何谓五岳调制?调制在通信系统中的作用是什么...

调制解调器 _百度百科
特色百科用户权威合作手机百科
收藏 查看&调制解调器
调制解调器是一种硬件,它能把计算机的翻译成可沿普通传送的,而这些模拟信号又可被线路另一端的另一个调制解调器接收,并译成计算机可懂的语言。这一简单过程完成了两台计算机间的通信。外文名Modem其他称谓猫开始年代1950年代作&&&&用和数字信号的“翻译员”
调制解调器是Modulator()与Demodulator()的简称,中文称为调制解调器(港台称之为数据机),根据的谐音,亲昵地称之为“猫”。
所谓调制,就是把转换成上传输的;解调,即把模拟信号转换成。合称调制解调器。
调制解调器的英文是MODEM,它的作用是和数字信号的“翻译员”。电子信号分两种,一种是&&,一种是&&。我们使用的路传输的是,而机之间传输的是。所以当你想通过把自己的电脑连入时,就必须使用调制解调器来&翻译&两种不同的信号。连入后,当PC机向Internet发送信息时,由于传输的是,所以必须要用调制解调器来把&翻译&成,才能传送到Internet上,这个过程叫做&调制&。当PC机从Internet获取信息时,由于通过从Internet传来的信息都是,所以想要看懂它们,还必须借助调制解调器这个“”,这个过程叫作“解调”。总的来说就称为“调制解调”。Modem起初是为1950年代的半自动地面防空警备系统()研制,用来连接不同基地的,雷达站和控制中心到和加拿大的SAGE指挥中心。SAGE运行在专用线路上,但是当时两端使用的设备跟今天的Modem根本不是一回事。IBM是SAGE系统中和Modem的供货商。几年后(American Airlines)的首席执行官(CEO)与一位区域经理的一次会晤促成了&mini-SAGE&这种航空自动订票系统。在这系统中,一个位于票务中心的连接在中心电脑上,用来管理机票有效性和时间。这个系统,叫做Sabre,是今天SABRE系统的早期原型。
1960年代早期,商业的应用逐渐普及,以及上述技术成果,1958年 AT&T 发布了第一个商业化modem, Bell 103. 使用两个音调表示1和0的移频键控技术,103已经能够实现300 bit/s的。很短时间后继版本Bell 212就研制出来,转移到更稳定的移项键控技术把提高到1200 bit/s。类似Bell 201的系统用双向信号集在4对专用线路上实现了2400 bit/s。
贺氏智能Modem是一个重大的进步,1981年贺氏通讯研制成功。智能Modem是一个简单的300bpsModem,使用的是Bell103标准,内置了一个小型控制器,可以让发送命令来控制,例如摘机,拨号,重拨,挂机等功能。
在智能Modem之前,几乎所有的Modem都需要两个来产生一个连接:第一步,人工在上拨叫对方的号码,然后将听筒放在Modem附带的acoustic coupler里,一个用两个橡胶杯组成的用来在声音信号和电信号之间转换的设备。使用智能Modem就不再需要acoustic coupler,而是直接将modem连接在标准或插座上。然后电脑就能自动完成接通电话并拨叫号码的功能。这个改变极大的简化了bulletin board systems (BBS)的安装和使用。
到1980年代Modem的速率一直没有多大变化。一般使用一种与212类似的2400 bit/s的系统,而的系统稍有差别。到1980年代晚期大多数Modem都能支持当时所有的标准,2400bit/s逐渐普及。大量特定用途的标准也被加了进来,通常都是使用高速信道接受低速信道发送,典型的例子就是的Minitel 系统,用户大部分时间都在接受信息。Minitel的Modem用1200bit/s接受数据75 bit/s发送命令反馈给。工作原理内的信息是由“0”和“1”组成,而在上传递的却只能是模拟电信号。于是,当两台要通过进行数据传输时,就需要一个设备负责数模的转换。这个就是Modem。在发送数据时,先由Modem把转换为相应的,这个过程称为“调制”。经过调制的信号通过传送到另一台之前,也要经由接收方的Modem负责把还原为计算机能识别的,这个过程称为“解调”。正是通过这样一个“调制”与“解调”的数模转换过程,从而实现了两台之间的远程通讯。外置式Modem放置于机箱外,通过口与连接。这种Modem方便灵巧、易于安装,闪烁的指示灯便于监视Modem的工作状况。但外置式Modem需要使用额外的电源与电缆。 内置式Modem在安装时需要拆开机箱,并且要对和COM口进行设置,安装较为繁琐。这种Modem要占用上的,但无需额外的电源与,且价格比外置式Modem要便宜一些。插卡式Modem主要用于,体积纤巧。配合移动电话,可方便地实现。机架式Modem相当于把一组Modem集中于一个箱体或外壳里,并由统一的电源进行供电。机架式Modem主要用于Internet/Intranet、电信局、、等网络的。
除以上四种常见的Modem外,现在还有和一种称为Cable Modem的调制解调器,另外还有一种。Cable Modem利用有线电视的电缆进行信号传送,不但具有调制解调功能,还集、、于一身,理论更可达10Mbps以上。通过Cable Modem上网,每个用户都有独立的IP地址,相当于拥有了一条个人专线。有线电视台天威网络公司已推出这种基于有线电视网的Internet接入服务,接入速率为2Mbps-10Mbps!
