用丙酮如何测定液相中的死出血时间测定

您所在位置:
&& 文章详情
正相硅胶/选择洗脱?气相色谱法、液相色谱?质谱法检测
作者:张金虎2 林永辉3 梁 震1,3 刘建军1,4&&&&作者单位:1(福建华日食品安全检测有限公司,福州 (福清出入境检验检疫局,福清 (福建出入境检验检疫局,福州 (中国检验认证集团福建有限公司,福州 350001)
以正相硅胶/选择洗脱为核心,建立了一种适用于各种复杂基质食品中甲胺磷残留分析的前处理方法。样品用无水Na2SO4配合乙酸乙酯均质研磨,超声波辅助提取,提取液经PSA粉末分散固相萃取和LC?Si柱单一溶剂选择洗脱净化后,供气相色谱仪(GC)和超高效液相色谱?串联质谱仪(UPLC?MS/MS)分析。气相色谱采用火焰光度检测器(FPD),液相色谱?质谱联用采用电喷雾正离子方式(ESI+),T3键合技术(HSS T3)和亲水作用(HILIC)超高效液相色谱柱分离,外标法定量。方法简便、快速,通过优化前处理和上机条件,在最优条件下进行测试,气相色谱法、液相色谱?质谱联用法的定量下限(S/N≥10)为0. mg/kg,回收率分别为73%~90%, 81%~96%,相对标准偏差分别为2.4%~6.1%, 5.2%~10.8%。并对选择洗脱净化过程中的作用机理进行了研究。
【关键词】& 气相色谱法,超高效液相色谱?串联质谱法,T3键合技术色谱,残留分析,甲胺磷
&&&&&&&&&&& 1 引 言
  甲胺磷(Methamidophos),是一种高效、广谱性有机磷杀虫剂和杀螨剂,曾是我国生产和使用量最大的农药[1],虽然国家于2007年禁止其销售和使用,但违规现象屡禁不止,甲胺磷残留超标及食物中毒事件时有发生,使得检测甲胺磷残留问题成为人们关注的焦点。但甲胺磷残留检测技术一直被认为是农药残留检测技术中的难点之一,样品基质的复杂化程度直接影响到实验结果及成败[1~6]。
  通过选择对干扰物质无响应的检测器,可以在一定程度上解决基质干扰的问题。但各种检测器都有它的弱点:FPD检测器在检测含硫基干扰物质(葱、蒜等)和加工过程中使用类似物质处理过的样品(干香菇等)时干扰严重,无法进行定性与定量分析;NPD检测器对自然界中普遍存在的含氮化合物有响应,结果易受干扰,而且响应值低、峰形拖尾严重,定性与定量分析困难;MS检测器检测甲胺磷时,由于保留时间短,所监测离子的分子量小,易受干扰,信噪比较低,分析复杂基质样品时信噪比很差,无法满足要求。而且,气相色谱检测时需要在衬管中气化,甲胺磷对衬管的洁净程度极其敏感。近年来,液相色谱?质谱联用被用于检测甲胺磷,样品无需加热,不会分解,也不涉及衬管吸附,具有一定的优势。但在检测复杂基质样品[3]时,由于甲胺磷在普通反相色谱柱上基本无保留,大量共流出的杂质产生了严重的离子抑制(基质效应),甚至无响应。
  提高前处理的净化效果才是彻底解决甲胺磷问题的办法。本实验建立了一种甲胺磷残留分析的前处理新方法,选择各种复杂基质样品(黑胡椒粉、茶叶、干香菇、小麦、蒜、韭菜、姜、葱、烤鳗及黄鱼)及有代表性样品(菠菜、苹果)进行验证。由于食品中硫基干扰物质与农药性质极其相似,目前尚没有办法在前处理阶段将它们除去[7,8],必须在制样时用微波或磷酸对样品进行处理,在实际检测中难以操作。本方法实现了农药与硫基干扰物质在前处理的分离,使葱蒜类样品中的甲胺磷残留检测在GC?FPD上也能得到无干扰的色谱图。另外,本方法实现了各种不同基质样品中甲胺磷残留检测方法的统一。
  本方法将1.8 &m填料的T3键合技术HSS T3、1.7 &m填料的亲水作用Hilic超高效液相色谱柱配合电喷雾串联质谱用于有机磷农药检测,解决了普通反相色谱柱死时间问题,关于有机磷农药在这两种新型液相色谱柱上的色谱行为尚未见文献报道。实验发现甲胺磷在LC?Si固相萃取小柱上能够实现单一溶剂选择洗脱的现象,本实验对净化过程的作用机理进行了研究。
  2 实验部分
  2.1 仪器与试剂
  7890A气相色谱仪,FPD检测器,HP?5毛细管柱(30 m&0.32 mm, 0.25 &m, 美国Agilent公司);Waters Quattro Premier超高效液相色谱?串联四极杆质谱仪,ACQUITY UPLC HSS T3(2.1 mm&50 mm, 1.8 &m), ACQUITY UPLC Hilic(50 mm&2.1 mm, 1.7 &m)超高效液相色谱柱(美国Waters公司);T?18basic均质器(德国IKA公司);低速离心机(德国Sigma公司);旋转蒸发仪(德国Heidolph公司);DC?12氮吹仪(上海安谱公司);标准品(德国DR公司);PSA粉末、LC?Si固相萃取小柱500 mg/6 mL(美国Supelco公司);所用试剂均为分析纯或色谱纯;实验用水为三重过滤去离子水。
  2.2 实验方法
  2.2.1 样品提取 (1)新鲜样品 称取匀浆样品2 g至50 mL离心管中,加入乙酸乙酯20 mL,无水Na2SO4 8 g,用均质机15000 r/min均质1 min,10 mL乙酸乙酯清洗均质头,合并溶剂,4000 r/min离心5 min,上清液过无水Na2SO4(约20 g)层滤入150 mL鸡心瓶,残渣中再加入乙酸乙酯20 mL,捣碎,涡旋振荡1 min,超声波提取10 min,期间取出振摇2次,4000 r/min离心5 min,合并提取液至鸡心瓶中,40 ℃减压旋转蒸发至近干,待净化。(2)干制品 称取粉碎样品0.5 g至50 mL离心管中,加入2~3 mL水,涡旋润湿,静置2 h以上,以下步骤同新鲜样品。
  分 析 化 学第37卷第10期苏建峰等:正相硅胶/选择洗脱?气相色谱法、液相色谱?质谱法检测食品中甲胺磷残留及其作用机理研究 2.2.2 样品净化 PSA分散固相萃取净化:在鸡心瓶中加入3 mL V(丙酮)∶V(正己烷)=1∶1溶剂,超声波清洗10 s,再加入0.5 g 活化过的PSA粉末,涡旋振荡30 s,静置15 s,倾斜鸡心瓶,用吸管小心吸取上清液(只吸出约2 mL,注意不能将粉末吸入)至10 mL0玻璃管中,再用2 mL V(丙酮)∶V(正己烷)=1∶1溶剂洗粉末2次,合并提取液(约6 mL),在40 ℃用氮气吹干,待过柱净化(基质较为简单的样品可省略本步骤,直接进入下一步)。
  LC?Si柱选择洗脱净化:将LC?Si柱置于15 mL玻璃管上,在柱上装入1 cm高无水Na2SO4,用5 mL乙酸乙酯活化,再用3&1 mL乙酸乙酯涡旋洗玻璃管,过柱,液面到达无水Na2SO4顶端后继续用乙酸乙酯淋洗,自然流速,弃去前9 mL洗脱液,再收集14 mL洗脱液,在40 ℃用氮气吹干,以V(丙酮)∶V(正己烷)=1∶1溶剂定容至1 mL供GC测试;以10%甲醇水溶液定容至5 mL供UPLC?MS/MS测试。
  2.2.3 色谱?质谱条件 气相色谱条件:载气为氮气(99.999%),流速2.0 mL/min,尾吹流量60 mL/ 氢气(99.999%)流量75 mL/空气流量100 mL/min。进样口温度220 ℃,进样量2 &L,不分流进样,检测器温度250 ℃。柱温程序:60 ℃(2 min) 15 ℃/min160 ℃ 30 ℃/min280 ℃(3 min)。
  超高效液相色谱?串联质谱条件:流动相A为水,流动相B为甲醇。梯度洗脱:0~1.8 min,90%A;1.8~2.0 min,90%~10%A,保持0.52.5~3.0 min,10%~90% A,保持0.5 min。流速0.2 mL/min, 柱温30 ℃, 进样量5 &L。 离子源: 电喷雾(ESI+), 毛细管电压:1 kV,锥孔电压:25 V,碰撞电压: 15 V,二级锥孔电压:3 V,透镜电压:0.3 V,源温度:110 ℃,脱溶剂气温度:350 ℃,脱溶剂气流量:800 L/h,锥孔气流量:50 L/h,光电倍增管电压: 650 V。定量离子对m/z 142/94,定性离子对m/z 142/125。驻留时间:100 ms。
