH_4~+由沉积物向水体强烈地释放,而NO_3~-则由氧化条件下的从沉积物向水体释放(0.14mmol N m~(-2)d~(-1))转变为急剧地向沉积物转移(-0.79mmol N m~(-2)d~(-1))。与底层水体氧化状态相比,厌氧铵氧化和反硝化在严重缺氧条件下分别降低了38%和43%,从而使总的氮丢失速率由0.92mmol N m~(-2)d~(-1)降低至0.57mmol N m~(-2)d~(-1)。DNRA速率在严重缺氧状态下增加了3倍。反硝化、厌氧铵氧化和DNRA速率的降低均可归因于严重缺氧条件下沉积物有机氮矿化速率的降低,进而导致硝化速率降低,从而使得与硝化反应相耦合的各种硝酸盐还原过程的速率均表现出不同程度的降低。
【关键词】:
【学位授予单位】:中国海洋大学【学位级别】:博士【学位授予年份】:2013【分类号】:P734【目录】:
摘要5-11Abstract11-181 Introduction18-35 1.1 Nitrogen cycle in marine environment18-29
1.1.1 Nitrogen composition18-19
1.1.2 Nitrogen budget in marine environments19-22
1.1.3 Marine nitrogen transformation processes22-27
1.1.4 Methods in determining nitrogen transformations27-29 1.2 N-loss in continental shelf sediments29-31 1.3 Introduction to the East China Sea31-34
1.3.1 General description31-33
1.3.2 Nitrogen budget in the East China Sea33-34 1.4 Aims of this thesis34-352 Application of the isotope pairing technique in sediments where anammox, denitrification and DNRA coexist35-60 Abstract36-37 2.1 Introduction37-40 2.2 Materials and procedures40-55
2.2.1 Assumptions40-41
2.2.2 Revised equations for calculations of anammox and denitrification rates after DNRA intrusion41-45
2.2.3 Quantification effects of DNRA on anammox, denitrification and total benthic N2production45-51
2.2.4 Revised procedure for estimating actual anammox, denitrification and DNRA rates in slurry incubation51-55 2.3 Assessment55-57 2.4 Discussion57-58 2.5 Comments and recommendations58-603 Anaerobic ammonium oxidation, denitrification and dissimilatory nitrate reduction to ammonium in the East China Sea sediment60-87 Abstract61-62 3.1 Introduction62-66 3.2 Materials and methods66-72
3.2.1 Sample collection and preparation66
3.2.2 15N slurry incubations66-67
3.2.3 Chemical analysis67-68
3.2.4 Rate calculations68-72 3.3 Results72-78
3.3.1 Water column and sediment characteristics72-73
3.3.2 15N slurry incubations73-74
3.3.3 Nitrate storage and release in the sediment74-75
3.3.4 N-loss and nitrate reduction in slurry incubation75-78 3.4 Discussion78-85
3.4.1 The influence of nitrate release and DNRA on anammox and denitrification rates calculation with isotope pairing method78-81
3.4.2 Distribution and regulation of anammox, denitrification and DNRA in ECS sediments81-83
3.4.3 Biogeochemical significance of anammox, denitrification and DNRA in the ECS sediments83-85 3.5 Conclusions85-874 Direct measurements of benthic N-loss and DNRA in the East China Sea87-115 Abstract88-89 4.1 Introduction89-91 4.2 Methods91-97
4.2.1 Sample collection and preparation91-92
4.2.2 General sediment characteristics92-94
4.2.3 Net fluxes of O_2and dissolved inorganic nitrogen94-95
4.2.4 Core incubation for benthic N-loss95-96
4.2.5 Slurry incubation for tracking anammox, denitrification and DNRA96
4.2.6 Chemical analysis96-97 4.3 Results97-102
4.3.1 General characteristics of the investigation sites97-98
4.3.2 Pore water nitrogen species profiles98-99
4.3.3 Oxygen and nutrients net fluxes99-100
4.3.4 Slurry incubation100-101
4.3.5 Concentration series test for core incubation101
4.3.6 N-loss from core incubation101-102
4.3.7 DNRA from core incubation102 4.4 Discussion102-115
4.4.1 Isotope pairing technique testing with~(15)NO_3~- concentration and time series when anammox and denitrification co-exist102-105
4.4.2 Underestimation of N-loss by~(15)NO_3~- diffusion limitation105-108
4.4.3 Other evidence for supporting underestimation of benthic N-loss by IPT108-110
4.4.4 A revised procedure for estimating benthic N-loss110-111
4.4.5 DNRA and its effect on benthic nitrogen cycle111-114
4.4.6 Global significance of the additional N-loss114-1155 Response of benthic nitrogen cycle to hypoxia of the Changjiang estuary115-145 Abstract116-117 5.1 Introduction117-119 5.2 Materials and Methods119-126
5.2.1 Sites description119
5.2.2 Sediment and water sampling119-120
5.2.3 Sediment characteristics120-121
5.2.4 Sediment oxygen profiles121-123
5.2.5 Track anammox, denitrification and DNRA with slurry incubations123
5.2.6 Measuring oxygen uptake and nutrient fluxes with intact core incubations123-124
5.2.7 Measuring anammox, denitrification and DNRA with intact core incubation124-125
5.2.8 Rates calculations125-126 5.3 Results126-135
5.3.1 General characteristics126-127
5.3.2 Pore water profiles of oxygen and nitrate127-128
5.3.3 Sediment oxygen uptake (SOU)128-129
5.3.4 Partitioning of anammox, denitrification and DNRA129-130
5.3.5 Benthic N-loss and DNRA from core incubation130-132
5.3.6 Nutrients net fluxes, nitrification and mineralization132-133
5.3.7 Correlation of measured benthic nitrogen transformation rates with bottom water oxygen133-135 5.4 Discussion135-145
5.4.1 Response of SOU to reduced oxygen135-136
5.4.2 Response of nutrient fluxes to reduced oxygen136-137
