当我们对物体进行受力分析时,物体为什么会有颜色不考...

选做题(请从A、B和C三小题中选定两小题作答,并在答题卡上把所选题目对应字母后的方框涂满涂黑,如都作答则按A、B两小题评分.)A.(选修模块3-3)(1)下列说法中正确的是ABDA、被活塞封闭在气缸中的一定质量的理想气体,若体积不变,压强增大,则气缸在单位面积上,单位时间内受到的分子碰撞次数增加B、晶体中原子(或分子、离子)都按照一定规则排列,具有空间上的周期性C、分子间的距离r存在某一值r0,当r大于r0时,分子间斥力大于引力;当r小于r0时分子间斥力小于引力D、由于液体表面分子间距离大于液体内部分子间的距离,液面分子间表现为引力,所以液体表面具有收缩的趋势(2)如图所示,一定质量的理想气体发生如图所示的状态变化,状态A与状态B&的体积关系为VA小于VB(选填“大于”、“小于”或“等于”);&若从A状态到C状态的过程中气体对外做了100J的功,则此过程中吸热(选填“吸热”或“放热”)(3)在“用油膜法测量分子直径”的实验中,将浓度为η的一滴油酸溶液,轻轻滴入水盆中,稳定后形成了一层单分子油膜.测得一滴油酸溶液的体积为V0,形成的油膜面积为S,则油酸分子的直径约为03πη2V20;如果把油酸分子看成是球形的(球的体积公式为3,d为球直径),计算该滴油酸溶液所含油酸分子的个数约为多少.B.(选修模块3-4)(12分)(1)下列说法中正确的是CA、光的偏振现象证明了光波是纵波B、在发射无线电波时,需要进行调谐和解调C、在白炽灯的照射下从两块捏紧的玻璃板表面看到彩色条纹,这是光的干涉现象D、考虑相对论效应,一条沿自身长度方向运动的杆其长度总比杆静止时的长度长(2)一列横波沿x轴正方向传播,在t0=0时刻的波形如图所示,波刚好传到x=3m处,此后x=1m处的质点比x=-1m处的质点后(选填“先”、“后”或“同时”)到达波峰位置;若该波的波速为10m/s,经过△t时间,在x轴上-3m~3m区间内的波形与t0时刻的正好相同,则△t=0.4nsn=1.2.3….(3)如图所示的装置可以测量棱镜的折射率,ABC表示待测直角棱镜的横截面,棱镜的顶角为α,紧贴直角边AC是一块平面镜,一光线SO射到棱镜的AB面上,适当调整SO的方向,当SO与AB成β角时,从AB面射出的光线与SO重合,则棱镜的折射率n为多少?C.(选修模块3-5)(1)下列说法正确的是AC.A、黑体辐射电磁波的强度按波长的分布只与黑体的温度有关B、普朗克提出了物质波的概念,认为一切物体都具有波粒二象性.C、波尔理论的假设之一是原子能量的量子化D、氢原子辐射出一个光子后能量减小,核外电子的运动加速度减小(2)如图所示是研究光电效应规律的电路.图中标有A和K的为光电管,其中K为阴极,A为阳极.现接通电源,用光子能量为10.5eV的光照射阴极K,电流计中有示数,若将滑动变阻器的滑片P缓慢向右滑动,电流计的读数逐渐减小,当滑至某一位置时电流计的读数恰好为零,读出此时电压表的示数为6.0V;则光电管阴极材料的逸出功为4.5eV,现保持滑片P位置不变,增大入射光的强度,电流计的读数为零.(选填“为零”、或“不为零”)(3)快中子增殖反应堆中,使用的核燃料是钚239,裂变时释放出快中子,周围的铀238吸收快中子后变成铀239,铀239(92239U)很不稳定,经过2次β衰变后变成钚239(94239Pu),写出该过程的核反应方程式:92239U→94239Pu+2-10e.设静止的铀核92239U发生一次β衰变生成的新核质量为M,β粒子质量为m,释放出的β粒子的动能为E0,假设衰变时能量全部以动能形式释放出来,求一次衰变过程中的质量亏损.