  3 结果与讨论
  3.1 样品前处理条件的选择
  3.1.1 提取 乙酸乙酯极性较强,能有效地将食品中的甲胺磷提取出来,且样品基质中的共提取杂质相对较少;使用乙腈[9]提取时共提取杂质稍多。使用无水Na2SO4一方面配合均质器研磨,增加分散的均匀度,加强溶剂与样品的接触,提高提取效率,另一方面可以将样品中的水分以结晶水的方式除去,既不对甲胺磷产生吸附,又避免甲胺磷溶于水导致回收率的损失。配合超声波辅助提取,进一步提高提取效率。实验时需先加乙酸乙酯后加无水Na2SO4,以免无水Na2SO4结块导致均质困难。由于本实验对水分的残留较为敏感,提取时要尽可能将水分除干净,否则影响到PSA填料的吸附性能,净化效果变差;影响到LC?Si柱的吸附性能,可能改变柱上的洗脱规律,甚至导致实验的失败。可将无水Na2SO4在650 ℃焙烧约4 h后备用,必要时增加用量。
  3.1.2 净化 PSA材料的硅胶表面键合有极性官能团,能从样品中吸附极性化合物,对于样品中的一些强极性杂质、有机酸、色素、金属离子及糖等具有良好的净化效果[10]。本实验中,分散固相萃取净化不是必需的步骤,常规蔬菜、水果、新鲜动物性产品等均可省略此步骤,具体步骤为:提取液浓缩近干后加入3&1 mL乙酸乙酯涡旋洗鸡心瓶,直接过柱即可,回收率提高约10%。但某些基质样品如葱蒜、干香菇、茶叶等必须采用此步骤先除去大部分的强极性杂质,以免LC?Si柱吸附饱和影响实验效果,弱极性杂质则无影响,这主要是因为使用乙酸乙酯淋洗时弱极性杂质基本无保留地通过了柱子。
  LC?Si柱的硅胶表面含有大量的硅羟基,能够吸附极性化合物,通过调变适当的淋洗液和洗脱液,可以达到吸附特定化合物或杂质的目的。甲胺磷在乙酸乙酯介质中与硅羟基反复发生吸附与解吸附过程(详见作用机理分析),3 mL提取液过柱时,当液面到达无水Na2SO4顶端后才能继续加入乙酸乙酯,以免形成涡流影响整体洗脱效果,过程中需保持溶剂浸润柱填料,不能干涸,以免柱中产生气泡或强吸附点使洗脱规律发生变化。在本实验条件下,绝大部分甲胺磷在第10~22 mL流出,实验收集第9~23 mL流出液,很好地实现了甲胺磷和杂质的分离,包括葱蒜类样品中的挥发性硫化物。其中:弱极性杂质如油脂等大部分在2 mL左右就流出柱子,随后大量色素、酚类杂质开始流出,接着一些中强极性的杂质也被乙酸乙酯洗脱出来,大部分中强极性及偏弱极性的杂质都在7 mL以前流出,而强极性杂质则被吸附在柱填料上,能与甲胺磷共流出的杂质量非常少,除茶叶样品有时会略带淡黄色外,其余均为无色透明液体。
  3.2 仪器条件的优化
  3.2.1 气相色谱条件优化 气相色谱检测甲胺磷,衬管和色谱柱前端的维护比较关键,甲胺磷对衬管的洁净程度极其敏感,新衬管内壁存在活性点,气化时会吸附甲胺磷。测试加标样品时,由于样品中的基质可能优先占据活性点,吸附减少,表现出基质增强效应;如果衬管或样品中的杂质太多,基质中的活性点也会对甲胺磷形成吸附,表现出吸附减弱效应;如杂质含量过多,甚至无信号检出。原有的前处理方法在处理复杂基质样品时无法将样品净化干净,影响上机测试,结果不稳定,再加上谱图干扰,无法进行定性与定量分析。色谱柱前端的污染也有类似现象。本实验在实际测试前先注射适量实际样品溶液和高浓度的甲胺磷标液(约1 mg/L),使衬管先行饱和[11],以减少衬管对后续样品的吸附,取得了良好的效果。各种食品基质加标样品的GC?FPD色谱图见图1。图1中蒜头样品有一些杂质峰,这些杂质峰是挥发性硫化物所产生的信号。虽然葱、韭菜样品也含有挥发性硫化物,但其色谱图中却没有杂质峰。这可能是由于大蒜具有极刺鼻的辛辣味,挥发性硫化物含量很高,在过柱时,虽然绝大部分硫化物在前期随乙酸乙酯洗出弃去,但管路、筛板、填料表面等还有极少量未能及时洗出,产生了一些杂质峰。由于其保留时间与甲胺磷不同,对其无干扰,不影响甲胺磷的定量分析,其它样品基本无杂质峰,信噪比很高。
  A.苹果(Apple); B.菠菜(Spinach); C.黄鱼(Yellow croaker); D.葱(Green onion); E.韭菜(Leeks); F.蒜(Garlic); G.干香菇(Dried mushroom); H.茶叶(Tea)。加标水平(Spiked level): A~F. 0.01 mg/ G,H. 0.04 mg/kg。3.2.2 液相色谱?质谱联用条件优化 甲胺磷是小分子、强极性化合物,在普通反相色谱柱难以产生有效的保留,大量共流出的杂质产生了严重的离子抑制,无法准确进行定性与定量分析。近年来受到普遍关注的亲水作用Hilic液相色谱柱是采用极性固定相、高含量极性有机溶剂?水相缓冲液为流动相的一种分离技术,对强极性化合物有良好的保留值[12,13],可用于该类化合物分析。本实验发现,即使以95%乙腈(或甲醇)?5%水(或缓冲盐)为流动相,对甲胺磷的保留值亦无明显改善,流速0.2 mL/min时,在2.1 mm&50 mm短柱上的保留值均不超过1 min,可能是由于甲胺磷极性还不够强,在以极性有机溶剂?水相为流动相时无法产生良好保留,所以Hilic色谱柱也不宜用于甲胺磷分析。T3键合技术HSS T3超高效液相色谱柱基于反相作用+氢键/离子交换作用双重保留机理,实现了甲胺磷在液相色谱柱上的良好保留,使其与抑制电离的基质分离,可减少电喷雾离子化时基质在雾滴表面产生的竞争抑制,降低了基质效应的影响。
  除色谱柱填料外,流动相及定容液配比对甲胺磷保留值有较大影响。在HSS T3柱上,甲醇的洗脱能力比乙腈弱,使用甲醇?水为流动相可增大保留值。加入缓冲液对本实验不利,在普通反相色谱中,加入缓冲液或少量酸[14],以抑制待测物与固定相中残留硅羟基之间的&二次作用&,可改善峰型,提高分离效果,对质谱离子化效率的提高亦有帮助。而HSS T3柱利用双重作用保留机理,其一是碳骨架部分与C18键合相发生反相作用,其二是极性官能团部分与硅胶表面的硅羟基间发生氢键/离子交换作用,加入缓冲盐则削弱了后者,而对于质谱信号的提高效果不明显,所以本实验不加缓冲液。定容液配比是一个极容易被忽视而又对本实验有重大影响的因素,应采用初始流动相的配比,即10%甲醇水溶液,若用高比例有机相定容,则由于样液中有机相的强洗脱能力,保留机理失效,甲胺磷在死时间附近流出(约0.8 min),直接导致实验失败。
  各种食品基质加标样品的UPLC?MS/MS提取离子流色谱图的峰形尖锐、对称,保留时间1.74 min,所有基质样品的谱图均无干扰峰,信噪比相对气相色谱法高3~8倍。
  3.3 方法定量下限、回收率和精密度
  目前,各国对甲胺磷限量最低值为0.01 mg/kg。用本方法对12种样品进行加标回收实验,并计算信噪比,其中新鲜样品加标水平为0.和0.05 mg/kg,干制品加标水平0.01, 0.04和0.2 mg/kg。气相色谱法对新鲜样品的定量下限(S/N&10)为0.002 mg/kg,干制品为0.006 mg/kg,回收率为73%~90%,相对标准偏差为2.4%~6.1%;液相色谱?质谱联用法对新鲜样品的定量下限(S/N&10)为0.0007 mg/kg,干制品为0.003 mg/kg,回收率(采用基质匹配标准溶液定量)为81%~96%,相对标准偏差为5.2%~10.8%。
  3.4 基质效应