USB接口的调制解调器
技术的出现,给电脑的提供更快的速度、更简单的连接方法,SHARK公司率先推出了USB接口的56K的调制解调器,这个只有呼机大小的调制解调器确给传统的调制解调器带来了挑战。只需将其接在主机的USB接口就可以,通常主机上有2个USB接口,而USB接口可连接127个设备,如果要连接多设备还可购买USB的。通常USB的、都可以当作USB的,因为它们有除了连接主机的USB外还提供1-2个USB的接口。Modem最初只是用于数据传输。然而,随着用户需求的不断增长以及之间的激烈竞争,市场上越来越多的出现了一些“二合一”、“三合一”的Modem。这些Modem除了可以进行数据传输以外,还具有传真和语音传输功能。
1.传真(Fax Modem)
通过Modem进行,除省下一台专用传真的外,好处还有很多:可以直接把内的文件传真到对方的计算机或传真机,而无需先把文件打印出来;可以对接收到的传真方便地进行保存或编辑;可以克服普通传真机由于使用热敏纸而造成字迹逐渐消退的问题;由于Modem使用了的技术,传真质量比普通传真机要好,尤其是对于的传真更是如此。Fax Modem大多遵循V.29和V.17协议。其中V.29支持9600bps速率,而V.17则可支持14400bps的传真速率。
2.语音模式(Voice Modem)
语音模式主要提供了留言和免提通话功能,真正使电话与电脑融为一体。这里,主要是一种新的语音传输模式—DSVD(Digital Simultaneous Voice and Data)。DSVD是由Hayes、Rockwell、U.s.Robotics、Intel等公司在1995年提出的一项语音传输标准,是现有的V.42纠错协议的扩充。DSVD通过采用Digi Talk的数字式语音与数据同传技术,使Modem可以在普通上一边进行数据传输一边进行通话。
DSVD Modem保留了8K的(也有的Modem保留8.5K的带宽)用于语音传送,其余的带宽则用于数据传输。语音在传输前会先进行压缩,然后与需要传送的数据综合在一起,通过传送到对方用户。在接收端,Modem先把语音与数据分离开来,再把语音信号进行解压和数/模转换,从而实现的数据/语音的同传。DSVD Modem在远程教学、、等方面有着广泛的应用前景。由于DSVD Modem的价格比普通的Voice Modem要贵,而且要实现数据/语音同传功能时,需要对方也使用DSVD Modem,从而在一定程度上阻碍了DSVD Modem的普及。Modem的,指的是Modem每秒钟传送的数据量大小。通常所说的14.4K、28.8K、33.6K等,指的就是Modem的传输速率。传输速率以bps(比特/秒)为单位。因此,一台33.6K的Modem每秒钟可以传输33600bit的数据。Modem在传输时都对数据进行了,因此33.6K的Modem的数据理论上可以达到115200bps,甚至230400bps。
Modem的,实际上是由Modem所支持的调制协议所决定的。在Modem的包装盒或说明书上看到的V.32.V.32bis、V.34.V.34+、V.fc等等,指的就是Modem的所采用的调制协议。其中V.32是非同步/同步bps全双工标准协议;V.32bis是V.32的增强版,支持14400bps的;V.34是同步28800bps全双工标准协议;而V.34+则为同步全双工33600bps标准协议。以上标准都是由ITU(国际通讯联盟)所制定,而V.fc则是由Rockwell提出的28800bps调制协议,但并未得到广泛支持。
提到Modem的传输速率,就不能不提时下被炒得为热的56K Modem。其实,56K的标准已提出多年,但由于长期以来一直存在以Rockwell为首的K56flex和以U.S.Robotics为首X2的两种互不兼容的标准,使得56K Modem迟迟得不到普及。1998年2月,在的努力下,56K的标准终于统一为ITU V9.0,众多的Modem生产厂商亦已纷纷出台了升级措施,而真正支持V9.0的Modem亦已经遍地开花。56K有望在一到两年内成为市场的主流。由于国内许多ISP并未提供56K的接入服务,因此在购买56K Modem前,最好先向你的服务商打听清楚,以免造成浪费。
以上所讲的传输速率,均是在理想状况的得出的。而在实际使用过程中,Modem的往往不能达到标称值。实际的传输速率主要取决于以下几个因素:
1.路的质量
因为调制后的信号是经由进行传送,如果电话线路质量不佳,Modem将会降低速率以保证准确率。为此,在连接Modem时,要尽量减少连线,多余的连线要剪去,切勿绕成一圈堆放。另外,最好不要使用分机,连线也应避免在电视机等干扰源上经过。
2.是否有足够的带宽
如果在同一时间上网的人数很多,就会造成线路的拥挤和阻塞,Modem的传输速率自然也会随之下降。因此,ISP是否能供足够的带宽非常关键。另外,避免在繁忙时段上网也是一个解决方法。尤其是在下载文件时,在繁忙时段与非繁忙时段下载所费的时间会相差几倍之多。
3.对方的Modem速率