5.4.3 Response of anammox, denitrification and DNRA to reduced oxygen137-141
5.4.4 Integrated response of benthic nitrogen cycle to reduced oxygen141-143
5.4.5 The fate of organic nitrogen143-1456 Conclusions and Prospect145-147Reference147-161Acknowledgements161-163Supplementary Material 1 for Chapter 3163-168Supplementary Material 2 for Chapter 3168-170个人简历170发表的学术论文170-171
欢迎:、、)
支持CAJ、PDF文件格式
【参考文献】
中国期刊全文数据库
宋国栋;刘素美;;[J];地球科学进展;2012年05期
,黄大吉;[J];Science in China(Series D:Earth Sciences);2002年12期
【共引文献】
中国期刊全文数据库
王庄;铁柏清;刘作云;;[J];安徽农学通报(上半月刊);2010年21期
邓小文;张岩;韩士杰;李晓峰;李考学;李雪峰;;[J];北京林业大学学报;2007年06期
王静;黄正文;王寻;;[J];成都大学学报(自然科学版);2012年01期
赵娜;贾力;刘洪来;陈超;王堃;;[J];草原与草坪;2011年01期
任书杰;曹明奎;陶波;李克让;;[J];地理科学进展;2006年04期
晏维金;;[J];地理研究;2006年05期
;[J];Chinese Journal of G2008年01期
郑循华;刘春岩;韩圣慧;;[J];Advances in Atmospheric S2008年02期
岳进;韩圣慧;郑循华;;[J];Advances in Atmospheric S2012年02期
任玲,杨军;[J];地球科学进展;2000年01期
【二级参考文献】
中国期刊全文数据库
,M.G.Wiesner,H.K.W[J];Science in China(Series D:Earth Sciences);1999年02期
顾宏堪;[J];海洋学报(中文版);1980年02期
姚鹏;于志刚;;[J];海洋学报(中文版);2011年04期
洪义国;李猛;顾继东;;[J];微生物学报;2009年03期
张少辉,郑平;[J];中国环境科学;2004年04期
【相似文献】
中国期刊全文数据库
李琳,郭祀远,张小平;[J];中国甜菜糖业;1995年02期
郝一凡;[J];沈阳教育学院学报;2005年03期
樊彦国;李瑞华;;[J];灌溉排水学报;2007年S1期
张会平;张培震;郑文俊;郑德文;陈正位;;[J];地震地质;2007年02期
赵晔;康筱峰;;[J];西南民族大学学报(自然科学版);2008年06期
李毓镛;;[J];科学大众(中学版);1948年06期
黄敏;[J];四川地震;2001年02期
黄蕾;;[J];科技信息;2010年13期
张旭良;刘刚连;;[J];科技风;2010年18期
范成新,相崎守弘,福岛武彦,松重一夫;[J];海洋与湖沼;1998年05期
中国重要会议论文全文数据库
袁显永;霍东霞;王红英;;[A];2005年全国高分子学术论文报告会论文摘要集[C];2005年
姬占峰;武汰然;米飒;张彩凤;;[A];第十届中国科协年会信息化与社会发展学术讨论会分会场论文集[C];2008年
柳岸;;[A];武汉市第二届学术年会、通信学会2006年学术年会论文集[C];2006年
全为民;沈新强;甘居利;沈晓盛;;[A];首届长三角科技论坛——生态环境与可持续发展分论坛论文集[C];2004年
纪涛;;[A];山东省科协重点学术研讨活动成果——山东生态省建设与发展论文汇编[C];2004年
黎敦朋;李新林;周小康;杜少喜;;[A];青藏高原地质过程与环境灾害效应文集[C];2005年
王兵;赵君喜;;[A];2006北京地区高校研究生学术交流会——通信与信息技术会议论文集(上)[C];2006年
唐颖;陈海军;崔群;陈修军;杨奇;姚虎卿;;[A];第三届全国化学工程与生物化工年会论文摘要集(下)[C];2006年
隋晓红;李昊涵;;[A];2007中国钢铁年会论文集[C];2007年
廖雪义;马光庭;李献;;[A];广西微生物学会2003年学术年会论文集[C];2003年
中国重要报纸全文数据库
林雪松 编译;[N];计算机世界;2010年
米;[N];中国计算机报;2000年
;[N];网络世界;2001年
孙文博/北京;[N];电子资讯时报;2002年
华为技术有限公司
熊前进;[N];通信产业报;2008年
朱杰;[N];中国计算机报;2009年
王素平;[N];人民邮电;2000年
;[N];国际商报;2000年
李传涛;[N];通信产业报;2009年
瓦力 编译;[N];计算机世界;2009年
中国博士学位论文全文数据库
宋国栋;[D];中国海洋大学;2013年
吴可镝;[D];浙江大学;2011年
安毅;[D];南开大学;2010年
陈少磊;[D];浙江大学;2013年
孙红福;[D];中国矿业大学(北京);2009年
杨晶晶;[D];哈尔滨工业大学;2013年
底兰波;[D];大连理工大学;2012年
张玉芹;[D];山东农业大学;2006年
刘云;[D];华南理工大学;2011年
张杰;[D];山东大学;2012年
中国硕士学位论文全文数据库
赵志岚;[D];信阳师范学院;2013年
李少正;[D];中国石油大学;2011年
赵昕;[D];青岛理工大学;2010年
任健;[D];昆明理工大学;2011年
白玉涛;[D];内蒙古大学;2012年
张涛;[D];浙江海洋学院;2013年
贾曼玲;[D];天津大学;2012年
古丽;[D];中国海洋大学;2011年
吐尔逊阿依·吾甫尔;[D];新疆农业大学;2011年
余方;[D];湖南大学;2011年
&快捷付款方式
&订购知网充值卡
400-819-9993
《中国学术期刊(光盘版)》电子杂志社有限公司
同方知网数字出版技术股份有限公司
地址:北京清华大学 84-48信箱 大众知识服务
出版物经营许可证 新出发京批字第直0595号
订购热线:400-819-82499
服务热线:010--
在线咨询:
传真:010-
京公网安备75号&&|&&&&|&&&&|&&&&|&&&&|&&&&|&&&&|&&
: 279-292&&&&DOI: 10.11686/cyxb
草地生态系统氮循环关键过程对全球变化及人类活动的响应与机制
闫钟清1,2,齐玉春1,*,董云社1,彭琴1,孙良杰1,2,贾军强1,2,曹丛丛1,2,郭树芳1,2,贺云龙1,2
1.中国科学院地理科学与资源研究所,北京100101;2.中国科学院大学,北京100049
Nitrogen cycling in grassland ecosystems in response to climate change and human activities
YAN Zhong-qing1,2,QI Yu-chun1,DONG Yun-she1,PENG Qin1,SUN Liang-jie1,2,JIA Jun-qiang1,2,CAO Cong-cong1,2,GUO Shu-fang1,2,HE Yun-long1,2
1.Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences,Beijing 100101, C2.University of Chinese Academy of Sciences, Beijing 100049, China
摘要&氮(N)是蛋白质、核酸、酶、激素、叶绿素等物质的主要组成部分,对生态系统结构的组成和功能的发挥具有十分重要的影响。国际地圈与生物圈计划(IGBP)以及政府间气候变化委员会(IPCC)的许多大型研究计划均把氮素循环过程作为其核心研究内容。草原生态系统作为地球上宝贵的自然资源,其功能的发挥对于维持全球及区域性生态平衡有极其重要的作用。但迄今为止,对草地氮循环关键过程及其对全球变化(CO2浓度升高、温度与降水变化、氮沉降)以及人类活动(放牧、开垦、火烧等)响应与反馈的认知远不及对草地碳循环过程那么系统与深入,迫切需要开展相关领域系统的科学试验研究。本文综述了目前国内外全球变化和人类活动因子对草地氮循环过程影响的相关研究成果,分析了其主要影响途径以及关键机制,在此基础上对目前研究中存在的不足进行了剖析,并对未来研究中迫切需要关注的重点研究方向进行了探讨与展望。
作者相关文章
关键词: &&
Abstract:
As an important component of proteins, nucleic acids, enzymes and chlorophyll nitrogen (N) is a crucial element for ecosystem function. Many large research programs undertaken by the International Geosphere and Biosphere Program (IGBP) and the Intergovernmental Panel on Climate Change (IPCC) have included the N cycle as part of their core research. Globally, grassland ecosystems play an extremely important role in maintaining global and regional ecological balance. To date, few studies on the response of the N cycle to global changes have been conducted. There is some urgency to determine the effect of elevated atmospheric CO2 and temperature, precipitation change, nitrogen deposition and human activities (grazing, cultivation, fire, etc.) on the N cycle in grasslands. This paper reviews research progresses in China and globally on the effects of global change and human activities on the key N cycle processes in grassland ecosystems. Additionally, issues requiring research emphasis are identified.