  液相色谱?质谱联用测试中,基质效应对测定结果准确性的影响不容忽视[15,16],较强的基质效应有可能使实验结果产生数量级上的偏差。文献[16]提出了表征基质效应的公式:ME(%)=B/A&100,其中:ME为基质效应,B为基质匹配标准溶液响应值,A为流动相配制的标准溶液响应值。若ME=100,表明不存在基质效应的影响;若ME>100,表明存在离子增强作用;若ME<100,表明存在离子抑制作用。以此计算本实验中各种样品的ME值,苹果:94、菠菜:89、黄鱼:91、烤鳗:88、葱:93、姜:85、韭菜:89、蒜:83、小麦:70、干香菇:66、茶叶:77、黑胡椒粉:73。所有样品ME均小于100,但偏离不大,说明存在离子抑制但抑制作用较小,这主要得益于:前处理的良好净化效果、HSS T3柱双重作用保留机理的有效保留、UPLC对目标化合物与抑制电离基质的高分离度[17,18]及在仪器灵敏度允许范围内上机液的高稀释倍数。
  3.5 作用机理研究
  LC?Si柱/乙酸乙酯选择洗脱净化是本前处理方法的核心步骤。LC?Si柱是经典的正相固相萃取柱,基于正相原理使杂质吸附于柱上,目标化合物随溶剂洗出,一般使用中等偏弱极性的溶剂洗脱。乙酸乙酯是极性较强的溶剂,在这种介质中,大量中强极性及弱极性杂质均难以保留而与目标化合物一起洗出,导致净化步骤失效。本实验正利用了在乙酸乙酯介质中大量杂质均难以保留的特点,使其先于甲胺磷流出LC?Si柱,然后甲胺磷在特定阶段流出再与仍然吸附于柱上的强极性杂质分离,达到了良好的净化效果。值得注意的是:这个过程是在使用单一溶剂洗脱条件下实现的(目前的保留型固相萃取技术在洗脱步骤需要更换更强的溶剂)。在色谱柱洗脱过程中,经常还需要梯度洗脱来实现目标物的分离,而LC?Si固相萃取小柱以其极低的理论塔板数即可实现单一溶剂的选择洗脱。它必须同时满足两个条件: 目标化合物的停留时间足够长以至于能够与绝大多数干扰基质明显分离; 在不更换溶剂的情况下,目标化合物又能够被定量洗脱。考察了其它固相萃取柱(Florisil, PSA, Al2O3, NH2),结果表明:或是无法洗脱,或是几乎同时洗脱,或是无规律持续洗脱,尚未见文献报道在固相萃取小柱上实现单一溶剂的选择洗脱。为了了解净化过程中的吸附与解吸附作用机理,对60多种相关有机磷农药在LC?Si柱/乙酸乙酯选择洗脱体系中的洗脱规律进行了研究,发现仅有4种与本规律相关,而这4种有机磷正好具备相似的结构特征(2个特定的官能团), 图2 相关有机磷农药在LC?Si柱上的洗脱曲线(乙酸乙酯为溶剂)
  1.甲胺磷(Methamidophos); 2. 乙酰甲胺磷(Acephate); 3. 久效磷(Monocrotophos); 4. 氧化乐果(Omethoate); 5. 乐果(Dimethoate); 6. 速灭磷(Mevinphos); 7. 其它有机磷农药(Other Ops)。特别是2种过度态结构有机磷(分别具备其中1个特定的官能团)的发现,为作用机理的研究提供了重要信息,图2给出了上述6种具有典型结构特征有机磷的洗脱曲线。
  硅胶粒子内部孔隙的表面结构与形成的骨架内部结构不同,表面的硅原子与胶体所含的结构水形成硅羟基,这种结构的不平衡性使硅胶的表面产生自由力场,硅羟基上的氢原子易与电负性大的元素形成氢键,从而吸附极性化合物。在这个过程中,特定的官能团是影响吸附性能的关键因素。根据鲍林标度(Pauling scale),几个相关原子的电负性标度值为P:2.19,H:2.20,C:2.55,S:2.58,N:3.04,O:3.44,电负性相差较大的原子组成的多原子基团具有较强的电负性,氧磷基团中的氧和氨基基团中的氮是强电负性中心,易与硅羟基形成氢键吸附。实验发现(见图2):只有甲胺磷、乙酰甲胺磷、久效磷、氧化乐果(分子结构中同时含氧磷基团和氨基基团)能够在LC?Si柱/乙酸乙酯洗脱体系中得到良好的保留,其它50多种相关有机磷在本条件下均无明显保留,说明这两个官能团与硅羟基形成氢键吸附是其产生良好保留的主要原因。同时发现速灭磷 (只含氧磷基团)、乐果(只含氨基基团)只能产生很有限的保留,其吸附效果的加和远小于这两个官能团在同一化合物中时的吸附效果,所以甲胺磷分子结构中的氧磷基团和氨基基团在与硅羟基形成氢键吸附过程中应具有协同作用,即2个基团分别与不同硅羟基形成氢键产生的环状结构(见图3)稳定性较强,不易被解吸附。
  环状结构的解吸附成为实现单一溶剂选择洗脱的关键,需要有一种极性较强的溶剂,对该环状结构能够解吸附但解吸附速度较慢。实验发现,在LC?Si柱/乙酸乙酯洗脱体系中,由于乙酸乙酯极性较强,无键合吸附和单一氢键吸附的物质很快就被洗脱,环状结构稳定性较强,开环过程需要一定的时间(图3中的步骤④),表现为停留时间较长,而环状结构一旦被打开,就变成单一氢键解吸附,其解吸附是很快的,经标准溶液回收率测试说明95%左右的该环状结构可以被乙酸乙酯洗脱出来,满足了在极低的理论塔板数时实现单一溶剂选择洗脱的条件。
  由于乐果比速灭磷难洗脱出来,说明在本实验条件下氨基基团的吸附作用强于氧磷基团,在解吸附过程中,氧磷基团的吸附先于氨基基团被破坏,随后发生下一轮的吸附与解吸附过程,周而复始,直至完全洗脱。如此特殊的吸附与解吸附过程对目标化合物的要求非常苛刻,能满足此条件从而与甲胺磷共流出的杂质量非常少,所以可以达到极佳的净化效果。LC?Si柱/乙酸乙酯选择洗脱过程中的作用机理如图3所示。
  基于机理推测,可以对相关农药的测定作出预测:如乙酰甲胺磷在LC?Si柱的吸附行为与甲胺磷基本一致,则可直接采用此方法;氧化乐果与久效磷,只要略改变溶剂的极性及收集流出液的时段,也可采用本方法。实验结果证实了以上预测:测乙酰甲胺磷直接套用;测久效磷改为收集第12~28 mL流出液即可;测氧化乐果将乙酸乙酯改为V(丙酮)∶V(乙酸乙酯)=1∶19混合溶剂,收集第9~20 mL流出液即可套用。进一步的推理是只要分子结构中同时含有氧磷基团和氨基基团的相似化合物都可以通过对某些步骤的微调实现本方法的套用,这对于未来一些新药分析方法的开发也具有一定的借鉴意义。
【参考文献】
& 1 Xu Hao(徐 浩), Li Kang(李 康), Wang Qiang(王 强). Acta Agriculture Zhejiangensis(浙江农业学报), 2000, 12(6): 404~406
  2 Pang G F, Cao Y Z, Zhang J J, Fan C L, Liu Y M, Li X M, Jia G Q, Li Z Y, Shi Y Q, Wu Y P, Guo T T. J. Chromatogr. A, 2006, 1125(1): 1~30
  3 Maurice H, Andre de K. J. Chromatogr. A, 2007, 1154(1): 3~25
  4 Eiji U, Harumi O, Isao S, Hiroshi M. J. AOAC. Int., 2003, 86(6):
  5 Pang G F, Liu Y M, Fan C L, Zhang J J, Cao Y Z, Li X M, Li Z Y, Wu Y P, Guo T T. Anal. Bioanal. Chem., :
  6 Darinka S, Lucija Z. J. Chromatogr. A, 2003, 1015(1): 185~198
  7 Ji Su?Juan(纪淑娟), Liu Chang?Jiang(刘长江), Sato Motoaki(佐藤元昭), Li Dong?Xiu(李冬秀), Li Jun?Qi(李俊奇). PTCA Part B:Chem.Anal.(理化检验?化学分册), 2006, 42(11): 914~917