Modem所支持的调制协议是向下兼容的,实际的连接速率取决于速率较低的一方。因此,如果对方的Modem是14.4K的,即使用的是56K的Modem,也只能以14400bps的速率进行连接。Modem的包括调制协议(Modulation Protocols)、协议(Error Control Protocols)、协议(Data Compression Protocols)和。调制协议前面已经介绍,介绍其余的三种。随着Modem的不断提高,路上的、电流的异常突变等,都会造成数据传输的出错。差错控制协议要解决的就是如何在高速传输中保证数据的准确率。差错控制协议存在着两个工业标准:MNP4和V4.2。其中MNP(Microcom Network Protocols)是Microcom公司制定的,包括了MNP1—MNP10。由于商业原因,Microcom只公布了MNP1—MNP5,其中MNP4是被广泛使用的差错控制协议之一。而V4.2则是国际电信联盟制定的MNP4改良版,它包含了MNP4和LAP-M两种。因此,一个使用V4.2协议的Modem可以和一个只支持MNP4协议的Modem建立无差错控制连接,而反之则不能。所以在购买Modem时,最好选择支持V4.2协议的Modem。
另外,市面上某些廉价Modem卡为降低成本,并不具备硬纠错功能,而是使用使用了纠错方式。大家在购买时要注意分清,不要为包装盒上的“带纠错功能”等字眼所迷惑。为了提高数据的传输量,缩短传输时间,现时大多数Modem在传输时都会先对数据进行压缩。与差错控制协议相似,数据压缩协议也存在两个工业标准:MNP5和V4.2bis。MNP5采用了Run-Length编码和Huffman编码两种压缩算法,最大压缩比为2:1。而V4.2bis采用了Lempel-Ziv,最大压缩比可达4:1。这就是为什么说V4.2bis比MNP5要快的原因。要注意的是,数据压缩协议是建立在差错控制协议的基础上,MNP5需要MNP4的支持,V4.2bis也需要V4.2的支持。并且,虽然V4.2包含了MNP4,但V4.2bis却不包含MNP5。是数据交换的主要形式。在进行文件传输时,为使文件能被正确识别和传送,需要在两台之间建立统一的。这个协议包括了文件的识别、传送的起止时间、错误的判断与纠正等内容。常见的有以下几种:
ASCII:这是最快的,但只能传送文本文件。
Xmodem:这种古老的速度较慢,但由于使用了CRC错误侦测方法,传输的准确率可高达99.6%。
Ymodem:这是Xmodem的改良版,使用了1024位区段传送,速度比Xmodem要快。
Zmodem:Zmodem采用了串流式(streaming)传输方式,较快,而且还具有自动改变区段大小和断点续传、快速错误侦测等功能。这是最流行的。
除以上几种外,还有Imodem、Jmodem、Bimodem、Kermit、Lynx等协议。Modem的安装过程可以分为安装与软件安装两步:硬件安装和软件安装。1.外置式Modem的安装:
第一步:连接。把的RJ11插头插入Modem的Line接口,再用把Modem的Phone接口与连接。
第二步:关闭,将Modem所配的电缆的一端(25针阳头端)与Modem连接,另一端(9针或者25针插头)与主机上的COM口连接。
第三步:将电源变压器与Modem的POWER或AC接口连接。接通电源后,Modem的MR指示灯应长亮。调制解调器之ATM传输模式如果MR灯不亮或不停闪烁,则表示未正确安装或Modem自身故障。对于带语音功能的Modem,还应把Modem的SPK接口与声卡上的Line In接口连接,当然也可直接与等连接。
另外,Modem的MIC接口用于连接驻极体,但最好还是把麦克风连接到上。
2.内置式Modem的安装:
第一步:根据说明书的指示,设置好有关的。由于COM1与COM3、COM2与COM4共用一个中断,因此通常可设置为COM3/IRQ4或COM4/IRQ3。
第二步:关闭电源并打开机箱,将Modem卡插入主板上任一空置的。
第三步:连接电话线。把电话线的RJ11插头插入Modem卡上的Line接口,再用电话线把Modem卡上的Phone接口与电话机连接。此时拿起,应能正常拨打电话。当硬件安装完成后,打开,外置式Modem还应打开Modem的开关。对于大多数Modem,Windows 98会报告“找到新的硬件设备”,此时只需选择“硬件厂商提供驱动程序”,并插入Modem的安装盘即可。如果Windows 98启动后未能侦测到Modem,也可以按以下完成安装:
第一步:进入Windows 95的“”,双击“调制解调器”图标,并在属性窗口中单击“添加”按钮
第二步:选中“不检测调制解调器,而将从清单中选定一个”,然后单击“下一步”
第三步:在Modem列表中选择相应的厂商与型号,然后单击“下一步”。或者插入Modem的安装盘后,选择“从安装”即可。要证明Modem是否安装成功,可使用Windows 98附件中的拨号程序随便拨打一个电话,如果成功的话,说明Modem已被正确安装。对于上网用户,还需要安装拨号网络和协议。
附Modem指示灯含义:
POWER:电源指示灯
DSL(ADSL-LINK):信号灯,开启后急速闪耀,然后绿色。下,常亮以外情况均属不正常