Key words:
收稿日期: ;
基金资助:国家自然科学基金项目(54)和中国科学院知识创新工程重要方向性项目(KZCX2-EW-302)资助
通讯作者: E-mail:qiyc@&&&
作者简介: 闫钟清(1990-),女,河南周口人,在读硕士
引用本文: &&
闫钟清,齐玉春,董云社等. 草地生态系统氮循环关键过程对全球变化及人类活动的响应与机制[J]. 草业学报, ): 279-292.
YAN Zhong-qing,QI Yu-chun,DONG Yun-she et al. Nitrogen cycling in grassland ecosystems in response to climate change and human activities[J]. Acta Prataculturae Sinica, ): 279-292.
Reference:?
[1]Li B. The status quo of China's grassland resources, problems and countermeasures[J]. Bulletin of Chinese Academy of Sciences, -51.
[2]Gruber N,Galloway J N.An earth-system perspective of the global nitrogen cycle[J].Nature,: 293-296.
[3]Chen Z Z, Wang S P. China typical steppe ecosystem[M]. Beijing: Science Press, 6.
[4]Peng Q, Dong Y S, Qi Y C. Influence of external nitrogen input on key processes of carbon cycle in terrestrial ecosystem[J]. Advances in Earth Science, ): 874-882.
[5]Zhou Z H, Xiao H Y, Liu C Q. Research status of and advances in biogeochemical cycling nitrogen in soils[J]. Earth and Environment, -4): 21-26.
[6]Liu T Z, Nan Z B. Effects of grazing of livestock on grassland[J]. Pratacultural Science, ): 951-958.
[7]Zhang C X, Nan Z B. Research progress on effects of grazing on physical and chemical characteristics of grassland soil[J]. Acta Prataculturae Sinica, ): 204-211.
[8]Wang Z W. Effect of stocking rate on ecosystem stability of stipa breviflora desert steppe[D]. Hohhot: Inner Mongolia Agricultural University, 2009.
[9]Li C L. Grazing Effect on Vegetation and Soil in Stipa Breviflora Steppe and Rough Fescue Grassland[D]. Hohhot: Inner Mongolia Agricultural University, 2008.
[10]He N P,Yu Q,Wu L, et al. Carbon and nitrogen store and storage potential as affected by land-use in a ?Leymus chinensis? grassland of northern China[J].Soil Biology and Biochemistry, ):.
[11]Holland E A, Parton W J, Detling J K, et al. Physiological responses of plant populations to herbivory and their consequences for ecosystem nutrient flow[J].American Naturalist, : 685-706.
[12]Wang L M, Jiang H Z, Yao J Y et al. Present situation and sustainable development tactics of grassland in Northern China[J]. Acta Ecologae Animalis Domastici, ): 4-7.
[13]Gao Y H.Study on carbon and nitrogen distribution pattern and cycling process in an alpine meadow ecosystem under different grazing intensity[D].Chengdu: Chengdu Institute of biology, Chinese Academy of Sciences , 2007.
[14]Zhou H K, Zhao X Q, Wen J et al. The characteristics of soil and vegetation of degenerated alpine steppe in the Yellow River Source Region[J]. Acta Prataculturae Sinica, ): 1-11.
[15]Chatskikh D,Olesen J E,Berntsen J,et al. Simulation of effects of soils,climate and management on N?2O emission from grasslands[J].Biogeochemistry, 5-419.
[16]Yamulki S, Jarvis S C, Oven P.Nitrous oxide emission from excreta applied in a simulated grazing pattern[J].Soil Biology and Biochemistry, 1-500.
[17]Xu R. Xilin River Basin, Inner Mongolia grassland N?O gas exchange process simulation and scaling[D]. Beijing: Institute of Atmospheric Physics, Chinese Academy of Sciences, 2002.
[18]Flessa H,D?rsch P,Beese F,et al.Influence of cattle wastes on nitrous oxide and methane fluxes in pasture land[J]. Journal of Environment Quality,6-1370.
[19]Du R, Wang G C, Lv D R. Effect of grazing on microbiology processes of N?O production in grassland soils[J]. Environmental Science, ): 11-15.
[20]Qi Y C. Inner temperate grassland ecosystem biogeochemical cycle greenhouse gas fluxes and carbon balance[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2003.
[21]Deenik J.Nitrogen mineralization potential in important agricultural soils of Hawaii[J]. Soil Crop Management, -5.
[22]Gao Y H,Luo P,Wu N,et al.Impacts of grazing intensity on nitrogen pools and nitrogen cycle in an alpine meadow on the eastern Tibetan plateau[J]. Applied Ecology & Environmental Research, ):69-79.
[23]Wu H H, Dannenmann M,Fanselow N,et al.Feedback of grazing on gross rates of N mineralization and inorganic N partitioning in steppe soils of Inner Mongolia[J]. Plant & Soil, -2): 127-139.
[24]Han G D,Hao X Y,Zhao M L,et al.Effect of grazing intensity on carbon and nitrogen in soil and vegetation in a meadow steppe in Inner Mongolia[J]. Agriculture Ecosystem & Environment, -32.
[25]Rossignol N,Bonis A,Bouzill J B.Consequence of grazing pattern and vegetation structure on the spatial variations of net N mineralization in a wet grassland[J]. Applied Soil Ecology, -70.
[26]Peter S, Erik S J. Mineralization-immobilization and plant uptake of nitrogen as influenced by the spatial distribution of cattle slurry in soils of different texture[J]. Plant and Soil, ): 283-291.?
[27]McNaughton S J, Ruess R G, Seagle S W. Large mammals and process dynamics in African ecosystems[J].BioScience, 4-800.
[28]Frank D A,Groffman P M,Evans R D,et al. Ungulate stimulation of nitrogen cycling and retention in Yellowstone Park grasslands[J].Oecologia, ):116-121.
[29]Yang X H, Dong Y S, Qi Y C et al. Mineral nitrogen dynamics in Dark Chestnut soil of Leymus chinensis grassland in the Xilin River Basin, China[J]. Geographical Research, 7-393.
[30]Chen D D, Sun D S, Zhang S H et al. Soil N mineralization of an alpine meadow in eastern Qinghai-Tibetan Plateau[J]. Acta Agrestia Sinica, ): 420-424.
[31]Xu Y Q, Li L H, Wang Q B, et al. The pattern between nitrogen mineralization and grazing intensities in an Inner Mongolian typical steppe[J]. Plant and Soil, -2): 289-300.?
[32]Li Y Z, Zhu T C,Redmann R E. A comparative study on soil nitrogen (N) gross rate of mineralization,nitrification and consumption over three management systems of Leymus chinensis grasslands[J]. Acta Ecologica Sinica, ): 668-673.
[33]Haynes R J,Williams P H. Nutrient cycling and soil fertility in the grazed pasture ecosystem[J]. Advances in Agronomy, 9-199.
[34]Luo J,Tillman R W,Ball P R. Grazing effects on denitrification in a soil under pasture during two contrasting seasons[J]. Soil Biology and Biochemistry,3-912.
[35]Gao X F, Han G D. Study on Effect of grazing on steepe soil nitrogen cycle[J]. Soils,):161-166.
[36]Gao X F, Han G D. Effect of grazing intensity on soil nitrogen cycle in the desert steppe[J]. Journal of Arid Land Resources and Environment, ): 165-168.