  8 Zhang H, Chen Z L, Yang G S, Wang W Z, Li X Q, Li R J, Wu Y J. Food Chemistry, 2008, 108(1): 322~328
  9 Liu Li?Bin(刘荔彬), Hashi Yu?Ki(端裕树), Qin Ya?Ping(秦亚萍), Zhou Hai?Xia(周海霞), Lin Jin?Ming(林金明).Chinese J.Anal.Chem.(分析化学), 2006, 34(6): 783~786
  10 Su Jian?Feng(苏建峰), Lin Gu?Yuan(林谷园), Lian Wen?Hao(连文浩), Zhang Jin?Hu(张金虎), Chen Dong?Hua(陈冬花). Chinese Journal of Chromatography(色谱), 2008, 26(3): 292~300
  11 Su Jian?Feng(苏建峰), Lin Gu?Yuan(林谷园), Chen Jin?Xing(陈劲星), Chen Jing(陈 晶), Zhang Jin?Hu(张金虎), Hu Chao?Yang(胡朝阳). Chinese J.Anal.Chem.(分析化学), 2008, 36(4): 545~548
  12 Alpert A J.J. Chromatogr., 1990, 499: 177~196
  13 Weng N D. J. Chromatogr. B, 2003, 796(2): 209~224
  14 Bronner W E, Beecher G R. J. Chromatogr. A, 1998, 805: 137~142
  15 Dai Lin (戴 琳), Xu Jin?Zhong(徐锦忠), Ding Tao(丁 涛), Zhu Jun?Jie(朱俊杰), Wu Bin(吴 斌), Shen Chong?Yu(沈崇钰), Jiang Yuan(蒋 原).Chinese J.Anal.Chem.(分析化学), 2008, 36(1): 87~90
  16 Matuszewski B K, Constanzer M L, Chavez?Eng C M. Anal.Chem., 2003, 75(13):
  17 Jet C V, Willy E L.Journal of the American Society for Mass Spectrometry, 2008, 19(5): 713~718
  18 Chen J H, Wang F M, Liu J, Frank S L, Wang X R, Yang H H.Anal.Chim. Acta, 2008, 613(2): 184~195Determination of Residual Methamidophos in Various Food by
&&订阅登记:
请您在下面输入常用的Email地址、职业以便我们定期通过邮箱发送给您最新的相关医学信息,感谢您浏览首席医学网!
耳鼻喉头颈外科
胸心血管外科
耳鼻喉头颈外科
胸心血管外科
副主任医师
副主任技师
副主任药师
副主任医师
副主任技师
副主任药师
论文写作技巧君,已阅读到文档的结尾了呢~~
高效液相色谱法死时间确定的经验方法研究
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
高效液相色谱法死时间确定的经验方法研究
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer-4.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口友情链接LINK
copyright (C) 2014 湖北武当动物药业有限责任公司鄂ICP备号-1技术支持:谷里科技
QQ在线客服
专家服务:北京国谱科技高效液相色谱-资料下载-北京国谱科技有限公司
<img id="zhantai_logo" src=/1/007519.jpg alt=北京国谱科技有限公司 onload="120<=this.width?this.width=120:this.90
北京国谱科技有限公司
气相色谱仪|国产气相色谱仪|国产二手气相色谱仪|北京气相色谱仪|北京二手气相色谱仪|进口气相色谱仪|进口二手气相色谱仪气相色谱仪耗材|液相色谱仪|原子吸收分光光度计|原子荧光分光光度计|紫外、可见分光光度计|微波消解仪|超纯水器/超纯水机|超声波处理器|气相色谱仪配套产品|液相色谱仪配套产品
&您所在位置:首页 & & 北京国谱科技高效液相色谱
请输入产品关键字:
北京国谱科技有限公司
地址:北京市,昌平区,沙河镇高教大楼3单元
联系人:王强
北京国谱科技高效液相色谱
提 供 商:资料大小:14.9KB
文件类型:JPG 图片下载次数:64次
资料类型:未知文件浏览次数:1286次
详细介绍:
北京国谱科技高效液相色谱我国药典收载高效液相色谱法项目和数量比较表:方法项目数量1985年版1990年版1995年版2000年版HPLC法鉴别934150检查1240160含量测定760117387鉴于HPLC应用在药品分析中越来越多,因此每一个药品分析人员应该掌握并应用HPLC。I.概论...&2一、液相色谱理论发展简况...&2二、HPLC的特点和优点...&2三、色谱法分类...&3四、色谱分离原理...&3II.基本概念和理论...&5一、基本概念和术语...&5二、塔板理论...&8三、速率理论(又称随机模型理论)...&9III.HPLC系统...&10一、输液泵...&11二、进样器...&13三、色谱柱...&14四、检测器...&17五、数据处理和计算机控制系统...&20六、恒温装置...&20IV.固定相和流动相...&20一、基质(担体)...&20二、化学键合固定相...&22三、流动相...&231.流动相的性质要求...&232.流动相的选择...&243.流动相的pH值...&244.流动相的脱气...&255.流动相的滤过...&256.流动相的贮存...&267.卤代有机溶剂应特别注意的问题...&268.HPLC用水...&26V.HPLC应用...&27一、样品测定...&27二、方法研究...&27附件:高效液相色谱法(HPLC)复核细则...&28一、对起草单位的要求:...&28二、对复核单位的要求:...&28&I.概论一、液相色谱理论发展简况色谱法的分离原理是:溶于流动相(mobile phase)中的各组分经过固定相时,由于与固定相(stationary phase)发生作用(吸附、分配、离子吸引、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。又称为色层法、层析法。色谱法最早是由俄国植物学家茨维特(Tswett)在1906年研究用碳酸钙分离植物色素时发现的,色谱法(Chromatography)因之得名。后来在此基础上发展出纸色谱法、薄层色谱法、气相色谱法、液相色谱法。液相色谱法开始阶段是用大直径的玻璃管柱在室温和常压下用液位差输送流动相,称为经典液相色谱法,此方法柱效低、时间长(常有几个小时)。高效液相色谱法(High performance Liquid Chromatography,HPLC)是在经典液相色谱法的基础上,于60年代后期引入了气相色谱理论而迅速发展起来的。