ADSL-ACT:信号数据灯,有数据传输时闪耀,无时常暗
ETH(ETHNET)(LAN-LINK):灯,开启后常亮红色,表示你的和modem之间连接正常,否则请检查你的网卡和网卡线(较粗的那根)
LAN-ACT:数据灯,有数据传输时闪耀,无时常暗
MR:Modem已准备就绪,并成功通过自检。
TR:准备就绪。
SD:Modem正在发出数据。
RD:Modem正在接收数据。
OH:摘机指示,Modem正占用。
CD:检测,Modem与对方连接成功。
RI:Modem处于状态。某些Modem用AA表示。
HS:高速指示,速率大于9600。
PS: 若modem上所有灯常亮,连接不上,请关闭modem电源后过会再试,并延长间隔时间,若以上方法试后,仍所有灯常亮,请联系当地电信部门报告modem问题Modem的就好像的品牌一样有不同厂家的产品,其中占有量最大的是ROCKWELL芯片,它占全球市场份额的70%左右,地位和处理器市场上的Intel差不多,国内大多数外置Modem产品采用的都是ROCKWELL芯片。其次是TI芯片,著名的USR“大黑猫”就用TI芯片。除此以外,还有Curiss Logic的产品,不过使用这种芯片的外置Modem比较少。总的来看,采用ROCKWELL芯片的Modem的性能和稳定性都比采用其他芯片的Modem要好,但USR的“大黑猫”是个特例。在国际市场上TI芯片的交易价格要比ROCKWELL芯片低一些。其调试方式有FSK,ASK,PSK,TCM,QAM,等虽然使用的都是ROCKWELL芯片,但是有的“猫”就爱掉线,有的“猫”的速率无法达到标称性能。Modem在性能上的差异是由于多种原因造成的,首先是所用的Modem的芯片,其次是选料和电路设计。一般Modem的电路采用的都是芯片厂商推荐的公板设计,而在选料上差别就大了。有些小厂生产的Modem采用的是二手元器件或者质量低劣的元器件,导致Modem长时间工作后由于发热等原因出现不稳定的现象。知名厂商为了维护自己的信誉,一般采用高可靠性的元件,在性能和稳定性上都超过小厂。正因为如此,同样是使用ROCKWELL的外置Modem,最贵的要800多元,而最便宜的只要几十元。国外Modem的品牌非常多,比较知名的有贺氏、USR、Diamond、美式坦克等。USR的大黑猫在很多发烧友心中算是一种极品,尽管它使用的是TI芯片,但是无论从性能还是稳定性上来说都是首屈一指的,而且它内置的喇叭的音量可以自由调节,让喜欢熬夜的不必再担心Modem的怪叫声吵着四邻了。大黑猫的一个绝技就是不掉线,除非把它关掉,否则它会一直挂在网上。Diamond是国外很有名的设备制造厂一种调制解调器商,Diamond的Modem的外形小巧、选料讲究、价格适中,是猫中的精品。
国内品牌的“猫”也有相当大的市场占有率,比较知名的国内品牌有全向、、联想等,它们在设计上考虑的国情,价格也比较平易近人。这里还有必要提一下的产品。台湾是世界Modem产品的主要生产地,事实上市场上很多Modem虽然打着不同的品牌,但是它们都是由台湾厂商OEM生产的,包括USR的“大黑猫”,Diamond的产品都是在台湾OEM生产的。除了OEM以外,台湾比较知名的Modem品牌有Acer、花王、、WISECOM等。由于Modem的技术含量比较低,市场上还充斥着大量的由南方小厂生产的Modem产品,这些Modem大部分是三无产品,质量很差,只是价格便宜。国外的Modem不一定比国内的好,很多人都喜欢买国外品牌的Modem。其实那些Modem绝大多数是OEM生产的,只不过在选料上比较讲究罢了。而国内的Modem产品在设计上考虑了国内的实际情况,价格比较便宜,而在性能上又不比国外的产品差。不要注重外表,关键看内在品质。市场上的Modem外壳搞的越来越花,色彩也越来越绚丽,不过各位在购买的时候千万别被外表所迷惑。不少厂家推出的所谓系列产品,在价格上差异很大,但实际上用的是一样的电路板,只不过是外壳不同罢了。买Modem没有必要为了外壳而多花上几百元钱。
USB接口的外置Modem,USB接口的外置Modem大多数是软“猫”,它体积小巧,不需要外接电源,而且可以实现,优点多多。但不少USB接口的Modem的连线速率太低,很多连50K都无法达到。而且有些USB接口的Modem在拨号的时候也会发生问题,所以最好还是购买的外置Modem为佳。低价格的Modem性能不一定差。市场上价格最便宜的56K外置Modem价格只有350元左右,超人自己用的就是这种价格只有300多元的TP-LINK 56K“猫”。使用了一年左右,掉线绝对不像传说中那么频繁。唯一的问题就是连线速度最高只有48K。通常将称为“数据传输标准”。通用的56Kbps数据传输标准就是ITU指定的协议,它允许调制解调器能够在标准的交换网上实现56Kps的。Modem的协议,都是装载在BIOS中的,所以通过刷新BIOS中的内容能实现有限的升级。调制解调器拨号方式在时,数据是以的形式发送的,因为信号衰减以及线路质量欠佳,或者受到干扰等问题,经常会有传输中数据包丢失或受损的现象。纠错协议的作用就是侦测收到的是否有错误,一旦发现错误,纠错协议将努力重新获得正确的数据包或通过来尝试修复受损的数据包。常见的纠错协议有V.42和MNP系列。V.42是ITU-T(国际通讯联盟)推出的纠错协议,它的作用是一旦发送端发送的数据包丢失,接收方能立即要求对方重新发送该数据包。MNP则是提出的一系列协议,分MNP1--MNP10一共10个级别,级别越高功能就越强,并且能够向下兼容,MNP的作用是一旦V.42未能完成申请出错重新发送的任务,它将尝试纠错。这两种纠错协议都是Modem普遍支持的。V.42协议还另外负担数据压缩的任务。(AT Commands)