[37]Li L H, Chen Z Z. Soil respiration in grassland communities in the world[J]. Chinese Journal of Ecology, ): 45-51.
[38]Liu X R,Dong Y S.Drivers of soil net nitrogen mineralization in the temperate grasslands in Inner Mongolia,China[J].Nutrient Cycling in Agroecosystems, -69.
[39]Li M F, Dong Y S, Qi Y C et al. Effect of land-use change on the contents of C & N in temperate grassland soils[J]. Chinese Journal of Grassland, ): 1-6.
[40]Ding F,Hu Y L,Li L J, et al.Changes in soil organic carbon and total nitrogen stocks after conversion of meadow to cropland in Northeast China[J]. Plant and Soil, -2): 659-672.
[41]Su Y Z, Zhao H L, Wen H Y. Cultivation and enclosure effects on soil physicochemical properties of degraded sandy grassland[J]. Journal of Soil and Water Conservation, ): 5-8, 126.
[42]Wen H Y, Zhao H L, Fu H.Effects of years for reclamation and enclosure years on soil properties of degraded sandy grassland[J]. Acta Prataculturae Sinica, ): 31-37.
[43]Zhong Y H, Bao Q H. The study of rational cutting system on the grassland of Xilin River Basin[J]. Chinese Journal of Grassland, -41.
[44]Geng Y B, Zhang S, Dong Y S et al. The content of soil organic carbon and total nitrogen and correl ativity between their content and fluxes of CO2, N2O and CH4 in Xilin River Basin Steppe[J].Acta Geographica Sinica, ): 938-942.
[45]Wang Y F. Study on greenhouse gases fluxes and carbon balance in grassland with disturbance of anthropogenic activity[D]. Beijing: Institute of Botany,the Chinese Academy of Sciences, 2001.
[46]Mosier A R, Parton W J, Valentine D W,et al.CH4 and N2O fluxes in the Colorado short grass Steppe 2 long-term impact of land use change[J]. Global Biogeochemical Cycles, ): 29-42.
[47]Liu L X, Dong Y S, Qi Y C. Study on the free-grazed steppes root respiration of growing season in the Xilin River Basin,China[J]. Environmental Science, ): .?
[48]Wang Y S, Ji B M, Huang Y et al. Effects of grazing and cultivating on emission of nitrous oxide, carbon dioxide and uptake of methane form grasslands[J]. Environmental Science, ): 7-13.
[49]Machefert S E,Dise N B,Goulding K W T, et al.Nitrous oxide emission from a range of land uses across Europe[J].Hydrology and Earth System Sciences, 5-338.
[50]Roth G,Flessa H,Helfrich M, et al. Impact of two different types of grassland-to-cropland-conversion on dynamics of soil organic matter mineralization and N?2O emission[J].Geophysical Research Abstracts, -27.
[51]Eriksena J,Pedersenb L,J?rgensenc J R.Nitrate leaching and bread-making quality of spring wheat following cultivation of different grasslands[J].Agriculture,Ecosystems & Environment, -4): 165-175.
[52]Li Y Z, Fan J W, Zhang L X. The impact of different land use and management on community composition,species diversity and productivity in a typical temperate grassland[J]. Acta Prataculturae Sinica, ): 1-9.
[53]Zhou D W. Ecological effects of fire on grassland[J]. Chinese Journal of Grassland, -77.
[54]Zhou R L, Zhang J P, Xu C L. Effect of burning turf on nutrient contents and enzymatic activities of alpine meadow soil and its grey relationship analysis[J].Acta Pedologica Sinica, ): 89-96.
[55]Pereira P,?beda X,Mataix-Solera J, et al.Short-term spatio-temporal spring grassland fire effects on soil colour,organic matter and water repellency in Lithuania[J]. Solid Earth Discussions, ): .
[56]Wan S Q, Hui D F, Luo Y Q.Fire effects on ecosystem nitrogen pools and dynamics:A meta-analysis[J].Ecological Application, 49-1365.
[57]Li Y Z, Zhu T C, Li J D et al. Effect of prescribed burning on grassland nitrogen gross mineralization and nitrification[J].Chinese Journal of Applied Ecology, ): 223-226.
[58]Marion G M,Moreno J M,Oechel W C.Fire severity,ash deposition,and clipping effects on soil nutrients in shaparral[J]. Soil Science Society of America Journal,):235-240.
[59]Andriesse J P,Koopmans T T.Fire effects on nitrogen mineralization and fixation in mountain shrub and grassland communities[J]. Journal of Range Management, ): 402-405.
[60]Blair J M. Fire, N availability, and plant response in grasslands: a test of the transient maxima hypothesis[J]. Ecology, 59-2368.
[61]Matamala R, Drake B G. The influence of atmospheric CO2 enrichment on plant-soil nitrogen interactions in a wetland plant community on the Chesapeake Bay[J]. Plant and Soil, : 93-101.
[62]Zhou L S,Huang J H,Lu F M,et al. Effects of prescribed burning and seasonal interannual climate variation on nitrogen mineralization in a typical steppe inner Mongolia[J]. Soil Biology and Biochemistry, 6-803.
[63]Harris W N,Morettob A S. Fire and grazing in grasslands of the Argentine Caldenal: Effects on plant and soil carbon and nitrogen[J].Acta Oecologica, 7-214.
[64]Turner C L, Blair J M, Schartz R J,et al. Soil N and plant responses to fire, topography, and supplemental N in tallgrass prairie[J].Ecology, 32-1843.
[65]Wigley T M L, Raper S C B. Interpretation of high projections for global-mean warming[J].Science, : 451-454.
[66]Wallace J S. Increasing agricultural water use efficiency to meet future food production agriculture[J]. Ecosystems and Environment, 5-119.
[67]Redfield A C. The biological control of chemical factors in the environment[J]. American Scientist, 5-221.?
[68]Houghton R A, Skole D L. Carbon In: The Earth as Transformed by Human Action[M].Cambridge: Cambridge University Press,.
[69]IPCC.Climate Change 2007:Synthesis Report[R].Oslo:Intergovernmental Panel on Climate Change,2007.
[70]Peter B R,Bruce A H,Luo Y Q.Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide[J].Annual Review of Ecology,Evolution,and Systematic, 1-636.
[71]Luo Y,Currie W S,Dukes J S,et al.Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide[J].BioScience, 1-739.
[72]Niklaus P A, Kandeler E, Leadley P W,et al.A link between plant diversity, elevated CO2 and soil nitrate[J].Oecologia, : 540-548.
[73]Müller C,Rüttingc T,Abbasi M K, et al. Effect of elevated CO2 on soil N dynamics in a temperate grassland soil[J].Soil Biology and Biochemistry, ):.
[74]Barnard R, Barthes L, Le Roux X, et al.Dynamics of nitrifying activities, denitrifying activities and nitrogen in grassland mesocosms as altered by elevated CO?2[J]. New Phytologist, ):365-376.?
[75]Kammann C,Müller C, Grünhage L, et al. Elevated CO2 stimulates N2O emissions in permanent grassland[J]. Soil Biology and Biochemistry, ):.
[76]Baggs E M, Richter M, Cadisch G, et al. Denitrification in grass swards is increased under elevated atmospheric CO2[J]. Soil Biology and Biochemistry, ): 729-732.?