它与经典液相色谱法的区别是填料颗粒小而均匀,小颗粒具有高柱效,但会引起高阻力,需用高压输送流动相,故又称高压液相色谱法(High Pressure& Liquid& Chromatography,HPLC)。又因分析速度快而称为高速液相色谱法(High Speed Liquid Chromatography,HSLP)。也称现代液相色谱。二、HPLC的特点和优点HPLC有以下特点:高压——压力可达150~300 Kg/cm2。色谱柱每米降压为75 Kg/cm2以上。高速——流速为0.1~10.0 ml/min。高效——可达5000塔板每米。在一根柱中同时分离成份可达100种。高灵敏度——紫外检测器灵敏度可达0.01ng。同时消耗样品少。HPLC与经典液相色谱相比有以下优点:速度快——通常分析一个样品在15~30 min,有些样品甚至在5 min内即可完成。分辨率高——可选择固定相和流动相以达到最佳分离效果。灵敏度高——紫外检测器可达0.01ng,荧光和电化学检测器可达0.1pg。柱子可反复使用——用一根色谱柱可分离不同的化合物。样品量少,容易回收——样品经过色谱柱后不被破坏,可以收集单一组分或做制备。三、色谱法分类按两相的物理状态可分为:气相色谱法(GC)和液相色谱法(LC)。气相色谱法适用于分离挥发性化合物。GC根据固定相不同又可分为气固色谱法(GSC)和气液色谱法(GLC),其中以GLC应用最广。液相色谱法适用于分离低挥发性或非挥发性、热稳定性差的物质。LC同样可分为液固色谱法(LSC)和液液色谱法(LLC)。此外还有超临界流体色谱法(SFC),它以超临界流体(界于气体和液体之间的一种物相)为流动相(常用CO2),因其扩散系数大,能很快达到平衡,故分析时间短,特别适用于手性化合物的拆分。按原理分为吸附色谱法(AC)、分配色谱法(DC)、离子交换色谱法(IEC)、排阻色谱法(EC,又称分子筛、凝胶过滤(GFC)、凝胶渗透色谱法(GPC)和亲和色谱法。(此外还有电泳。)按操作形式可分为纸色谱法(PC)、薄层色谱法(TLC)、柱色谱法。四、色谱分离原理高效液相色谱法按分离机制的不同分为液固吸附色谱法、液液分配色谱法(正相与反相)、离子交换色谱法、离子对色谱法及分子排阻色谱法。1.液固色谱法 使用固体吸附剂,被分离组分在色谱柱上分离原理是根据固定相对组分吸附力大小不同而分离。分离过程是一个吸附-解吸附的平衡过程。常用的吸附剂为硅胶或氧化铝,粒度5~10μm。适用于分离分子量200~1000的组分,大多数用于非离子型化合物,离子型化合物易产生拖尾。常用于分离同分异构体。2.液液色谱法 使用将特定的液态物质涂于担体表面,或化学键合于担体表面而形成的固定相,分离原理是根据被分离的组分在流动相和固定相中溶解度不同而分离。分离过程是一个分配平衡过程。涂布式固定相应具有良好的惰性;流动相必须预先用固定相饱和,以减少固定相从担体表面流失;温度的变化和不同批号流动相的区别常引起柱子的变化;另外在流动相中存在的固定相也使样品的分离和收集复杂化。由于涂布式固定相很难避免固定液流失,现在已很少采用。现在多采用的是化学键合固定相,如C18、C8、氨基柱、氰基柱和苯基柱。液液色谱法按固定相和流动相的极性不同可分为正相色谱法(NPC)和反相色谱法(RPC)。正相色谱法 采用极性固定相(如聚乙二醇、氨基与腈基键合相);流动相为相对非极性的疏水性溶剂(烷烃类如正已烷、环已烷),常加入乙醇、四氢呋喃、三氯甲烷等以调节组分的保留时间。常用于分离中等极性和极性较强的化合物(如酚类、胺类、羰基类及氨基酸类等)。反相色谱法 一般用非极性固定相(如C18、C8);流动相为水或缓冲液,常加入甲醇、乙腈、异丙醇、丙酮、四氢呋喃等与水互溶的有机溶剂以调节保留时间。适用于分离非极性和极性较弱的化合物。RPC在现代液相色谱中应用最为广泛,据统计,它占整个HPLC应用的80%左右。随着柱填料的快速发展,反相色谱法的应用范围逐渐扩大,现已应用于某些无机样品或易解离样品的分析。为控制样品在分析过程的解离,常用缓冲液控制流动相的pH值。但需要注意的是,C18和C8使用的pH值通常为2.5~7.5(2~8),太高的pH值会使硅胶溶解,太低的pH值会使键合的烷基脱落。有报告新商品柱可在pH 1.5~10范围操作。正相色谱法与反相色谱法比较表正相色谱法反相色谱法固定相极性高~中中~低流动相极性低~中中~高组分洗脱次序极性小先洗出极性大先洗出从上表可看出,当极性为中等时正相色谱法与反相色谱法没有明显的界线(如氨基键合固定相)。3.离子交换色谱法 固定相是离子交换树脂,常用苯乙烯与二乙烯交联形成的聚合物骨架,在表面未端芳环上接上羧基、磺酸基(称阳离子交换树脂)或季氨基(阴离子交换树脂)。被分离组分在色谱柱上分离原理是树脂上可电离离子与流动相中具有相同电荷的离子及被测组分的离子进行可逆交换,根据各离子与离子交换基团具有不同的电荷吸引力而分离。缓冲液常用作离子交换色谱的流动相。被分离组分在离子交换柱中的保留时间除跟组分离子与树脂上的离子交换基团作用强弱有关外,它还受流动相的pH值和离子强度影响。pH值可改变化合物的解离程度,进而影响其与固定相的作用。流动相的盐浓度大,则离子强度高,不利于样品的解离,导致样品较快流出。离子交换色谱法主要用于分析有机酸、氨基酸、多肽及核酸。4.离子对色谱法 又称偶离子色谱法,是液液色谱法的分支。它是根据被测组分离子与离子对试剂离子形成中性的离子对化合物后,在非极性固定相中溶解度增大,从而使其分离效果改善。主要用于分析离子强度大的酸碱物质。分析碱性物质常用的离子对试剂为烷基磺酸盐,如戊烷磺酸钠、辛烷磺酸钠等。另外高氯酸也可与多种碱性样品形成很强的离子对。分析酸性物质常用四丁基季铵盐,如四丁基溴化铵、四丁基铵磷酸盐。离子对色谱法常用ODS柱(即C18),流动相为甲醇-水或乙腈-水,水中加入3~10 mmol/L的离子对试剂,在一定的pH值范围内进行分离。被测组分保时间与离子对性质、浓度、流动相组成及其pH值、离子强度有关。5.排阻色谱法 固定相是有一定孔径的多孔性填料,流动相是可以溶解样品的溶剂。小分子量的化合物可以进入孔中,滞留时间长;大分子量的化合物不能进入孔中,直接随流动相流出。它利用分子筛对分子量大小不同的各组分排阻能力的差异而完成分离。常用于分离高分子化合物,如组织提取物、多肽、蛋白质、核酸等。II.基本概念和理论一、基本概念和术语1.色谱图和峰参数?色谱图(chromatogram)——样品流经色谱柱和检测器,所得到的信号-时间曲线,又称色谱流出曲线(elution profile)。?基线(base line)——经流动相冲洗,柱与流动相达到平衡后,检测器测出一段时间的流出曲线。一般应平行于时间轴。?噪音(noise)——基线信号的波动。通常因电源接触不良或瞬时过载、检测器不稳定、流动相含有气泡或色谱柱被污染所致。?漂移(drift)——基线随时间的缓缓变化。主要由于操作条件如电压、温度、流动相及流量的不稳定所引起,柱内的污染物或固定相不断被洗脱下来也会产生漂移。?色谱峰(peak)——组分流经检测器时响应的连续信号产生的曲线。流出曲线上的突起部分。正常色谱峰近似于对称形正态分布曲线(高斯Gauss曲线)。不对称色谱峰有两种:前延峰(leading peak)和拖尾峰(tailing peak)。前者少见。?拖尾因子(tailing factor,T)——T=,用以衡量色谱峰的对称性。也称为对称因子(symmetry factor)或不对称因子(asymmetry factor)。《中国药典》规定T应为0.95~1.05。T<0.95为前延峰,T>1.05为拖尾峰。?峰底——基线上峰的起点至终点的距离。?峰高(peak height,h)——峰的最高点至峰底的距离。?