由Hayes公司发明,已成为事实上的标准并被所有调制解调器制造商采用的一个调制解调器命令语言。每条命令以“AT”开头,因而得名。AT后跟字母和数字表明具体的功能,例如“ATDT”是拨号命令,其它命令有“初始化调制解调器”、“控制音量”、&规定调制解调器启动应答的振铃次数“、”选择错误校正的格式&等等,不同牌号调制解调器的并不完全相同,请仔细阅读MODEM用户手册,以便正确使用AT命令。(Baud Rate)
模拟线路信号的速率,也称调制速率,以波形每秒的振荡数来衡量。如果数据不压缩,率等于每秒钟传输的数,如果数据进行了压缩,那么每秒钟传输的数据位数通常大于调制速率,使得交换使用波特和比特/秒偶尔会产生错误。“Data Communication Equipment()&的首字母缩略词。DCE提供建立、保持和终止联接的功能,调制解调器就是一种DCE。“Data Terminal Equipment(数据终端设备)&的首字母缩略词。DTE提供或接收数据。联接到调制解调器上的就是一种DTE。(Line Rate)
又称DCE速率,单位是bit/s(bps)。指的是连结两个调制解调器之间的(或专线)上数据的。常见速率有56000bps、334bps、28800bps等等。
(Port Rate)
又称DTE速率或最大。指的是串口到调制解调器的。由于现今调制解调器几乎都支持该速率的V.42bis和MNP5压缩标准(压缩比都是4:1),所以这一速率一般比线路速率高得多。
专线指的是普通的两根无源(或有源)电线。在专线上拨号没有拨号音,因而需专门硬件支持。拨号线就是普通,通过电话系统拨号。常见的调制解调器都支持拨号线,而不一定支持专线。
(Remote Setup)
指本地调制解调器与远方调制解调器连通后,远方使用者能对本地调制解调器的参数进行设置。
Modem在传输数据时,每传送一组数据,在中都要含有相应的控制数据,不同的通讯环境下都有不同的数据位和结束位标准。流量控制是用于协调Modem与之间的传输的,它可以防止因为计算机和Modem之间通信处理速度的不匹配而引起的数据丢失。流量控制分硬件流量控制(RTS/CTS)和软件流量()控制两种形式。
数据/语音同传(SVD)
所谓数据/语音同传,就是在MODEM进行的同时还可以利用普通通话。根据具体实现方式的不同,数据/语音同传有/语音同传(ASVD:Analog Simultaneous Voice and Data)和/语音同传(DSVD:Digital Simultaneous Voice and Data)两种。
新手上路我有疑问投诉建议参考资料 查看通信原理(第六版)樊昌信曹丽娜_第六版--课后思考题及习题..
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
通信原理(第六版)樊昌信曹丽娜_第六版--课后思考题及习题答案(第六章答案已补齐)
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer-4.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口 下载
 收藏
该文档贡献者很忙,什么也没留下。
 下载此文档
正在努力加载中...
通信原理第六版思考题答案_下载
下载积分:
内容提示:通信原理第六版思考题答案_下载,下载,答案,思考题答案,通信原理,思考题习题,第六版,习题答案,习题 答案,通信原理第六版,通信原理答案
文档格式:DOC|
浏览次数:5|
上传日期: 07:30:21|
文档星级:
该用户还上传了这些文档
官方公共微信
下载文档:通信原理第六版思考题答案_下载.DOC在无线电通信中为什么要进行“调制”和“调解”,其各自的作用是什么?_百度知道
在无线电通信中为什么要进行“调制”和“调解”,其各自的作用是什么?
高频电子里面的
我有更好的答案
按默认排序
把声音(电台)或图象(电视台)信号叠加在高频信号上的过程叫调制把声音(电台)或图象(电视台)信号从高频信号上分离出来的过程叫解调
一般是将模拟信号调制为数字信号,再将数字信号解调为模拟信号,这两个过程是相逆的
之间的转化
其他类似问题
无线电通信的相关知识
您可能关注的推广回答者:
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁相干光通信 _百度百科
特色百科用户权威合作手机百科
收藏 查看&相干光通信