第九部分 稳恒电流第一讲 基本知识介绍第八部分《稳恒电流》包括两大块:一是“恒定电流”,二是“物质的导电性”。前者是对于电路的外部计算,后者则是深入微观空间,去解释电流的成因和比较不同种类的物质导电的情形有什么区别。应该说,第一块的知识和高考考纲对应得比较好,深化的部分是对复杂电路的计算(引入了一些新的处理手段)。第二块虽是全新的内容,但近几年的考试已经很少涉及,以至于很多奥赛培训资料都把它删掉了。鉴于在奥赛考纲中这部分内容还保留着,我们还是想粗略地介绍一下。一、欧姆定律1、电阻定律a、电阻定律&R =&ρb、金属的电阻率&ρ&=&ρ0(1 +&αt)2、欧姆定律a、外电路欧姆定律&U = IR&,顺着电流方向电势降落b、含源电路欧姆定律在如图8-1所示的含源电路中,从A点到B点,遵照原则:①遇电阻,顺电流方向电势降落(逆电流方向电势升高)②遇电源,正极到负极电势降落,负极到正极电势升高(与电流方向无关),可以得到以下关系UA&? IR ?&ε&? Ir = UB&这就是含源电路欧姆定律。c、闭合电路欧姆定律在图8-1中,若将A、B两点短接,则电流方向只可能向左,含源电路欧姆定律成为UA&+ IR ?&ε&+ Ir = UB&= UA即&ε&= IR + Ir&,或&I =&这就是闭合电路欧姆定律。值得注意的的是:①对于复杂电路,“干路电流I”不能做绝对的理解(任何要考察的一条路均可视为干路);②电源的概念也是相对的,它可以是多个电源的串、并联,也可以是电源和电阻组成的系统;③外电阻R可以是多个电阻的串、并联或混联,但不能包含电源。二、复杂电路的计算1、戴维南定理:一个由独立源、线性电阻、线性受控源组成的二端网络,可以用一个电压源和电阻串联的二端网络来等效。(事实上,也可等效为“电流源和电阻并联的的二端网络”——这就成了诺顿定理。)应用方法:其等效电路的电压源的电动势等于网络的开路电压,其串联电阻等于从端钮看进去该网络中所有独立源为零值时的等效电阻。2、基尔霍夫(克希科夫)定律a、基尔霍夫第一定律:在任一时刻流入电路中某一分节点的电流强度的总和,等于从该点流出的电流强度的总和。例如,在图8-2中,针对节点P&,有I2&+ I3&= I1&基尔霍夫第一定律也被称为“节点电流定律”,它是电荷受恒定律在电路中的具体体现。对于基尔霍夫第一定律的理解,近来已经拓展为:流入电路中某一“包容块”的电流强度的总和,等于从该“包容块”流出的电流强度的总和。b、基尔霍夫第二定律:在电路中任取一闭合回路,并规定正的绕行方向,其中电动势的代数和,等于各部分电阻(在交流电路中为阻抗)与电流强度乘积的代数和。例如,在图8-2中,针对闭合回路①&,有ε3&?&ε2&= I3&( r3&+ R2&+ r2&) ? I2R2&基尔霍夫第二定律事实上是含源部分电路欧姆定律的变体(☆同学们可以列方程 UP&= … = UP得到和上面完全相同的式子)。3、Y?Δ变换在难以看清串、并联关系的电路中,进行“Y型?Δ型”的相互转换常常是必要的。在图8-3所示的电路中☆同学们可以证明Δ→ Y的结论…Rc&=&Rb&=&Ra&=&Y→Δ的变换稍稍复杂一些,但我们仍然可以得到R1&=&R2&=&R3&=&三、电功和电功率1、电源使其他形式的能量转变为电能的装置。如发电机、电池等。发电机是将机械能转变为电能;干电池、蓄电池是将化学能转变为电能;光电池是将光能转变为电能;原子电池是将原子核放射能转变为电能;在电子设备中,有时也把变换电能形式的装置,如整流器等,作为电源看待。电源电动势定义为电源的开路电压,内阻则定义为没有电动势时电路通过电源所遇到的电阻。据此不难推出相同电源串联、并联,甚至不同电源串联、并联的时的电动势和内阻的值。例如,电动势、内阻分别为ε1&、r1和ε2&、r2的电源并联,构成的新电源的电动势ε和内阻r分别为(☆师生共同推导…)ε&=&r =&2、电功、电功率电流通过电路时,电场力对电荷作的功叫做电功W。单位时间内电场力所作的功叫做电功率P&。计算时,只有W = UIt和P = UI是完全没有条件的,对于不含源的纯电阻,电功和焦耳热重合,电功率则和热功率重合,有W = I2Rt =&t和P = I2R =&。对非纯电阻电路,电功和电热的关系依据能量守恒定律求解。&四、物质的导电性在不同的物质中,电荷定向移动形成电流的规律并不是完全相同的。1、金属中的电流即通常所谓的不含源纯电阻中的电流,规律遵从“外电路欧姆定律”。2、液体导电能够导电的液体叫电解液(不包括液态金属)。电解液中离解出的正负离子导电是液体导电的特点(如:硫酸铜分子在通常情况下是电中性的,但它在溶液里受水分子的作用就会离解成铜离子Cu2+和硫酸根离子S,它们在电场力的作用下定向移动形成电流)。