峰宽(peak width,W)——峰两侧拐点处所作两条切线与基线的两个交点间的距离。W=4σ?半峰宽(peak width at half-height,Wh/2)——峰高一半处的峰宽。Wh/2=2.355σ?标准偏差(standard deviation,σ)——正态分布曲线x=&1时(拐点)的峰宽之半。正常峰的拐点在峰高的0.607倍处。标准偏差的大小说明组分在流出色谱柱过程中的分散程度。σ小,分散程度小、极点浓度高、峰形瘦、柱效高;反之,σ大,峰形胖、柱效低。?峰面积(peak area,A)——峰与峰底所包围的面积。A=×σ×h=2.507 σ h=1.064 Wh/2&h2.定性参数(保留值)?死时间(dead time,t0)——不保留组分的保留时间。即流动相(溶剂)通过色谱柱的时间。在反相HPLC中可用苯磺酸钠来测定死时间。?死体积(dead volume,V0)——由进样器进样口到检测器流动池未被固定相所占据的空间。它包括4部分:进样器至色谱柱管路体积、柱内固定相颗粒间隙(被流动相占据,Vm)、柱出口管路体积、检测器流动池体积。其中只有Vm参与色谱平衡过程,其它3部分只起峰扩展作用。为防止峰扩展,这3部分体积应尽量减小。V0=F×t0(F为流速)?保留时间(retention time,tR)——从进样开始到某个组分在柱后出现浓度极大值的时间。?保留体积(retention volume,VR)——从进样开始到某组分在柱后出现浓度极大值时流出溶剂的体积。又称洗脱体积。VR=F×tR?调整保留时间(adjusted retention time,t'R)——扣除死时间后的保留时间。也称折合保留时间(reduced retention time)。在实验条件(温度、固定相等)一定时,t'R只决定于组分的性质,因此,t'R(或tR)可用于定性。t'R=tR-t0?调整保留体积(adjusted retention volume,V'R)——扣除死体积后的保留体积。V'R=VR-V0或V'R=F×t'R3.柱效参数?理论塔板数(theoretical plate number,N)——用于定量表示色谱柱的分离效率(简称柱效)。N取决于固定相的种类、性质(粒度、粒径分布等)、填充状况、柱长、流动相的种类和流速及测定柱效所用物质的性质。如果峰形对称并符合正态分布,N可近似表示为:N=()2=16()2=5.54()2N为常量时,W随tR成正比例变化。在一张多组分色谱图上,如果各组分含量相当,则后洗脱的峰比前面的峰要逐渐加宽,峰高则逐渐降低。用半峰宽计算理论塔数比用峰宽计算更为方便和常用,因为半峰宽更易准确测定,尤其是对稍有拖尾的峰。N与柱长成正比,柱越长,N越大。用N表示柱效时应注明柱长,如果未注明,则表示柱长为1米时的理论塔板数。(一般HPLC柱的N在1000以上。)若用调整保留时间(t'R)计算理论塔板数,所得值称为有效理论塔板数(N有效或Neff)。?理论塔板高度(theoretical plate height,H)——每单位柱长的方差。H=。实际应用时往往用柱长L和理论塔板数计算:H=,H有效=。4.相平衡参数?分配系数(distribution coefficient,K)——在一定温度下,化合物在两相间达到分配平衡时,在固定相与流动相中的浓度之比。K=。分配系数与组分、流动相和固定相的热力学性质有关,也与温度、压力有关。在不同的色谱分离机制中,K有不同的概念:吸附色谱法为吸附系数,离子交换色谱法为选择性系数 (或称交换系数),凝胶色谱法为渗透参数。但一般情况可用分配系数来表示。在条件(流动相、固定相、温度和压力等)一定,样品浓度很低时(Cs、Cm很小)时,K只取决于组分的性质,而与浓度无关。这只是理想状态下的色谱条件,在这种条件下,得到的色谱峰为正常峰;在许多情况下,随着浓度的增大,K减小,这时色谱峰为拖尾峰;而有时随着溶质浓度增大,K也增大,这时色谱峰为前延峰。因此,只有尽可能减少进样量,使组分在柱内浓度降低,K恒定时,才能获得正常峰。在同一色谱条件下,样品中K值大的组分在固定相中滞留时间长,后流出色谱柱;K值小的组分则滞留时间短,先流出色谱柱。混合物中各组分的分配系数相差越大,越容易分离,因此混合物中各组分的分配系数不同是色谱分离的前提。在HPLC中,固定相确定后,K主要受流动相的性质影响。实践中主要靠调整流动相的组成配比及pH值,以获得组分间的分配系数差异及适宜的保留时间,达到分离的目的。?容量因子(capacity factor,k)——化合物在两相间达到分配平衡时,在固定相与流动相中的量之比。k=。因此容量因子也称质量分配系数。分配系数、容量因子与保留时间之间有如下关系:k===K=,t'R=k t0。上式说明容量因子的物理意义:表示一个组分在固定相中停留的时间(t'R)是不保留组分保留时间(t0)的几倍。k=0时,化合物全部存在于流动相中,在固定相中不保留,t'R=0;k越大,说明固定相对此组分的容量越大,出柱慢,保留时间越长。容量因子与分配系数的不同点是:K取决于组分、流动相、固定相的性质及温度,而与体积Vs、Vm无关;k除了与性质及温度有关外,还与Vs、Vm有关。由于t'R、t0较Vs、Vm易于测定,所以容量因子比分配系数应用更广泛。?选择性因子(selectivity factor,α)——相邻两组分的分配系数或容量因子之比。α==&&(设k2>k1)。因k=t'R/t0,则α=,所以α又称为相对保留时间(《美国药典》)。要使两组分得到分离,必须使α≠1。α与化合物在固定相和流动相中的分配性质、柱温有关,与柱尺寸、流速、填充情况无关。从本质上来说,α的大小表示两组分在两相间的平衡分配热力学性质的差异,即分子间相互作用力的差异。5.分离参数?分离度(resolution,R)——相邻两峰的保留时间之差与平均峰宽的比值。也叫分辨率,表示相邻两峰的分离程度。R=。当W1=W2时,R=。当R=1时,称为4σ分离,两峰基本分离,裸露峰面积为95.4%,内侧峰基重叠约2%。R=1.5时,称为6σ分离,裸露峰面积为99.7%。R≥1.5称为完全分离。《中国药典》规定R应大于1.5。?基本分离方程——分离度与三个色谱基本参数有如下关系:R=××其中称为柱效项,为柱选择性项,为柱容量项。柱效项与色谱过程动力学特性有关,后两项与色谱过程热力学因素有关。从基本分离方程可看出,提高分离度有三种途径:①增加塔板数。方法之一是增加柱长,但这样会延长保留时间、增加柱压。更好的方法是降低塔板高度,提高柱效。②增加选择性。当α=1时,R=0,无论柱效有多高,组分也不可能分离。一般可以采取以下措施来改变选择性:a.&改变流动相的组成及pH值;b.&改变柱温;c.&改变固定相。③改变容量因子。这常常是提高分离度的最容易方法,可以通过调节流动相的组成来实现。k2趋于0时,R也趋于0;k2增大,R也增大。但k2不能太大,否则不但分离时间延长,而且峰形变宽,会影响分离度和检测灵敏度。一般k2在1~10范围内,最好为2~5,窄径柱可更小些。二、塔板理论1.塔板理论的基本假设塔板理论是Martin和Synger首先提出的色谱热力学平衡理论。它把色谱柱看作分馏塔,把组分在色谱柱内的分离过程看成在分馏塔中的分馏过程,即组分在塔板间隔内的分配平衡过程。塔板理论的基本假设为:1)&色谱柱内存在许多塔板,组分在塔板间隔(即塔板高度)内完全服从分配定律,并很快达到分配平衡。2)&样品加在第0号塔板上,样品沿色谱柱轴方向的扩散可以忽略。3)&流动相在色谱柱内间歇式流动,每次进入一个塔板体积。4)&在所有塔板上分配系数相等,与组分的量无关。虽然以上假设与实际色谱过程不符,如色谱过程是一个动态过程,很难达到分配平衡;组分沿色谱柱轴方向的扩散是不可避免的。