在相干光通信中主要利用了相干调制和外差检测技术。所谓相干调制,就是利用要传输的信号来改变光载波的频率、相位和振幅(而不象强度检测那样只是改变光的强度),这就需要光信号有确定的频率和相位(而不象自然光那样没有确定的频率和相位),即应是相干光。激光就是一种相干光。所谓外差检测,就是利用一束本机振荡产生的激光与输入的信号光在光混频器中进行混频,得到与信号光的频率、位相和振幅按相同规律变化的中频信号。技&&&&术相干调制和外差检测技术优&&&&点灵敏度高,中继距离长
在光通信领域,更大的带宽、更长的传输距离、更高的接收灵敏度,永远相干光通信都是科研者的追求目标。尽管波分复用()技术和()的应用已经极大的提高了光通信系统的带宽和传输距离,伴随着视频会议等通信技术的应用和的普及产生的信息爆炸式增长,对作为整个通信系统基础的物理层提出了更高的传输性能要求。光通信系统采用强度调制/直接检测(IM/DD),即发送端调制光载波强度,接收机对光载波进行包络检测。尽管这种结构具有简单、容易集成等优点,但是由于只能采用ASK调制格式,其单路信道带宽很有限。因此这种传统光通信技术势必会被更先进的技术所代替。然而在通信泡沫破灭的今天,新的光通信技术的应用不可避免的会带来对新型通信设备的需求,面对居高不下的光器件价格,大规模通信更换所需要的高额成本,是运营商所不能接受的,因此对设备制造商而言,光纤通信新技术的研发也面临着很大的风险。如何在现有的设备基础上提高光通信系统的性能成为了切实的问题。在这样的背景下,二十多年前曾被寄予厚望的相干光通信技术,再一次被放到了桌面上。
相干光通信的理论和实验始于80年代。由于相干光通信系统被公认为具有灵敏度高的优势,各国在相干光传输技术上做了大量研究工作。经过十年的研究,相干光通信进入实用阶段。英美日等国相继进行了一系列相干光通信实验。AT&T及Bell公司于年在宾州的罗灵—克里克地面站与森伯里枢纽站间先后进行了1.3μm和1.55μm波长的1.7Gbit/s FSK现场无中继相干传输实验,相距35公里,接收灵敏度达到-41.5dBm。NTT公司于1990年在濑户内陆海的大分—尹予和吴站之间进行了2.5Gbit/s CPFSK相干传输实验,总长431公里。直到19世纪80年代末,EDFA和WDM技术的发展,使得相干光通信技术的发展缓慢下来。在这段时期,和每个通道的信息容量已经不再备受关注。然而,直接检测的WDM系统经过二十年的发展和广泛应用后,新的征兆开始出现,标志着相干光传输技术的应用将再次受到重视。在数字通信方面,扩大C波段放大器的容量,克服光纤色散效应的恶化,以及增加自由空间传输的容量和范围已成为重要的考虑因素。在模拟通信方面,灵敏度和动态范围成为系统的关键参数,而他们都能通过相关光通信技术得到很大改善。在数字传输系统中, 和DQPSK的使用已经非常普遍,这就标志着采用相位敏感的编码和传输技术将成为一种趋势。而检测灵敏度和频谱效率是这种趋势的关键所在。其他影响选择检测方案的因素还包括物理层的安全可靠性和网络的自适应性,两者都可得益于采用相干光技术的幅度,频率和偏振编码。相干模拟传输与非相干传输相比,也同样具有很大的优势,其中在动态范围方面最为显著。虽然模拟通信不及数字通信应用广泛,但是模拟传输在很多特殊环境应用上有很重要的作用。
同时,在这短短的二十年中,在光器件方面取得了很大的进步,其中的输出功率,线宽,稳定性和噪声,以及光电探测器的带宽,功率容量和共模抑制比都得到了很大的改善,微波电子器件的性能也大幅提高。这些进步使得相干光通信系统商用化变为可能。在发送端,采用外调制方式将信号调制到光载波上进行传输。当信号光传输到达接收端时,首先与一本振光信号进行相干耦合,然后由平衡进行探测。相干光通信根据本振光频率与信号光频率不等或相等,可分为外差检测和零差检测。前者光信号经光电转换后获得的是,还需二次解调才能被转换成基带信号。后者光信号经光电转换后被直接转换成基带信号,不用二次解调,但它要求本振光频率与信号光频率严格匹配,并且要求本振光与信号光的相位锁定。相干光通信的一个最主要的优点是相干检测能改善接收机的灵敏度。在相同的相干光通信条件下,相干接收机比普通接收机提高灵敏度约20dB,可以达到接近散粒噪声极限的高性能,因此也增加了光信号的无中继传输距离。相干光通信的另一个主要优点是可以提高接收机的选择性。在直接探测中, 接收波段较大,为抑制的干扰,探测器前通常需要放置, 但其频带仍然很宽。在相干外差探测中,探测的是信号光和本振光的混频光,因此只有在中频频带内的噪声才可以进入系统,而其它噪声均被带宽较窄的微波中频放大器滤除。可见,外差探测有良好的滤波性能,这在星间光通信的应用中会发挥重大作用。此外,由于相干探测优良的波长选择性,相干接收机可以使频分复用系统的频率间隔大大缩小,即密集波分复用(),取代传统光复用技术的大频率间隔,具有以频分复用实现更高传输速率的潜在优势。在传统光通信系统中,只能使用强度调制方式对光进行调制。而在相干光通信中,除了可以对光进行幅度调制外,还可以使用、DPSK、QAM等多种调制格式,利于灵活的工程应用,虽然这样增加了系统的复杂性,但是相对于传统光接收机只响应光功率的变化,相干探测可探测出光的振幅、频率、位相、偏振态携带的所有信息,因此相干探测是一种全息探测技术,这是传统光通信技术不具备的。为了实现准确、有效、可靠的相干光通信,应采用以下关键技术。由于光载波的某一参数直接调制时,总会附带对其他参数的寄生振荡,如ASK直接调制伴随着相位的变化,而且调制深度也会受到限制。另外,还会遇到频率特相干光通信性不平坦及张迟振荡等问题。因此,在相干光通信系统中,除FSK 可以采用直接注入进行频率调制外,其他都是采用外光调制方式。