[77]Ineson P, Benham D G, Poskitt J, et al. Effects of climate change on nitrogen dynamics in upland soils: A soil warming study[J]. Globle Change Biology, 3-161.
[78]Barrett J E,Burke I C. Potential nitrogen immobilization in grassland soils across a soil organic matter gradient[J]. Soil Biology and Biochemistry,7-1716.
[79]Loiseau P,Soussana J F.Effects of elevated CO2, temperature and N fertilization on nitrogen fluxes in a temperate grassland ecosystem[J].Global Change Biology, -965.
[80]Jiang Z H, Zhang X, Wang J. Projection of climate change in China in the 21st century by IPCC-AR4 Models[J]. Geographical Research, ): 787-799.
[81]Rosenstein R W, Boutton T W, Tjoelker M,et al.Soil C and N pools in Oak Savanna:Responses to Temperature and Rainfall Manipulation[C]. American Geophysical Union,Fall Meeting, 2011.
[82]Warrington R. Lost fertility[A]. The production and loss of nitrate in the soil[M]. Transaction of the High land and Agricultural Society of Scotland, .?
[83]Walvoord M A, Phillips F M, Stonestrom D A, et al. A reservoir of nitrate beneath desert soils[J]. Science, 21-1024.?
[84]Zhang X C, Shao A M. The interacting models and mechanisms of soil nitrogen with rainfall and runoff[J]. Progress in Geography, ): 128-135.
[85]Schaufler G,Kitzler B,Schindlbacher A,et al. Greenhouse gas emissions from European soils under different land use:effects of soil moisture and temperature[J]. European Journal of Soil Science, ): 683-696.
[86]Horváth L,Grosz B,Machon A, et al. Estimation of nitrous oxide emission from Hungarian semi-arid sandy
effect of soil parameters,grazing,irrigation and use of fertilizer[J]. Agriculture, Ecosystems and Environment, 5-263.
[87]Abbasi M K,Adams W A.Gaseous N emission during simultaneous nitrification-denitrification associated with mineral N fertilization to a grassland soil under field conditions[J]. Soil Biology & Biochemistry, 51-1259.
[88]Liu Q H. Using BaPs system to study upland soil nitrification-denitrification and respiration[D]. Nanjing: Nanjing Agricultural University, 2005.
[89]Norton U,Mosier A R,Morgan J A,et al.Moisture pulses,trace gas emissions and soil C and N in cheatgrass and native grass-dominated sagebrush-steppe in Wyoming, USA[J].Soil Biology & Biochemistry, 21-1431.
[90]Liang D L, Tong Y A, Ove Emteryd, et al. Effect of irrigation and rainfall on the N2O losses in dryland[J]. Plant Nutrition and Fertilizer Science, ): 298-302.
[91]Saetre P.Decomposition,microbial community structure, and earthworm effects along a birch spruce soil gradient[J]. Ecology, ):834-846.
[92]Calderon J F, Louise E J, Scow K M,et al.Microbial response to simulated tillage in cultivated and uncultivated soils[J]. Soil Biology and Biochemistry, 7-1559.
[93]Xiang S R,Doylec A,Holden P A, et al. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils[J]. Soil Biology and Biochemistry, ): .
[94]Goulding K W T, Bailey N J, Bradbury N J, et al. Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes[J]. New Phytologist, ):49-58.
[95]Galloway J N, Townsend A R, Erisman J W,et al. Transformation of the nitrogen cycle:recent trends, questions, and potential solutions[J]. Science, : 889-892.
[96]Liu X J,Zhang Y,Han W X, et al. Enhanced nitrogen deposition over China[J]. Nature, : 459-462.
[97]Liu X J, Zhang F S. Nutrient from environment and its effect in nutrient resources
management of ecosystems
—a case studyon atmospheric nitrogen deposition[J]. Arid Zone Research, ):306-311.?
[98]Zhang X M,Han X G.Nitrogen deposition alters soil chemical properties and bacterial communities in the Inner Mongolia grassland[J].Journal of Environmental Sciences, ):.
[99]Zhang N Y, Guo R, Song P, et al.Effects of warming and nitrogen deposition on the coupling mechanism between soil nitrogen and phosphorus in Songnen Meadow Steppe,northeastern China[J]. Soil Biology and Biochemistry, -104.
[100]Verena B,Seraina B,Matthias V, et al.Nitrogen deposition effects on subalpine grassland:The role of nutrient limitations and changes in mycorrhizal abundance[J]. Acta Oecologica, -65.
[101]Horswill P,O'Sullivan O,Phoenix G K, et al.Base cation depletion,eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition[J]. Environmental Pollution, ):336-349.
[102]Stevensa C J,Duprèc C,Dorland E, et al.The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe[J].Environmental Pollution, ):?
[103]Liu L L, Greaver T L. A review of nitrogen enrichment effects on three biogenic GHGs:the CO?2 sink may be largely offset by stimulated N?2O and CH?4 emission[J]. Ecology Letters, ):.?
[104]Weier K L,Doran J W,Power J F,et al.Denitrification and dinitrogen/nitrous oxide ratio as affected by soil water,available carbon,and nitrate[J].Soil Science Society of America Journal, -72.
[105]Li Y C, Song C C, Liu D Y et al. Denitrification loss and N2O emissions from different nitrogen inputs in meadow marsh soil[J]. Research of Environmental Sciences, ): .
[106]Mosiera A R,Delgadoa J A,Keller M. Methane and nitrous oxide fluxes in Grasslands in western Puerto Rieo[J]. Chemosphere, 50-2082.
[107]Stephan G,Karl S.Methane and nitrous oxide exchange in differently fertilized grassland in southern Germany[J].Plant and Soil, -35.
[108]Kim Y, Yi M, Koike T. Potential impact of atmospheric N deposition on soil N?2O emission varies with different soil N regimes[C].American Geophysical Union,Fall Meeting, 2011.
[109]Catchpooir V R,Harper L A,Nyers R J K.Annual losses of ammonia from a grazed pasture fertilized with urea[C].Lexington,Kentucky: Proceedings of the 14th International Grassland Congress, 7.
[110]Vander Weerden T J, Jarvis S C. Ammonia emission factors for N fertilizers applied to two contrasting grassland soils[J]. Environmental Pollution, -211.
[111]Zhang Y X, Fan Z P, Yan J L et al. Effects of nitrogen addition on ammonia volatilization and nitrate leaching of a sandy grassland[J]. Chinese Journal of Ecology, ):.
[112]Yang J L. The relationship between atmospheric CO2 and plant nitrogen nutrition[J]. Soil and Environmental Sciences, ): 163-166.?
[113]Shaw M R, Harte J. Response of nitrogen cycling to simulated climate change: differential responses along a subalpine ecotone[J]. Global Change Biology, ): 193-210.?
[114]Bai J B, Xu X L, Fu G et al. Effects of temperature and nitrogen input on nitrogen mineralization in Alpine soils on the Tibetan Plateau[J]. Journal of Anhui Agricultural Sciences, 2011, ?39(24):? , 14756.
[115]Zhang L, Huang J H, Bai Y F et al. Effects of nitrogen addition on net nitrogen mineralization in Leymus chinensis grassland, Inner mongolia, China[J]. Chinese Journal of Plant Ecology, ): 563-569.