但是塔板理论导出了色谱流出曲线方程,成功地解释了流出曲线的形状、浓度极大点的位置,能够评价色谱柱柱效。2.色谱流出曲线方程及定量参数(峰高h和峰面积A)根据塔板理论,流出曲线可用下述正态分布方程来描述:C=e  或  C=e由色谱流出曲线方程可知:当t=tR时,浓度C有极大值,Cmax=。Cmax就是色谱峰的峰高。因此上式说明:①当实验条件一定时(即σ一定),峰高h与组分的量C0(进样量)成正比,所以正常峰的峰高可用于定量分析。②当进样量一定时,σ越小(柱效越高),峰高越高,因此提高柱效能提高HPLC分析的灵敏度。由流出曲线方程对V(0~∞)&求积分,即得出色谱峰面积A=×σ×Cmax=C0。可见A相当于组分进样量C0,因此是常用的定量参数。把Cmax=h和Wh/2=2.355σ代入上式,即得A=1.064×Wh/2×h,此为正常峰的峰面积计算公式。三、速率理论(又称随机模型理论)1.液相色谱速率方程1956年荷兰学者Van Deemter等人吸收了塔板理论的概念,并把影响塔板高度的动力学因素结合起来,提出了色谱过程的动力学理论——速率理论。它把色谱过程看作一个动态非平衡过程,研究过程中的动力学因素对峰展宽(即柱效)的影响。后来Giddings和Snyder等人在Van Deemter方程(H=A+B/u+Cu,后称气相色谱速率方程)的基础上,根据液体与气体的性质差异,提出了液相色谱速率方程(即Giddings方程):H=2λdp++\s\up 5(2p+\s\up 5(2p+\s\up 5(2f2.影响柱效的因素1)涡流扩散(eddy diffusion)。由于色谱柱内填充剂的几何结构不同,分子在色谱柱中的流速不同而引起的峰展宽。涡流扩散项A=2λdp,dp为填料直径,λ为填充不规则因子,填充越不均匀λ越大。HPLC常用填料粒度一般为3~10μm,最好3~5μm,粒度分布RSD≤5%。但粒度太小难于填充均匀(λ大),且会使柱压过高。大而均匀(球形或近球形)的颗粒容易填充规则均匀,λ越小。总的说来,应采用细而均匀的载体,这样有助于提高柱效。毛细管无填料,A=0。2)分子扩散(molecular diffusion)。又称纵向扩散。由于进样后溶质分子在柱内存在浓度梯度,导致轴向扩散而引起的峰展宽。分子扩散项B/u=2γDm/u。u为流动相线速度,分子在柱内的滞留时间越长(u小),展宽越严重。在低流速时,它对峰形的影响较大。Dm为分子在流动相中的扩散系数,由于液相的Dm很小,通常仅为气相的10-4~10-5,因此在HPLC中,只要流速不太低的话,这一项可以忽略不计。γ是考虑到填料的存在使溶质分子不能自由地轴向扩散,而引入的柱参数,用以对Dm进行校正。γ一般在0.6~0.7左右,毛细管柱的γ=1。3)传质阻抗(mass transfer resistance)。由于溶质分子在流动相、静态流动相和固定相中的传质过程而导致的峰展宽。溶质分子在流动相和固定相中的扩散、分配、转移的过程并不是瞬间达到平衡,实际传质速度是有限的,这一时间上的滞后使色谱柱总是在非平衡状态下工作,从而产生峰展宽。液相色谱的传质阻抗项Cu又分为三项。①流动相传质阻抗Hm=Cmd2pu/Dm,Cm为常数。这是由于在一个流路中流路中心和边缘的流速不等所致。靠近填充颗粒的流动相流速较慢,而中心较快,处于中心的分子还未来得及与固定相达到分配平衡就随流动相前移,因而产生峰展宽。②静态流动相传质阻抗Hsm=Csmd2pu/Dm,Csm为常数。这是由于溶质分子进入处于固定相孔穴内的静止流动相中,晚回到流路中而引起峰展宽。Hsm对峰展宽的影响在整个传质过程中起着主要作用。固定相的颗粒越小,微孔孔径越大,传质阻力就越小,传质速率越高。所以改进固定相结构,减小静态流动相传质阻力,是提高液相色谱柱效的关键。Hm和Hsm都与固定相的粒径平方d2p&成正比,与扩散系数Dm成反比。因此应采用低粒度固定相和低粘度流动相。高柱温可以增大Dm,但用有机溶剂作流动相时,易产生气泡,因此一般采用室温。③固定相传质阻抗Hs=Csd2fu/Ds(液液分配色谱),Cs为常数,df为固定液的液膜厚度,Ds为分子在固定液中的扩散系数。在分配色谱中Hs与df的平方成正比,在吸附色谱中Hs与吸附和解吸速度成反比。因此只有在厚涂层固定液、深孔离子交换树脂或解吸速度慢的吸附色谱中,Hs才有明显影响。采用单分子层的化学键合固定相时Hs可以忽略。从速率方程式可以看出,要获得高效能的色谱分析,一般可采用以下措施:①进样时间要短。②填料粒度要小。③改善传质过程。过高的吸附作用力可导致严重的峰展宽和拖尾,甚至不可逆吸附。④适当的流速。以H对u作图,则有一最佳线速度uopt,在此线速度时,H最小。一般在液相色谱中,uopt很小(大约0.03~0.1mm/s),在这样的线速度下分析样品需要很长时间,一般来说都选在1mm/s的条件下操作。⑤较小的检测器死体积。3.柱外效应速率理论研究的是柱内峰展宽因素,实际在柱外还存在引起峰展宽的因素,即柱外效应(色谱峰在柱外死空间里的扩展效应)。色谱峰展宽的总方差等于各方差之和,即:σ2=σ2柱内+σ2柱外+σ2其它柱外效应主要由低劣的进样技术、从进样点到检测池之间除柱子本身以外的所有死体积所引起。为了减少柱外效应,首先应尽可能减少柱外死体积,如使用“零死体积接头"连接各部件,管道对接宜呈流线形,检测器的内腔体积应尽可能小。研究表明柱外死体积之和应<VR/。其次,希望将样品直接进在柱头的中心部位,但是由于进样阀与柱间有接头,柱外效应总是存在的。此外,要求进样体积≤VR/2。柱外效应的直观标志是容量因子k小的组分(如k<2)峰形拖尾和峰宽增加得更为明显;k大的组分影响不显著。由于HPLC的特殊条件,当柱子本身效率越高(N越大),柱尺寸越小时,柱外效应越显得突出。而在经典LC中则影响相对较小。III.HPLC系统HPLC系统一般由输液泵、进样器、色谱柱、检测器、数据记录及处理装置等组成。其中输液泵、色谱柱、检测器是关键部件。有的仪器还有梯度洗脱装置、在线脱气机、自动进样器、预柱或保护柱、柱温控制器等,现代HPLC仪还有微机控制系统,进行自动化仪器控制和数据处理。制备型HPLC仪还备有自动馏分收集装置。最早的液相色谱仪由粗糙的高压泵、低效的柱、固定波长的检测器、绘图仪,绘出的峰是通过手工测量计算峰面积。后来的高压泵精度很高并可编程进行梯度洗脱,柱填料从单一品种发展至几百种类型,检测器从单波长至可变波长检测器、可得三维色谱图的二极管阵列检测器、可确证物质结构的质谱检测器。数据处理不再用绘图仪,逐渐取而代之的是最简单的积分仪、计算机、工作站及网络处理系统。目前常见的HPLC仪生产厂家国外有Waters公司、Agilent公司(原HP公司)、岛津公司等,国内有北京国谱科技有限公司、大连依利特公司、上海分析仪器厂、北京分析仪器厂等。一、输液泵1.泵的构造和性能输液泵是HPLC系统中最重要的部件之一。泵的性能好坏直接影响到整个系统的质量和分析结果的可靠性。输液泵应具备如下性能:①流量稳定,其RSD应<0.5%,这对定性定量的准确性至关重要;②流量范围宽,分析型应在0.1~10 ml/min范围内连续可调,制备型应能达到100 ml/min;③输出压力高,一般应能达到150~300 kg/cm2;④液缸容积小;⑤密封性能好,耐腐蚀。泵的种类很多,按输液性质可分为恒压泵和恒流泵。恒流泵按结构又可分为螺旋注射泵、柱塞往复泵和隔膜往复泵。恒压泵受柱阻影响,流量不稳定;螺旋泵缸体太大,这两种泵已被淘汰。目前应用最多的是柱塞往复泵。柱塞往复泵的液缸容积小,可至0.1ml,因此易于清洗和更换流动相,特别适合于再循环和梯度洗脱;改变电机转速能方便地调节流量,流量不受柱阻影响;泵压可达400 kg/cm2。