外光调制是根据某些电光或声光晶体的光波传输特性随电压或声压等外界因素的变化而变化的物理现象而提出的。外光调制器主要包括三种:利用电光效应制成的电光调制器、利用声光效应制成的声光调制器和利用磁光效应制成的磁光调制器。采用以上外调制器,可以完成对光载波的振幅、和的调制。对外光调制器的研究比较广泛,如利用T1扩散LiNbO3马赫干涉仪或定向耦合式的调制器可实现ASK 调制,利用量子阱半导体相位外调制器或LiNbO3相位调制器实现PSK调制等。在相干光通信中,相干探测要求信号光束与本振光束必须有相同的偏振方向,也就是说,两者的电矢量方向必须相同,才能获得相干接收所能提供的高灵敏度。否则,会使相干探测灵敏度下降。因为在这种情况下,只有信号光波电矢量在本振光波电矢量方向上的投影,才真正对混频产生的中频信号电流有贡献。若失配角度超过60°,则接收机的灵敏度几乎得不到任何改善,从而失去相干接收的优越性。因此,为了充分发挥相干接收的优越性,在相干光通信中应采取光波偏振稳定措施。主要有两种方法:一是采用“保偏光纤”使光波在传输过程中保持光波的偏振态不变。而普通的单模光纤会由于光纤的机械振动或温度变化等因素使光波的偏振态发生变化。“保偏光纤”与单模光纤相比,其损耗比较大,价格比较昂贵。二是使用普通的,在接收端采用偏振分集技术,信号光与本振光混合后首先分成两路作为平衡接收,对每一路信号又采用偏振分束镜分成正交偏振的两路信号分别检测,然后进行平方求和,最后对两路平衡接收信号进行判决,选择较好的一路作为输出信号。此时的输出信号已与接收信号的偏振态无关,从而消除了信号在传输过程中偏振态的随机变化。在相干光通信中,激光器的频率稳定性是相当重要的。如,对于零差检测相干光通信系统来说,若激光器的频率(或波长)随工作条件的不同而发生漂移,就很难保证本振光与接收光信号之间的频率相对稳定性。外差相干光通信系统也是如此。一般外差中频选择在0。2~2 GHz之间,当光载波的波长为1。5 μm时,其频率为200 THz,中频为载频的 10-6~10-5。光载波与本振光的频率只要产生微小的变化,都将对中频产生很大的影响。因此,只有保证光载波振荡器和光本振振荡器的高频率稳定性,才能保证相干光通信系统的正常工作。
的频率稳定技术主要有三种:
(1)将激光器的频率稳定在某种原子或分子的谐振频率上。在1.5μm波长上,已经利用氨、氪等气体分子实现了对半导体激光器的频率稳定;
(2) 利用光生伏特效应、锁相环技术、主激光器调频边带的方法实现稳频;
(3)利用半导体激光器工作温度的自动控制、注入电流的自动控制等方法实现稳频。在相干光通信中,光源的频谱宽度也是非常重要的。只有保证光波的窄线宽,才相干光通信能克服半导体激光器量子调幅和调频噪声对接收机灵敏度的影响,而且,其线宽越窄,由相位漂移而产生的相位噪声越小。
为了满足相干光通信对光源谱宽的要求,通常采取谱宽压缩技术。主要有两种实现方法:
(1) 注入锁模法,即利用一个以单模工作的频率稳定、谱线很窄的主激光器的光功率,注入到需要宽度压缩的从激光器,从而使从激光器保持和主激光器一致的谱线宽度、单模性及频率稳定度;
(2) 外腔反馈法。外腔反馈是将激光器的输出通过一个外部和等色散元件反射回腔内,并用外腔的选模特性获得动态单模运用以及依靠外腔的高Q值压缩谱线宽度。由于在相干光通信中,常采用密集频分复用技术。因此,光纤中的非线性效应可能使相干光通信中的某一信道的信号强度和相位受到其他信道信号的影响,而形成非线性串扰。光纤中对相干光通信可能产生影响的非线性效应包括受激拉曼散射(SRS)、受激布里渊散射(SBS)、非线性折射和四波混合。由于SRS的拉曼增益谱很宽(~10 THz),因此当信道能量超过一定值时,多信道复用相干光通信系统中必然出现高低频率信道之间的能量转移,而形成信道间的串扰,从而使接收噪声增大,接收机灵敏度下降。SBS的阈值为几 mW,增益谱很窄,若信道功率小于一定值时,并且对信号载频设计的好,可以很容易地避免 SBS引起的串扰。但SBS 对信道功率却构成了限制。光纤中的非线性折射通过自相位调制效应而引起相位噪声,在信号功率大于10 mW 或采用进行长距离传输的相干光通信系统中要考虑这种效应。当信道间隔和光纤的色散足够小时,四波混频的相位条件可能得到满足,FWM成为系统非线性串扰的一个重要因素。FWM 是通过信道能量的减小和使信道受到干扰而构成对系统性能的限制。当信道功率低到一定值时,可避免FWM 引起对系统的影响。由于受到上述这些非线性因素的限制,采用密集频分复用的相干光通信系统的信道发射功率通常只有零点几毫瓦。