在电解液中加电场时,在两个电极上(或电极旁)同时产生化学反应的过程叫作“电解”。电解的结果是在两个极板上(或电极旁)生成新的物质。液体导电遵从法拉第电解定律——法拉第电解第一定律:电解时在电极上析出或溶解的物质的质量和电流强度、跟通电时间成正比。表达式:m = kIt&=&KQ&(式中Q为析出质量为m的物质所需要的电量;K为电化当量,电化当量的数值随着被析出的物质种类而不同,某种物质的电化当量在数值上等于通过1C电量时析出的该种物质的质量,其单位为kg/C。)法拉第电解第二定律:物质的电化当量K和它的化学当量成正比。某种物质的化学当量是该物质的摩尔质量M(克原子量)和它的化合价n的比值,即&K =&&,而F为法拉第常数,对任何物质都相同,F = 9.65×104C/mol&。将两个定律联立可得:m =&Q&。3、气体导电气体导电是很不容易的,它的前提是气体中必须出现可以定向移动的离子或电子。按照“载流子”出现方式的不同,可以把气体放电分为两大类——a、被激放电在地面放射性元素的辐照以及紫外线和宇宙射线等的作用下,会有少量气体分子或原子被电离,或在有些灯管内,通电的灯丝也会发射电子,这些“载流子”均会在电场力作用下产生定向移动形成电流。这种情况下的电流一般比较微弱,且遵从欧姆定律。典型的被激放电情形有b、自激放电但是,当电场足够强,电子动能足够大,它们和中性气体相碰撞时,可以使中性分子电离,即所谓碰撞电离。同时,在正离子向阴极运动时,由于以很大的速度撞到阴极上,还可能从阴极表面上打出电子来,这种现象称为二次电子发射。碰撞电离和二次电子发射使气体中在很短的时间内出现了大量的电子和正离子,电流亦迅速增大。这种现象被称为自激放电。自激放电不遵从欧姆定律。常见的自激放电有四大类:辉光放电、弧光放电、火花放电、电晕放电。4、超导现象据金属电阻率和温度的关系,电阻率会随着温度的降低和降低。当电阻率降为零时,称为超导现象。电阻率为零时对应的温度称为临界温度。超导现象首先是荷兰物理学家昂尼斯发现的。超导的应用前景是显而易见且相当广阔的。但由于一般金属的临界温度一般都非常低,故产业化的价值不大,为了解决这个矛盾,科学家们致力于寻找或合成临界温度比较切合实际的材料就成了当今前沿科技的一个热门领域。当前人们的研究主要是集中在合成材料方面,临界温度已经超过100K,当然,这个温度距产业化的期望值还很远。5、半导体半导体的电阻率界于导体和绝缘体之间,且ρ
第二部分 &牛顿运动定律第一讲 牛顿三定律一、牛顿第一定律1、定律。惯性的量度2、观念意义,突破“初态困惑”二、牛顿第二定律1、定律2、理解要点a、矢量性b、独立作用性:ΣF&→&a&,ΣFx&→&ax&…c、瞬时性。合力可突变,故加速度可突变(与之对比:速度和位移不可突变);牛顿第二定律展示了加速度的决定式(加速度的定义式仅仅展示了加速度的“测量手段”)。3、适用条件a、宏观、低速b、惯性系对于非惯性系的定律修正——引入惯性力、参与受力分析三、牛顿第三定律1、定律2、理解要点a、同性质(但不同物体)b、等时效(同增同减)c、无条件(与运动状态、空间选择无关)第二讲 牛顿定律的应用一、牛顿第一、第二定律的应用单独应用牛顿第一定律的物理问题比较少,一般是需要用其解决物理问题中的某一个环节。应用要点:合力为零时,物体靠惯性维持原有运动状态;只有物体有加速度时才需要合力。有质量的物体才有惯性。a可以突变而v、s不可突变。1、如图1所示,在马达的驱动下,皮带运输机上方的皮带以恒定的速度向右运动。现将一工件(大小不计)在皮带左端A点轻轻放下,则在此后的过程中(& & &&)A、一段时间内,工件将在滑动摩擦力作用下,对地做加速运动B、当工件的速度等于v时,它与皮带之间的摩擦力变为静摩擦力C、当工件相对皮带静止时,它位于皮带上A点右侧的某一点D、工件在皮带上有可能不存在与皮带相对静止的状态解说:B选项需要用到牛顿第一定律,A、C、D选项用到牛顿第二定律。较难突破的是A选项,在为什么不会“立即跟上皮带”的问题上,建议使用反证法(t&→&0&,a&→&∞&,则ΣFx&→&∞&,必然会出现“供不应求”的局面)和比较法(为什么人跳上速度不大的物体可以不发生相对滑动?因为人是可以形变、重心可以调节的特殊“物体”)此外,本题的D选项还要用到匀变速运动规律。用匀变速运动规律和牛顿第二定律不难得出只有当L&>&时(其中μ为工件与皮带之间的动摩擦因素),才有相对静止的过程,否则没有。