[116]Gundersen P,Emmett B A,Kjφnaas O J,et al.Impacts of nitrogen deposition on N cycling:a synthesis of NITREX data[J]. Forest Ecology and Management, : 37-55.
[117]Haynes R J. Labile organic matter fractions and aggregate stability under short-term, grass-based leys[J]. Soil Biology and Biochemistry, 21-1830.
[118]Aber J D,McDowell W,Nadelhoffer K,et al. Nitrogen saturation in temperate forest ecosystems:hypotheses revisited[J].BioScience, 1-934.??
参考文献:?
[1]李博. 我国草地资源现状, 问题及对策[J]. 中国科学院院刊, -51.
[2]Gruber N,Galloway J N.An earth-system perspective of the global nitrogen cycle[J].Nature,: 293-296.
[3]陈佐忠, 汪诗平. 中国典型草原生态系统[M]. 北京: 科学出版社, 6.
[4]彭琴, 董云社, 齐玉春. 氮输入对陆地生态系统碳循环关键过程的影响[J]. 地球科学进展, ): 874-882.
[5]周志华, 肖化云, 刘丛强. 土壤氮素生物地球化学循环的研究现状与进展[J]. 地球与环境, -4): 21-26.
[6]刘天增, 南志标. 放牧对草地的作用[J]. 草业科学, ): 951-958.
[7]张成霞, 南志标. 放牧对草地土壤理化特性影响的研究进展[J]. 草业学报, ): 204-211.
[8]王忠武. 载畜率对短花针茅荒漠草原生态系统稳定性的影响[D]. 呼和浩特: 内蒙古农业大学, 2009.
[9]李春莉. 放牧对短花针茅草原及糙羊茅草原植被和土壤影响的研究[D]. 呼和浩特: 内蒙古农业大学, 2008.
[10]He N P,Yu Q,Wu L,?et al?. Carbon and nitrogen store and storage potential as affected by land-use in a ?Leymus chinensis? grassland of northern China[J].Soil Biology and Biochemistry, ):.
[11]Holland E A, Parton W J, Detling J K,et al. Physiological responses of plant populations to herbivory and their consequences for ecosystem nutrient flow[J].American Naturalist, : 685-706.
[12]王利民, 姜怀志, 姚纪元, 等. 我国北方草地的现状和可持续发展对策[J]. 家畜生态, ): 4-7.
[13]高永恒.不同放牧强度下高山草甸生态系统碳氮分布格局和循环过程研究[D].成都: 中国科学院成都生物研究所, 2007.
[14]周华坤, 赵新全, 温军, 等. 黄河源区高寒草原的植被退化与土壤退化特征[J]. 草业学报, ): 1-11.
[15]Chatskikh D,Olesen J E,Berntsen J,?et al?. Simulation of effects of soils,climate and management on N?2O emission from grasslands[J].Biogeochemistry, 5-419.
[16]Yamulki S, Jarvis S C, Oven P.Nitrous oxide emission from excreta applied in a simulated grazing pattern[J].Soil Biology and Biochemistry, 1-500.
[17]旭日. 内蒙古草原锡林河流域N?2O气体交换过程模拟与尺度转换[D]. 北京: 中国科学院大气物理研究所, 2002.
[18]Flessa H,D?rsch P,Beese F,?et al?.Influence of cattle wastes on nitrous oxide and methane fluxes in pasture land[J]. Journal of Environment Quality,6-1370.
[19]杜睿, 王庚辰, 吕达仁. 放牧对草原土壤N?2O产生及微生物的影响[J]. 环境科学, ): 11-15.
[20]齐玉春. 内蒙古温带草地生态系统生物地球化学循环中主要温室气体通量与碳平衡[D]. 北京: 中国科学院研究生院, 2003.
[21]Deenik J.Nitrogen mineralization potential in important agricultural soils of Hawaii[J]. Soil Crop Management, -5.
[22]Gao Y H,Luo P,Wu N,?et al?.Impacts of grazing intensity on nitrogen pools and nitrogen cycle in an alpine meadow on the eastern Tibetan plateau[J]. Applied Ecology & Environmental Research, ):69-79.
[23]Wu H H, Dannenmann M,Fanselow N,?et al?.Feedback of grazing on gross rates of N mineralization and inorganic N partitioning in steppe soils of Inner Mongolia[J]. Plant & Soil, -2): 127-139.
[24]Han G D,Hao X Y,Zhao M L,?et al?.Effect of grazing intensity on carbon and nitrogen in soil and vegetation in a meadow steppe in Inner Mongolia[J]. Agriculture Ecosystem & Environment, -32.
[25]Rossignol N,Bonis A,Bouzill J B.Consequence of grazing pattern and vegetation structure on the spatial variations of net N mineralization in a wet grassland[J]. Applied Soil Ecology, -70.
[26]Peter S, Erik S J. Mineralization-immobilization and plant uptake of nitrogen as influenced by the spatial distribution of cattle slurry in soils of different texture[J]. Plant and Soil, ): 283-291.?
[27]McNaughton S J, Ruess R G, Seagle S W. Large mammals and process dynamics in African ecosystems[J].BioScience, 4-800.
[28]Frank D A,Groffman P M,Evans R D,?et al?. Ungulate stimulation of nitrogen cycling and retention in Yellowstone Park grasslands[J].Oecologia, ):116-121.
[29]杨小红, 董云社, 齐玉春, 等. 锡林河流域羊草草原暗栗钙土矿质氮动态变化[J]. 地理研究, 7-393.
[30]陈懂懂, 孙大帅, 张世虎, 等. 青藏高原东缘高寒草甸土壤氮矿化初探[J]. 草地学报, ): 420-424.
[31]Xu Y Q, Li L H, Wang Q B,et al. The pattern between nitrogen mineralization and grazing intensities in an Inner Mongolian typical steppe[J]. Plant and Soil, -2): 289-300.?
[32]李玉中, 祝廷成,Redmann R E. 三种利用类型羊草草地氮总矿化, 硝化和无机氮消耗速率的比较研究[J]. 生态学报, ): 668-673.
[33]Haynes R J,Williams P H. Nutrient cycling and soil fertility in the grazed pasture ecosystem[J]. Advances in Agronomy, 9-199.
[34]Luo J,Tillman R W,Ball P R. Grazing effects on denitrification in a soil under pasture during two contrasting seasons[J]. Soil Biology and Biochemistry,3-912.
[35]高雪峰,韩国栋. 放牧对羊草草原土壤氮素循环的影响[J]. 土壤,):161-166.
[36]高雪峰, 韩国栋. 利用强度对荒漠草原土壤氮循环系统的影响[J]. 干旱区资源与环境, ): 165-168.
[37]李凌浩, 陈佐忠. 草地群落的土壤呼吸[J]. 生态学杂志, ): 45-51.
[38]Liu X R,Dong Y S.Drivers of soil net nitrogen mineralization in the temperate grasslands in Inner Mongolia,China[J].Nutrient Cycling in Agroecosystems, -69.
[39]李明峰, 董云社, 齐玉春, 等. 温带草原土地利用变化对土壤碳氮含量的影响[J]. 中国草原, ): 1-6.
[40]Ding F,Hu Y L,Li L J,et al.Changes in soil organic carbon and total nitrogen stocks after conversion of meadow to cropland in Northeast China[J]. Plant and Soil, -2): 659-672.