除了以上关键技术外,对于本振光和信号光之间产生的相位漂移,在接收端还可采用相位分集接收技术以消除相位噪声;为了减小本振光的相对强度噪声对系统的影响,可以采用双路平衡接收技术;零差检测中为保证本振光与信号光同步而采用的光锁相环技术,以及用于本振频率稳定的AFC等。相干光通信得到迅速的发展,特别是对于超长波长(2~10 μm)光纤通信来说,相干光通信最具吸引力。因为在超长波段,由瑞利散射决定的光纤固有将进一步大幅度降低(瑞利散射损耗与1/λ?4成正比),故从理论上讲,在超长波段可实现光纤跨洋无中继通信。而在超长波段,直接探测接收机的性能很差,于是相干探测方式自然而然地成为唯一的选择了。
超长波长是以超长波长光纤作为传输介质,利用相干光通信技术实现超长距离通信。在该系统中超长波长光纤是至关重要的。它是一种更为理想的,其主要特性是损耗特低,只有材料的千万分之一。因此,超长波长光纤可以实现数万公里传输,而不要中继站。它可以大幅度降低通信成本,提高系统的稳定性和可靠性,对海底通信和沙漠地区更具有特别重要的意义。
研究的超长波长光纤主要是氟化物玻璃光纤,其理论损耗值非常低,如Ba-F2-Gd-ZrF4-ALF3光纤在3μm左右的理论最低损耗为10-3dB/km,GaF2-BaF2-YF2-ALF3光纤的透明范围为27μm,在3μm左右的最低理论损耗为10-2dB/km。
从光纤的色散特性来看,氟化玻璃材料光纤也可以实现零色散。例如,由镐、和镧组成的氟化物光纤,在1.7μm可实现零色散,在4μm波长的色散也很小,只有45ps/nm km。而且,氟化物玻璃光纤在较宽的波长范内,比石英光纤的色散要低。这样,可在大范围内实现波份复用。
随着光纤通信技术的发展,利用超长波长光纤实现超长距离通信是今后光纤通信发展的重要方向之一。但是,超长波长光纤通信系统还存在许多需要进一步解决的技术问题,如超长波长光纤的材料提纯与拉制,采用相干光通信技术所要求的超长波长光源及超长波长相干光电检波器等。
除以上应用外,由于相干光通信的出色的信道选择性和灵敏度,在频分复用CATV分配网中也得到了广泛的应用。相干光通信技术经过二十年的蛰伏期,越来越受到国际学术界的关注。从200相干光通信5年现在,每年都有大量关于相干光通信技术的文章在国际高水平会议和期刊上发表,内容包括各种新型调制码型,如正交频分复用(OFDM)、偏振差分四相移相键控(POLMUX-DQPSK),相干光通信关键技术的研究,相干光通信中的高速数字信号处理,以及相干光接收机集成化的研究等。此类研究多集中于、、、、等发达国家,中国也有相关研究文章发表,但数量较少。相干光通信方面的理论研究正在逐年升温,商品化研发也在缓慢进行。2006年美国DISCOVERY公司推出了带宽2.5Gbit/s及10Gbit/s的外差检测相干光接收机,在带宽为10Gbit/s误码率为10-9时灵敏度可达-30dBm,集成的相干接收机体积比普通电脑机箱小,便于运输和野外工作。相干光通信的一些关键器件及技术也在近几年得到了很大的发展,如DISCOVERY、德国u2t等公司可提供高速高输入功率的平衡接收机。虽然相干光通信系统的潜在优势使它具备取代传统光通信系统的可能,但是其实用化研究多集中在特殊环境的应用,如跨洋通信、沙漠通信、星间通信等。传统光通信系统需要使用大量EDFA、SOA等中继设备,但是在海底和沙漠等条件非常恶劣的环境中,这些精密设备容易损坏,且修理和更换费用昂贵。相干光通信由于其无中继距离远大于传统光通信系统,可以大量减少中继设备,降低维护和修理费用。此外,相干光通信一大热点在于星间光链路通信。理论上,与RF载波相比,光载波在卫星通信中具有极强的优势,包括传送带宽大、质量体积功耗小等,通信光极窄的波束宽度也带来了很好的抗干扰和抗截获性能,可以极大地提高通信系统的信息安全。因此,相干光通信技术是星间激光通信链路技术发展极具潜力的选择。在年间,相干光通信是国际光通信领域的研究热点。1995年前后,随着EDFA和WDM的成熟,在光纤通信的商用领域,传统光通信系统已足以保证通信性能,而在无法使用EDFA做中继的星间光通信领域,相干光技术则一直被视为满足功率受限的卫星光通信系统的高灵敏度高带宽要求的必然选择,国外对此进行了大量的研究。开始,ESA与德国航天中心合作进行OGS研究项目,研究星地激光通信中光学地面站的1.06μm光外差探测技术。日本国家宇宙开发事业团自以来进行了大量星间相干光通信的研究,对各种相干通信方案进行了星间通信的对比研究。从1999年左右,加州理工JPL实验室重点研究通过相干光通信技术扩展星间光通信链路的信道容量。与此同时,麻省理工林肯实验室研究了各种相干通信方案在LEO星间平台振动条件下的信噪比、误码率等通信性能,并提出了发射功率自适应技术方案,其实验装置通信距离3000km,1.0E-6.码速率2Gbit/s。总之,相干光通信技术还有很多方向需要更多的研究,大规模的应用也不会在短期内出现。但是需求决定市场,在不久的将来,传统光通信系统过于简单的结构必定无法满足高速增长的带宽需求,而相干光通信技术作为一个研究相对成熟,潜在优势明显的选择,必定会受到学术界和企业越来越多的关注。
新手上路我有疑问投诉建议参考资料 查看}

我要回帖

更多关于 何谓五岳 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信