答案:A、D思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2&,试求工件到达皮带右端的时间t(过程略,答案为5.5s)进阶练习:在上面“思考”题中,将工件给予一水平向右的初速v0&,其它条件不变,再求t(学生分以下三组进行)——① v0&= 1m/s &(答:0.5 + 37/8 = 5.13s)② v0&= 4m/s &(答:1.0 + 3.5 = 4.5s)③ v0&= 1m/s &(答:1.55s)2、质量均为m的两只钩码A和B,用轻弹簧和轻绳连接,然后挂在天花板上,如图2所示。试问:① 如果在P处剪断细绳,在剪断瞬时,B的加速度是多少?② 如果在Q处剪断弹簧,在剪断瞬时,B的加速度又是多少?解说:第①问是常规处理。由于“弹簧不会立即发生形变”,故剪断瞬间弹簧弹力维持原值,所以此时B钩码的加速度为零(A的加速度则为2g)。第②问需要我们反省这样一个问题:“弹簧不会立即发生形变”的原因是什么?是A、B两物的惯性,且速度v和位移s不能突变。但在Q点剪断弹簧时,弹簧却是没有惯性的(没有质量),遵从理想模型的条件,弹簧应在一瞬间恢复原长!即弹簧弹力突变为零。答案:0 ;g 。二、牛顿第二定律的应用应用要点:受力较少时,直接应用牛顿第二定律的“矢量性”解题。受力比较多时,结合正交分解与“独立作用性”解题。在难度方面,“瞬时性”问题相对较大。1、滑块在固定、光滑、倾角为θ的斜面上下滑,试求其加速度。解说:受力分析 →&根据“矢量性”定合力方向&→&牛顿第二定律应用答案:gsinθ。思考:如果斜面解除固定,上表仍光滑,倾角仍为θ,要求滑块与斜面相对静止,斜面应具备一个多大的水平加速度?(解题思路完全相同,研究对象仍为滑块。但在第二环节上应注意区别。答:gtgθ。)进阶练习1:在一向右运动的车厢中,用细绳悬挂的小球呈现如图3所示的稳定状态,试求车厢的加速度。(和“思考”题同理,答:gtgθ。)进阶练习2、如图4所示,小车在倾角为α的斜面上匀加速运动,车厢顶用细绳悬挂一小球,发现悬绳与竖直方向形成一个稳定的夹角β。试求小车的加速度。解:继续贯彻“矢量性”的应用,但数学处理复杂了一些(正弦定理解三角形)。分析小球受力后,根据“矢量性”我们可以做如图5所示的平行四边形,并找到相应的夹角。设张力T与斜面方向的夹角为θ,则θ=(90°+ α)- β= 90°-(β-α) & & & & & & & & (1)对灰色三角形用正弦定理,有&=&& & & & & & & & & & & & & & & & & & & &(2)解(1)(2)两式得:ΣF =&最后运用牛顿第二定律即可求小球加速度(即小车加速度)答:&。2、如图6所示,光滑斜面倾角为θ,在水平地面上加速运动。斜面上用一条与斜面平行的细绳系一质量为m的小球,当斜面加速度为a时(a<ctgθ),小球能够保持相对斜面静止。试求此时绳子的张力T 。解说:当力的个数较多,不能直接用平行四边形寻求合力时,宜用正交分解处理受力,在对应牛顿第二定律的“独立作用性”列方程。正交坐标的选择,视解题方便程度而定。解法一:先介绍一般的思路。沿加速度a方向建x轴,与a垂直的方向上建y轴,如图7所示(N为斜面支持力)。于是可得两方程ΣFx&= ma&,即Tx&-&Nx&= maΣFy&= 0&,&即Ty&+ Ny&= mg代入方位角θ,以上两式成为T cosθ-N sinθ = ma & & & & & & & & & && &(1)T sinθ + Ncosθ = mg& & & & & & & & & & & &(2)这是一个关于T和N的方程组,解(1)(2)两式得:T = mgsinθ&+ ma&cosθ解法二:下面尝试一下能否独立地解张力T 。将正交分解的坐标选择为:x——斜面方向,y——和斜面垂直的方向。这时,在分解受力时,只分解重力G就行了,但值得注意,加速度a不在任何一个坐标轴上,是需要分解的。矢量分解后,如图8所示。根据独立作用性原理,ΣFx&= max即:T&-&Gx&= max即:T&-&mg&sinθ&= m acosθ显然,独立解T值是成功的。结果与解法一相同。答案:mgsinθ&+ ma&cosθ思考:当a>ctgθ时,张力T的结果会变化吗?(从支持力的结果N&= mgcosθ-ma sinθ看小球脱离斜面的条件,求脱离斜面后,θ条件已没有意义。答:T = m&。)学生活动:用正交分解法解本节第2题“进阶练习2”进阶练习:如图9所示,自动扶梯与地面的夹角为30°,但扶梯的台阶是水平的。当扶梯以a = 4m/s2的加速度向上运动时,站在扶梯上质量为60kg的人相对扶梯静止。重力加速度g = 10 m/s2,试求扶梯对人的静摩擦力f 。解:这是一个展示独立作用性原理的经典例题,建议学生选择两种坐标(一种是沿a方向和垂直a方向,另一种是水平和竖直方向),对比解题过程,进而充分领会用牛顿第二定律解题的灵活性。答:208N 。