[41]苏永中, 赵哈林, 文海燕. 退化沙质草地开垦和封育对土壤理化性状的影响[J]. 水土保持学报, ): 5-8, 126.
[42]文海燕, 赵哈林, 傅华.开垦和封育年限对退化沙质草地土壤性状的影响[J]. 草业学报, ): 31-37.
[43]仲延海, 包青海. 锡林河流域合理割草制度的研究[J]. 中国草地, -41.
[44]耿远波, 章申, 董云社, 等. 草原土壤的碳氮含量及其与温室气体通量的相关性[J]. 地理学报, ): 938-942.
[45]王艳芬. 人类活动干扰下草原温室气体地-气交换特征及碳平衡研究[D]. 北京: 中国科学院植物研究所, 2001.
[46]Mosier A R, Parton W J, Valentine D W,?et al?.CH?4 and N?2O fluxes in the Colorado short grass Steppe 2 long-term impact of land use change[J]. Global Biogeochemical Cycles, ): 29-42.
[47]刘立新, 董云社, 齐玉春. 锡林河流域生长季节不同草地类型根系呼吸特征研究[J]. 环境科学, ): .?
[48]王跃思, 纪宝明, 黄耀, 等. 农垦与放牧对内蒙古草原N?2O、CO?2排放和CH?4吸收的影响[J]. 环境科学, ): 7-13.
[49]Machefert S E,Dise N B,Goulding K W T,et al.Nitrous oxide emission from a range of land uses across Europe[J].Hydrology and Earth System Sciences, 5-338.
[50]Roth G,Flessa H,Helfrich M,et al. Impact of two different types of grassland-to-cropland-conversion on dynamics of soil organic matter mineralization and N?2O emission[J].Geophysical Research Abstracts, -27.
[51]Eriksena J,Pedersenb L,J?rgensenc J R.Nitrate leaching and bread-making quality of spring wheat following cultivation of different grasslands[J].Agriculture,Ecosystems & Environment, -4): 165-175.
[52]李愈哲, 樊江文, 张良侠. 不同土地利用方式对典型温性草原群落物种组成和多样性以及生产力的影响[J]. 草业学报, ): 1-9.
[53]周道玮. 火烧对草地的生态影响[J]. 中国草地, -77.
[54]周瑞莲, 张普金, 徐长林. 高寒山区火烧土壤对其养分含量和酶活性的影响及灰色关联分析[J]. 土壤学报, ): 89-96.
[55]Pereira P,?beda X,Mataix-Solera J,et al.Short-term spatio-temporal spring grassland fire effects on soil colour,organic matter and water repellency in Lithuania[J]. Solid Earth Discussions, ): .
[56]Wan S Q, Hui D F, Luo Y Q.Fire effects on ecosystem nitrogen pools and dynamics:A meta-analysis[J].Ecological Application, 49-1365.
[57]李玉中, 祝廷成, 李建东, 等. 火烧对草地土壤氮总矿化, 硝化及无机氮消耗速率的影响[J]. 应用生态学报, ): 223-226.
[58]Marion G M,Moreno J M,Oechel W C.Fire severity,ash deposition,and clipping effects on soil nutrients in shaparral[J]. Soil Science Society of America Journal,):235-240.
[59]Andriesse J P,Koopmans T T.Fire effects on nitrogen mineralization and fixation in mountain shrub and grassland communities[J]. Journal of Range Management, ): 402-405.
[60]Blair J M. Fire, N availability, and plant response in grasslands: a test of the transient maxima hypothesis[J]. Ecology, 59-2368.
[61]Matamala R, Drake B G. The influence of atmospheric CO?2 enrichment on plant-soil nitrogen interactions in a wetland plant community on the Chesapeake Bay[J]. Plant and Soil, : 93-101.
[62]Zhou L S,Huang J H,Lu F M,?et al?. Effects of prescribed burning and seasonal interannual climate variation on nitrogen mineralization in a typical steppe inner Mongolia[J]. Soil Biology and Biochemistry, 6-803.
[63]Harris W N,Morettob A S. Fire and grazing in grasslands of the Argentine Caldenal: Effects on plant and soil carbon and nitrogen[J].Acta Oecologica, 7-214.
[64]Turner C L, Blair J M, Schartz R J,?et al?. Soil N and plant responses to fire, topography, and supplemental N in tallgrass prairie[J].Ecology, 32-1843.
[65]Wigley T M L, Raper S C B. Interpretation of high projections for global-mean warming[J].Science, : 451-454.
[66]Wallace J S. Increasing agricultural water use efficiency to meet future food production agriculture[J]. Ecosystems and Environment, 5-119.
[67]Redfield A C. The biological control of chemical factors in the environment[J]. American Scientist, 5-221.?
[68]Houghton R A, Skole D L. Carbon In: The Earth as Transformed by Human Action[M].Cambridge: Cambridge University Press,.
[69]IPCC.Climate Change 2007:Synthesis Report[R].Oslo:Intergovernmental Panel on Climate Change,2007.
[70]Peter B R,Bruce A H,Luo Y Q.Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide[J].Annual Review of Ecology,Evolution,and Systematic, 1-636.
[71]Luo Y,Currie W S,Dukes J S,?et al?.Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide[J].BioScience, 1-739.
[72]Niklaus P A, Kandeler E, Leadley P W,?et al?.A link between plant diversity, elevated CO?2 and soil nitrate[J].Oecologia, : 540-548.
[73]Müller C,Rüttingc T,Abbasi M K,et al. Effect of elevated CO?2 on soil N dynamics in a temperate grassland soil[J].Soil Biology and Biochemistry, ):.
[74]Barnard R, Barthes L, Le Roux X,et al.Dynamics of nitrifying activities, denitrifying activities and nitrogen in grassland mesocosms as altered by elevated CO?2[J]. New Phytologist, ):365-376.?
[75]Kammann C,Müller C, Grünhage L,et al. Elevated CO?2 stimulates N?2O emissions in permanent grassland[J]. Soil Biology and Biochemistry, ):.
[76]Baggs E M, Richter M, Cadisch G,et al. Denitrification in grass swards is increased under elevated atmospheric CO?2[J]. Soil Biology and Biochemistry, ): 729-732.?
[77]Ineson P, Benham D G, Poskitt J,et al. Effects of climate change on nitrogen dynamics in upland soils: A soil warming study[J]. Globle Change Biology, 3-161.
[78]Barrett J E,Burke I C. Potential nitrogen immobilization in grassland soils across a soil organic matter gradient[J]. Soil Biology and Biochemistry,7-1716.
[79]Loiseau P,Soussana J F.Effects of elevated CO?2, temperature and N fertilization on nitrogen fluxes in a temperate grassland ecosystem[J].Global Change Biology, -965.
[80]江志红, 张霞, 王冀. IPCC-AR4模式对这个21世纪气候变化的情景预估[J]. 地理研究, ): 787-799.
[81]Rosenstein R W, Boutton T W, Tjoelker M,?et al?.Soil C and N Pools in Oak Savanna:Responses to Temperature and Rainfall Manipulation[C]. American Geophysical Union,Fall Meeting, 2011.
[82]Warrington R. Lost fertility[A]. The Production and Loss of Nitrate in the Soil[M]. Transaction of the High land and Agricultural Society of Scotland, .?
[83]Walvoord M A, Phillips F M, Stonestrom D A,et al. A reservoir of nitrate beneath desert soils[J]. Science, 21-1024.?