3、如图10所示,甲图系着小球的是两根轻绳,乙图系着小球的是一根轻弹簧和轻绳,方位角θ已知。现将它们的水平绳剪断,试求:在剪断瞬间,两种情形下小球的瞬时加速度。解说:第一步,阐明绳子弹力和弹簧弹力的区别。(学生活动)思考:用竖直的绳和弹簧悬吊小球,并用竖直向下的力拉住小球静止,然后同时释放,会有什么现象?原因是什么?结论——绳子的弹力可以突变而弹簧的弹力不能突变(胡克定律)。第二步,在本例中,突破“绳子的拉力如何瞬时调节”这一难点(从即将开始的运动来反推)。知识点,牛顿第二定律的瞬时性。答案:a甲&= gsinθ ;a乙&= gtgθ 。应用:如图11所示,吊篮P挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳被烧断瞬间,P、Q的加速度分别是多少?解:略。答:2g ;0 。三、牛顿第二、第三定律的应用要点:在动力学问题中,如果遇到几个研究对象时,就会面临如何处理对象之间的力和对象与外界之间的力问题,这时有必要引进“系统”、“内力”和“外力”等概念,并适时地运用牛顿第三定律。在方法的选择方面,则有“隔离法”和“整体法”。前者是根本,后者有局限,也有难度,但常常使解题过程简化,使过程的物理意义更加明晰。对N个对象,有N个隔离方程和一个(可能的)整体方程,这(N + 1)个方程中必有一个是通解方程,如何取舍,视解题方便程度而定。补充:当多个对象不具有共同的加速度时,一般来讲,整体法不可用,但也有一种特殊的“整体方程”,可以不受这个局限(可以介绍推导过程)——Σ= m1&+ m2&+ m3&+ … + mn其中Σ只能是系统外力的矢量和,等式右边也是矢量相加。1、如图12所示,光滑水平面上放着一个长为L的均质直棒,现给棒一个沿棒方向的、大小为F的水平恒力作用,则棒中各部位的张力T随图中x的关系怎样?解说:截取隔离对象,列整体方程和隔离方程(隔离右段较好)。答案:N =&x 。思考:如果水平面粗糙,结论又如何?解:分两种情况,(1)能拉动;(2)不能拉动。第(1)情况的计算和原题基本相同,只是多了一个摩擦力的处理,结论的化简也麻烦一些。第(2)情况可设棒的总质量为M ,和水平面的摩擦因素为μ,而F = μMg ,其中l<L ,则x<(L-l)的右段没有张力,x>(L-l)的左端才有张力。答:若棒仍能被拉动,结论不变。若棒不能被拉动,且F = μMg时(μ为棒与平面的摩擦因素,l为小于L的某一值,M为棒的总质量),当x<(L-l),N≡0 ;当x>(L-l),N =&〔x -〈L-l〉〕。应用:如图13所示,在倾角为θ的固定斜面上,叠放着两个长方体滑块,它们的质量分别为m1和m2&,它们之间的摩擦因素、和斜面的摩擦因素分别为μ1和μ2&,系统释放后能够一起加速下滑,则它们之间的摩擦力大小为:A、μ1&m1gcosθ ; & &B、μ2&m1gcosθ ;C、μ1&m2gcosθ ; & &D、μ1&m2gcosθ ;解:略。答:B 。(方向沿斜面向上。)思考:(1)如果两滑块不是下滑,而是以初速度v0一起上冲,以上结论会变吗?(2)如果斜面光滑,两滑块之间有没有摩擦力?(3)如果将下面的滑块换成如图14所示的盒子,上面的滑块换成小球,它们以初速度v0一起上冲,球应对盒子的哪一侧内壁有压力?解:略。答:(1)不会;(2)没有;(3)若斜面光滑,对两内壁均无压力,若斜面粗糙,对斜面上方的内壁有压力。2、如图15所示,三个物体质量分别为m1&、m2和m3&,带滑轮的物体放在光滑水平面上,滑轮和所有接触面的摩擦均不计,绳子的质量也不计,为使三个物体无相对滑动,水平推力F应为多少?解说:此题对象虽然有三个,但难度不大。隔离m2&,竖直方向有一个平衡方程;隔离m1&,水平方向有一个动力学方程;整体有一个动力学方程。就足以解题了。答案:F =&&。思考:若将质量为m3物体右边挖成凹形,让m2可以自由摆动(而不与m3相碰),如图16所示,其它条件不变。是否可以选择一个恰当的F′,使三者无相对运动?如果没有,说明理由;如果有,求出这个F′的值。解:此时,m2的隔离方程将较为复杂。设绳子张力为T ,m2的受力情况如图,隔离方程为:&= m2a隔离m1&,仍有:T = m1a解以上两式,可得:a =&g最后用整体法解F即可。答:当m1&≤ m2时,没有适应题意的F′;当m1&> m2时,适应题意的F′=&&。3、一根质量为M的木棒,上端用细绳系在天花板上,棒上有一质量为m的猫,如图17所示。现将系木棒的绳子剪断,同时猫相对棒往上爬,但要求猫对地的高度不变,则棒的加速度将是多少?解说:法一,隔离法。需要设出猫爪抓棒的力f ,然后列猫的平衡方程和棒的动力学方程,解方程组即可。法二,“新整体法”。