[84]张兴昌, 邵明安. 坡地土壤氮素与降雨、径流的相互作用机理及模型[J]. 地理科学进展, ): 128-135.
[85]Schaufler G,Kitzler B,Schindlbacher A,?et al?. Greenhouse gas emissions from European soils under different land use:effects of soil moisture and temperature[J]. European Journal of Soil Science, ): 683-696.
[86]Horváth L,Grosz B,Machon A,et al. Estimation of nitrous oxide emission from Hungarian semi-arid sandy
effect of soil parameters,grazing,irrigation and use of fertilizer[J]. Agriculture, Ecosystems and Environment, 5-263.
[87]Abbasi M K,Adams W A.Gaseous N emission during simultaneous nitrification-denitrification associated with mineral N fertilization to a grassland soil under field conditions[J]. Soil Biology & Biochemistry, 51-1259.
[88]刘巧辉. 应用BaPs系统研究旱地土壤硝化-反硝化过程和呼吸作用[D]. 南京: 南京农业大学, 2005.
[89]Norton U,Mosier A R,Morgan J A,?et al?.Moisture pulses,trace gas emissions and soil C and N in cheatgrass and native grass-dominated sagebrush-steppe in Wyoming, USA[J].Soil Biology & Biochemistry, 21-1431.
[90]梁东丽, 同延安, Ove Emteryd, 等. 灌溉和降水对旱地土壤N?2O气态损失的影响[J]. 植物营养与肥料学报, ): 298-302.
[91]Saetre P.Decomposition,microbial community structure, and earthworm effects along a birch spruce soil gradient[J]. Ecology, ):834-846.
[92]Calderon J F, Louise E J, Scow K M,?et al?.Microbial response to simulated tillage in cultivated and uncultivated soils[J]. Soil Biology and Biochemistry, 7-1559.
[93]Xiang S R,Doylec A,Holden P A,et al. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils[J]. Soil Biology and Biochemistry, ): .
[94]Goulding K W T, Bailey N J, Bradbury N J,et al. Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes[J]. New Phytologist, ):49-58.
[95]Galloway J N, Townsend A R, Erisman J W,?et al?. Transformation of the nitrogen cycle:recent trends, questions, and potential solutions[J]. Science, : 889-892.
[96]Liu X J,Zhang Y,Han W X,et al. Enhanced nitrogen deposition over China[J]. Nature, : 459-462.
[97]刘学军, 张福锁. 环境养分及其在生态系统养分资源管理中的作用: 以大气氮沉降为例[J]. 干旱区研究, ):306-311.?
[98]Zhang X M,Han X G.Nitrogen deposition alters soil chemical properties and bacterial communities in the Inner Mongolia grassland[J].Journal of Environmental Sciences, ):.
[99]Zhang N Y, Guo R, Song P,et al.Effects of warming and nitrogen deposition on the coupling mechanism between soil nitrogen and phosphorus in Songnen Meadow Steppe,northeastern China[J]. Soil Biology and Biochemistry, -104.
[100]Verena B,Seraina B,Matthias V,?et al?.Nitrogen deposition effects on subalpine grassland:The role of nutrient limitations and changes in mycorrhizal abundance[J]. Acta Oecologica, -65.
[101]Horswill P,O'Sullivan O,Phoenix G K,et al.Base cation depletion,eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition[J]. Environmental Pollution, ):336-349.
[102]Stevensa C J,Duprèc C,Dorland E,et al.The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe[J].Environmental Pollution, ):?
[103]Liu L L, Greaver T L. A review of nitrogen enrichment effects on three biogenic GHGs:the CO?2 sink may be largely offset by stimulated N?2O and CH?4 emission[J]. Ecology Letters, ):.?
[104]Weier K L,Doran J W,Power J F,?et al?.Denitrification and dinitrogen/nitrous oxide ratio as affected by soil water,available carbon,and nitrate[J].Soil Science Society of America Journal, -72.
[105]李英臣, 宋长春, 刘德燕, 等. 不同氮输入梯度下草甸沼泽土反硝化损失和N?2O排放[J]. 环境科学研究, ): .
[106]Mosiera A R,Delgadoa J A,Keller M. Methane and nitrous oxide fluxes in Grasslands in western Puerto Rieo[J]. Chemosphere, 50-2082.
[107]Stephan G,Karl S.Methane and nitrous oxide exchange in differently fertilized grassland in southern Germany[J].Plant and Soil, -35.
[108]Kim Y, Yi M, Koike T. Potential impact of atmospheric N deposition on soil N2O emission varies with different soil N regimes[C].American Geophysical Union,Fall Meeting, 2011.
[109]Catchpooir V R,Harper L A,Nyers R J K.Annual Losses of Ammonia from a Grazed Pasture Fertilized with Urea[C].Lexington,Kentucky: Proceedings of the 14th International Grassland Congress, 7.
[110]Vander Weerden T J, Jarvis S C. Ammonia emission factors for N fertilizers applied to two contrasting grassland soils[J]. Environmental Pollution, -211.
[111]张亚欣, 范志平, 闫加亮, 等. 氮添加对沙质草地氨挥发及硝态氮淋溶的影响[J]. 生态学杂志, ):.
[112]杨江龙. 大气CO?2与植物氮素营养的关系[J]. 土壤与环境, ): 163-166.?
[113]Shaw M R, Harte J. Response of nitrogen cycling to simulated climate change: differential responses along a subalpine ecotone[J]. Global Change Biology, ): 193-210.?
[114]白洁冰, 徐兴良, 付刚, 等. 温度和氮素输入对青藏高原3种高寒草地土壤氮矿化的影响[J]. 安徽农业科学, 2011, ?39(24):? , 14756.
[115]张璐, 黄建辉, 白永飞, 等. 氮素添加对内蒙古羊草草原氮矿化的影响[J]. 植物生态学报, ): 563-569.
[116]Gundersen P,Emmett B A,Kjφnaas O J,?et al?.Impacts of nitrogen deposition on N cycling:a synthesis of NITREX data[J]. Forest Ecology and Management, : 37-55.
[117]Haynes R J. Labile organic matter fractions and aggregate stability under short-term, grass-based leys[J]. Soil Biology and Biochemistry, 21-1830.
[118]Aber J D,McDowell W,Nadelhoffer K,?et al. Nitrogen saturation in temperate forest ecosystems:hypotheses revisited[J].BioScience, 1-934.??
赵凌平, 王占彬, 程积民. [J]. 草业学报, ): 172-179.
张峰,南志标,闫飞扬,李芳,段廷玉. [J]. 草业学报, ): 191-200.
张雪峰, 牛建明, 张庆, 董建军, 张靖. [J]. 草业学报, ): 12-20.
高雅,林慧龙. [J]. 草业学报, ): 290-301.
范月君,侯向阳,石红霄,师尚礼. [J]. 草业学报, ): 294-302.
刘兴元, 龙瑞军, 尚占环. [J]. 草业学报, ): 167-174.
张成霞,南志标. [J]. 草业学报, ): 204-211.
周萍,刘国彬 ,薛萐. [J]. 草业学报, ): 184-193.
版权所有 &
《》编辑部
地址:兰州市嘉峪关西路768号, 邮编:730020, 电话:, E-mail: cyxb@
本系统由设计开发 &技术支持:}

我要回帖

更多关于 自然界的氮循环 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信