据Σ= m1&+ m2&+ m3&+ … + mn&,猫和棒的系统外力只有两者的重力,竖直向下,而猫的加速度a1&= 0 ,所以:( M + m )g = m·0 + M a1&解棒的加速度a1十分容易。答案:g 。四、特殊的连接体当系统中各个体的加速度不相等时,经典的整体法不可用。如果各个体的加速度不在一条直线上,“新整体法”也将有一定的困难(矢量求和不易)。此时,我们回到隔离法,且要更加注意找各参量之间的联系。解题思想:抓某个方向上加速度关系。方法:“微元法”先看位移关系,再推加速度关系。、1、如图18所示,一质量为M 、倾角为θ的光滑斜面,放置在光滑的水平面上,另一个质量为m的滑块从斜面顶端释放,试求斜面的加速度。解说:本题涉及两个物体,它们的加速度关系复杂,但在垂直斜面方向上,大小是相等的。对两者列隔离方程时,务必在这个方向上进行突破。(学生活动)定型判断斜面的运动情况、滑块的运动情况。位移矢量示意图如图19所示。根据运动学规律,加速度矢量a1和a2也具有这样的关系。(学生活动)这两个加速度矢量有什么关系?沿斜面方向、垂直斜面方向建x 、y坐标,可得:a1y&= a2y& & & & & & &①且:a1y&= a2sinθ & & ②隔离滑块和斜面,受力图如图20所示。对滑块,列y方向隔离方程,有:mgcosθ- N = ma1y& & &③对斜面,仍沿合加速度a2方向列方程,有:Nsinθ= Ma2& & & & & ④解①②③④式即可得a2&。答案:a2&=&&。(学生活动)思考:如何求a1的值?解:a1y已可以通过解上面的方程组求出;a1x只要看滑块的受力图,列x方向的隔离方程即可,显然有mgsinθ= ma1x&,得:a1x&= gsinθ 。最后据a1&=&求a1&。答:a1&=&&。2、如图21所示,与水平面成θ角的AB棒上有一滑套C ,可以无摩擦地在棒上滑动,开始时与棒的A端相距b ,相对棒静止。当棒保持倾角θ不变地沿水平面匀加速运动,加速度为a(且a>gtgθ)时,求滑套C从棒的A端滑出所经历的时间。解说:这是一个比较特殊的“连接体问题”,寻求运动学参量的关系似乎比动力学分析更加重要。动力学方面,只需要隔离滑套C就行了。(学生活动)思考:为什么题意要求a>gtgθ?(联系本讲第二节第1题之“思考题”)定性绘出符合题意的运动过程图,如图22所示:S表示棒的位移,S1表示滑套的位移。沿棒与垂直棒建直角坐标后,S1x表示S1在x方向上的分量。不难看出:S1x&+ b = S cosθ & & & & & & & & & ①设全程时间为t ,则有:S =&at2& & & & & & & & & & & & & ②S1x&=&a1xt2& & & & & & & & & & & & ③而隔离滑套,受力图如图23所示,显然:mgsinθ= ma1x& & & & & & & & & & & &④解①②③④式即可。答案:t =&另解:如果引进动力学在非惯性系中的修正式 Σ+&*&= m&(注:*为惯性力),此题极简单。过程如下——以棒为参照,隔离滑套,分析受力,如图24所示。注意,滑套相对棒的加速度a相是沿棒向上的,故动力学方程为:F*cosθ- mgsinθ= ma相& & & & & & (1)其中F*&= ma & & & & & & & & & & &(2)而且,以棒为参照,滑套的相对位移S相就是b ,即:b = S相&=&a相&t2& & & & & & & & &(3)解(1)(2)(3)式就可以了。第二讲 配套例题选讲教材范本:龚霞玲主编《奥林匹克物理思维训练教材》,知识出版社,2002年8月第一版。例题选讲针对“教材”第三章的部分例题和习题。
第六部分 振动和波第一讲 基本知识介绍《振动和波》的竞赛考纲和高考要求有很大的不同,必须做一些相对详细的补充。一、简谐运动1、简谐运动定义:=&-k& & & & & & &①凡是所受合力和位移满足①式的质点,均可称之为谐振子,如弹簧振子、小角度单摆等。谐振子的加速度:=&-2、简谐运动的方程回避高等数学工具,我们可以将简谐运动看成匀速圆周运动在某一条直线上的投影运动(以下均看在x方向的投影),圆周运动的半径即为简谐运动的振幅A&。依据:x&=&-mω2Acosθ=&-mω2对于一个给定的匀速圆周运动,m、ω是恒定不变的,可以令:mω2&= k&这样,以上两式就符合了简谐运动的定义式①。所以,x方向的位移、速度、加速度就是简谐运动的相关规律。从图1不难得出——位移方程:&= Acos(ωt +&φ) & & & & & & & & & & & & & & & & & & & &②速度方程:&=&-ωAsin(ωt +φ) & & & & & & & & & & & & & & & & & &&③加速度方程:=&-ω2A cos(ωt +φ) & & & & & & & & & & & & & & & & &&④相关名词:(ωt +φ)称相位,φ称初相。运动学参量的相互关系:=&-ω2A =&tgφ=&-3、简谐运动的合成a、同方向、同频率振动合成。两个振动x1&= A1cos(ωt +φ1)和x2&= A2cos(ωt +φ2)&合成,可令合振动x = Acos(ωt +φ)&,由于x = x1&+ x2&,解得A =&&,φ= arctg&显然,当φ2-φ1&= 2kπ时(k = 0,±1,±2,…),合振幅A最大,当φ2-φ1&=&(2k + 1)π时(k = 0,±1,±2,…),合振幅最小。b、方向垂直、同频率振动合成。当质点同时参与两个垂直的振动x = A1cos(ωt +&φ1)和y = A2cos(ωt +&φ2)时,这两个振动方程事实上已经构成了质点在二维空间运动的轨迹参数方程,消去参数t后,得一般形式的轨迹方程为+-2cos(φ2-φ1) = sin2(φ2-φ1)显然,当φ2-φ1&= 2kπ时(k = 0,±1,±2,…),有y =&x&,轨迹为直线,合运动仍为简谐运动;当φ2-φ1&=&(2k + 1)π时(k = 0,±1,±2,…),有+= 1&,轨迹为椭圆,合运动不再是简谐运动;当φ2-φ1取其它值,轨迹将更为复杂,称“李萨如图形”,不是简谐运动。c、同方向、同振幅、频率相近的振动合成。令x1&= Acos(ω1t +&φ)和x2&= Acos(ω2t +&φ)&,由于合运动x = x1&+ x2&,得:x =(2Acost)cos(t +φ)。合运动是振动,但不是简谐运动,称为角频率为的“拍”现象。4、简谐运动的周期由②式得:ω=&&,而圆周运动的角速度和简谐运动的角频率是一致的,所以T = 2π& & & & & & & & & & & & & & & & & & & & & & & & & & &&⑤5、简谐运动的能量一个做简谐运动的振子的能量由动能和势能构成,即=&mv2&+&kx2&=&kA2注意:振子的势能是由(回复力系数)k和(相对平衡位置位移)x决定的一个抽象的概念,而不是具体地指重力势能或弹性势能。当我们计量了振子的抽象势能后,其它的具体势能不能再做重复计量。6、阻尼振动、受迫振动和共振和高考要求基本相同。二、机械波1、波的产生和传播产生的过程和条件;传播的性质,相关参量(决定参量的物理因素)2、机械波的描述a、波动图象。和振动图象的联系b、波动方程如果一列简谐波沿x方向传播,振源的振动方程为y = Acos(ωt + φ),波的传播速度为v ,那么在离振源x处一个振动质点的振动方程便是y = Acos〔ωt + φ -&·2π〕= Acos〔ω(t -&)+ φ〕这个方程展示的是一个复变函数。对任意一个时刻t ,都有一个y(x)的正弦函数,在x-y坐标下可以描绘出一个瞬时波形。所以,称y = Acos〔ω(t -&)+ φ〕为波动方程。3、波的干涉a、波的叠加。几列波在同一介质种传播时,能独立的维持它们的各自形态传播,在相遇的区域则遵从矢量叠加(包括位移、速度和加速度的叠加)。b、波的干涉。两列波频率相同、相位差恒定时,在同一介质中的叠加将形成一种特殊形态:振动加强的区域和振动削弱的区域稳定分布且彼此隔开。我们可以用波程差的方法来讨论干涉的定量规律。如图2所示,我们用S1和S2表示两个波源,P表示空间任意一点。当振源的振动方向相同时,令振源S1的振动方程为y1&= A1cosωt ,振源S1的振动方程为y2&= A2cosωt ,则在空间P点(距S1为r1&,距S2为r2),两振源引起的分振动分别是y1′= A1cos〔ω(t&?&)〕y2′= A2cos〔ω(t&?&)〕P点便出现两个频率相同、初相不同的振动叠加问题(φ1&=&&,φ2&=&),且初相差Δφ=&(r2&– r1)。根据前面已经做过的讨论,有r2&?&r1&= kλ时(k = 0,±1,±2,…),P点振动加强,振幅为A1&+ A2&;r2&?&r1&=(2k&?&1)时(k = 0,±1,±2,…),P点振动削弱,振幅为│A1-A2│。4、波的反射、折射和衍射知识点和高考要求相同。5、多普勒效应当波源或者接受者相对与波的传播介质运动时,接收者会发现波的频率发生变化。多普勒效应的定量讨论可以分为以下三种情况(在讨论中注意:波源的发波频率f和波相对介质的传播速度v是恒定不变的)——a、只有接收者相对介质运动(如图3所示)设接收者以速度v1正对静止的波源运动。如果接收者静止在A点,他单位时间接收的波的个数为f&,当他迎着波源运动时,设其在单位时间到达B点,则= v1&,、在从A运动到B的过程中,接收者事实上“提前”多接收到了n个波n =&=&=&显然,在单位时间内,接收者接收到的总的波的数目为:f + n =&f&,这就是接收者发现的频率f1&。即f1&=&f&显然,如果v1背离波源运动,只要将上式中的v1代入负值即可。如果v1的方向不是正对S&,只要将v1出正对的分量即可。b、只有波源相对介质运动(如图4所示)设波源以速度v2正对静止的接收者运动。如果波源S不动,在单位时间内,接收者在A点应接收f个波,故S到A的距离:= fλ&在单位时间内,S运动至S′,即= v2&。由于波源的运动,事实造成了S到A的f个波被压缩在了S′到A的空间里,波长将变短,新的波长λ′=&=&=&=&而每个波在介质中的传播速度仍为v&,故“被压缩”的波(A接收到的波)的频率变为f2&=&=&f&当v2背离接收者,或有一定夹角的讨论,类似a情形。c、当接收者和波源均相对传播介质运动当接收者正对波源以速度v1(相对介质速度)运动,波源也正对接收者以速度v2(相对介质速度)运动,我们的讨论可以在b情形的过程上延续…f3&=&&f2&=&f&关于速度方向改变的问题,讨论类似a情形。6、声波a、乐音和噪音b、声音的三要素:音调、响度和音品c、声音的共鸣第二讲 重要模型与专题一、简谐运动的证明与周期计算物理情形:如图5所示,将一粗细均匀、两边开口的U型管固定,其中装有一定量的水银,汞柱总长为L&。当水银受到一个初始的扰动后,开始在管中振动。忽略管壁对汞的阻力,试证明汞柱做简谐运动,并求其周期。模型分析:对简谐运动的证明,只要以汞柱为对象,看它的回复力与位移关系是否满足定义式①,值得注意的是,回复力系指振动方向上的合力(而非整体合力)。当简谐运动被证明后,回复力系数k就有了,求周期就是顺理成章的事。本题中,可设汞柱两端偏离平衡位置的瞬时位移为x&、水银密度为ρ、U型管横截面积为S&,则次瞬时的回复力ΣF =&ρg2xS =&x由于L、m为固定值,可令:&= k&,而且ΣF与x的方向相反,故汞柱做简谐运动。周期T&=&2π=&2π答:汞柱的周期为2π&。学生活动:如图6所示,两个相同的柱形滚轮平行、登高、水平放置,绕各自的轴线等角速、反方向地转动,在滚轮上覆盖一块均质的木板。已知两滚轮轴线的距离为L 、滚轮与木板之间的动摩擦因素为μ、木板的质量为m ,且木板放置时,重心不在两滚轮的正中央。试证明木板做简谐运动,并求木板运动的周期。思路提示:找平衡位置(木板重心在两滚轮中央处)→ú力矩平衡和Σ?F6= 0结合求两处弹力→ú求摩擦力合力…答案:木板运动周期为2π&。巩固应用:如图7所示,三根长度均为L = 2.00m地质量均匀直杆,构成一正三角形框架ABC,C点悬挂在一光滑水平轴上,整个框架可绕转轴转动。杆AB是一导轨,一电动松鼠可在导轨上运动。现观察到松鼠正在导轨上运动,而框架却静止不动,试讨论松鼠的运动是一种什么样的运动。解说:由于框架静止不动,松鼠在竖直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。设松鼠的质量为m ,即:N = mg & & & & & & & & & & & & & &①再回到框架,其静止平衡必满足框架所受合力矩为零。以C点为转轴,形成力矩的只有松鼠的压力N、和松鼠可能加速的静摩擦力f ,它们合力矩为零,即:MN&= Mf现考查松鼠在框架上的某个一般位置(如图7,设它在导轨方向上距C点为x),上式即成:N·x = f·Lsin60° & & & & & & & & ②解①②两式可得:f =&x ,且f的方向水平向左。根据牛顿第三定律,这个力就是松鼠在导轨方向上的合力。如果我们以C在导轨上的投影点为参考点,x就是松鼠的瞬时位移。再考虑到合力与位移的方向因素,松鼠的合力与位移满足关系——=&-k其中k =&&,对于这个系统而言,k是固定不变的。显然这就是简谐运动的定义式。答案:松鼠做简谐运动。评说:这是第十三届物理奥赛预赛试题,问法比较模糊。如果理解为定性求解,以上答案已经足够。但考虑到原题中还是有定量的条件,所以做进一步的定量运算也是有必要的。譬如,我们可以求出松鼠的运动周期为:T = 2π&= 2π&= 2.64s 。二、典型的简谐运动1、弹簧振子物理情形:如图8所示,用弹性系数为k的轻质弹簧连着一个质量为m的小球,置于倾角为θ
精英家教网新版app上线啦!用app只需扫描书本条形码就能找到作业,家长给孩子检查作业更省心,同学们作业对答案更方便,扫描上方二维码立刻安装!}

我要回帖

更多关于 物体为什么会有颜色 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信