其主要缺点是输出的脉冲性较大,现多采用双泵系统来克服。双泵按连接方式可分为并联式和串联式,一般说来并联泵的流量重现性较好(RSD为0.1%左右,串联泵为0.2~0.3%),但出故障的机会较多(因多一单向阀),价格也较贵。各品牌输液泵的基本参数:项目Waters 515型HP 1100型LC-10ATvp型Elite P200 II型检定要求流速范围0.001~100.001~100.001~9.9990.01~4.99调节精度0.0010.0010.0010.01流量精密度RSD 0.1%0.15%(&0.3%)0.3%0.5%1.5%流量准确度&2.0%&5.0%&2.0%最高压力4000 Psi40 MPa39.2 MPa40.0 MPa密封圈寿命流动相的脉冲2.泵的使用和维护注意事项为了延长泵的使用寿命和维持其输液的稳定性,必须按照下列注意事项进行操作:①防止任何固体微粒进入泵体,因为尘埃或其它任何杂质微粒都会磨损柱塞、密封环、缸体和单向阀,因此应预先除去流动相中的任何固体微粒。流动相最好在玻璃容器内蒸馏,而常用的方法是滤过,可采用Millipore滤膜(0.2μm或0.45μm)等滤器。泵的入口都应连接砂滤棒(或片)。输液泵的滤器应经常清洗或更换。②流动相不应含有任何腐蚀性物质,含有缓冲液的流动相不应保留在泵内,尤其是在停泵或更长时间的情况下。如果将含缓冲液的流动相留在泵内,由于蒸发或泄漏,甚至只是由于溶液的静置,就可能析出盐的微细晶体,这些晶体将和上述固体微粒一样损坏密封环和柱塞等。因此,必须泵入纯水将泵充分清洗后,再换成适合于色谱柱保存和有利于泵维护的溶剂(对于反相键合硅胶固定相,可以是甲醇或甲醇-水)。③泵工作时要留心防止溶剂瓶内的流动相被用完,否则空泵运转也会磨损柱塞、缸体或密封环,最终产生漏液。④输液泵的工作压力决不要超过规定的最高压力,否则会使高压密封环变形,产生漏液。⑤流动相应该先脱气,以免在泵内产生气泡,影响流量的稳定性,如果有大量气泡,泵就无法正常工作。如果输液泵产生故障,须查明原因,采取相应措施排除故障:①没有流动相流出,又无压力指示。原因可能是泵内有大量气体,这时可打开泄压阀,使泵在较大流量(如5ml/min)下运转,将气泡排尽,也可用一个50ml针筒在泵出口处帮助抽出气体。另一个可能原因是密封环磨损,需更换。②压力和流量不稳。原因可能是气泡,需要排除;或者是单向阀内有异物,可卸下单向阀,浸入丙酮内超声清洗。有时可能是砂滤棒内有气泡,或被盐的微细晶粒或滋生的微生物部分堵塞,这时,可卸下砂滤棒浸入流动相内超声除气泡,或将砂滤棒浸入稀酸(如4mol/L硝酸)内迅速除去微生物,或将盐溶解,再立即清洗。③压力过高的原因是管路被堵塞,需要清除和清洗。压力降低的原因则可能是管路有泄漏。检查堵塞或泄漏时应逐段进行。3.梯度洗脱HPLC有等强度(isocratic)和梯度(gradient)洗脱两种方式。等度洗脱是在同一分析周期内流动相组成保持恒定,适合于组分数目较少,性质差别不大的样品。梯度洗脱是在一个分析周期内程序控制流动相的组成,如溶剂的极性、离子强度和pH值等,用于分析组分数目多、性质差异较大的复杂样品。采用梯度洗脱可以缩短分析时间,提高分离度,改善峰形,提高检测灵敏度,但是常常引起基线漂移和降低重现性。梯度洗脱有两种实现方式:低压梯度(外梯度)和高压梯度(内梯度)。两种溶剂组成的梯度洗脱可按任意程度混合,即有多种洗脱曲线:线性梯度、凹形梯度、凸形梯度和阶梯形梯度。线性梯度最常用,尤其适合于在反相柱上进行梯度洗脱。在进行梯度洗脱时,由于多种溶剂混合,而且组成不断变化,因此带来一些特殊问题,必须充分重视:①要注意溶剂的互溶性,不相混溶的溶剂不能用作梯度洗脱的流动相。有些溶剂在一定比例内混溶,超出范围后就不互溶,使用时更要引起注意。当有机溶剂和缓冲液混合时,还可能析出盐的晶体,尤其使用磷酸盐时需特别小心。②梯度洗脱所用的溶剂纯度要求更高,以保证良好的重现性。进行样品分析前必须进行空白梯度洗脱,以辨认溶剂杂质峰,因为弱溶剂中的杂质富集在色谱柱头后会被强溶剂洗脱下来。用于梯度洗脱的溶剂需彻底脱气,以防止混合时产生气泡。③混合溶剂的粘度常随组成而变化,因而在梯度洗脱时常出现压力的变化。例如甲醇和水粘度都较小,当二者以相近比例混合时粘度增大很多,此时的柱压大约是甲醇或水为流动相时的两倍。因此要注意防止梯度洗脱过程中压力超过输液泵或色谱柱能承受的最大压力。④每次梯度洗脱之后必须对色谱柱进行再生处理,使其恢复到初始状态。需让10~30倍柱容积的初始流动相流经色谱柱,使固定相与初始流动相达到完全平衡。二、进样器早期使用隔膜和停流进样器,装在色谱柱入口处。现在大都使用六通进样阀或自动进样器。进样装置要求:密封性好,死体积小,重复性好,保证中心进样,进样时对色谱系统的压力、流量影响小。HPLC进样方式可分为:隔膜进样、停流进样、阀进样、自动进样。1.隔膜进样。用微量注射器将样品注入专门设计的与色谱柱相连的进样头内,可把样品直接送到柱头填充床的中心,死体积几乎等于零,可以获得最佳的柱效,且价格便宜,操作方便。但不能在高压下使用(如10MPa以上);此外隔膜容易吸附样品产生记忆效应,使进样重复性只能达到1~2%;加之能耐各种溶剂的橡皮不易找到,常规分析使用受到限制。2.停流进样。可避免在高压下进样。但在HPLC中由于隔膜的污染,停泵或重新启动时往往会出现“鬼峰";另一缺点是保留时间不准。在以峰的始末信号控制馏分收集的制备色谱中,效果较好。3.阀进样。一般HPLC分析常用六通进样阀(以美国Rheodyne公司的7725和7725i型最常见),其关键部件由圆形密封垫(转子)和固定底座(定子)组成。由于阀接头和连接管死体积的存在,柱效率低于隔膜进样(约下降5~10%左右),但耐高压(35~40MPa),进样量准确,重复性好(0.5%),操作方便。六通阀的进样方式有部分装液法和完全装液法两种。①用部分装液法进样时,进样量应不大于定量环体积的50%(最多75%),并要求每次进样体积准确、相同。此法进样的准确度和重复性决定于注射器取样的熟练程度,而且易产生由进样引起的峰展宽。②用完全装液法进样时,进样量应不小于定量环体积的5~10倍(最少3倍),这样才能完全置换定量环内的流动相,消除管壁效应,确保进样的准确度及重复性。六通阀使用和维护注意事项:①样品溶液进样前必须用0.45μm滤膜过滤,以减少微粒对进样阀的磨损。②转动阀芯时不能太慢,更不能停留在中间位置,否则流动相受阻,使泵内压力剧增,甚至超过泵的最大压力;再转到进样位时,过高的压力将使柱头损坏。③为防止缓冲盐和样品残留在进样阀中,每次分析结束后应冲洗进样阀。通常可用水冲洗,或先用能溶解样品的溶剂冲洗,再用水冲洗。4.自动进样。用于大量样品的常规分析。三、色谱柱色谱是一种分离分析手段,分离是核心,因此担负分离作用的色谱柱是色谱系统的心脏。对色谱柱的要求是柱效高、选择性好,分析速度快等。市售的用于HPLC的各种微粒填料如多孔硅胶以及以硅胶为基质的键合相、氧化铝、有机聚合物微球(包括离子交换树脂)、多孔碳等,其粒度一般为3,5,7,10μm等,柱效理论值可达5~16万/米。对于一般的分析只需5000塔板数的柱效;对于同系物分析,只要500即可;对于较难分离物质对则可采用高达2万的柱子,因此一般10~30cm左右的柱长就能满足复杂混合物分析的需要。柱效受柱内外因素影响,为使色谱柱达到最佳效率,除柱外死体积要小外,还要有合理的柱结构(尽可能减少填充床以外的死体积)及装填技术。即使最好的装填技术,在柱中心部位和沿管壁部位的填充情况总是不一样的,靠近管壁的部位比较疏松,易产生沟流,流速较快,影响冲洗剂的流形,使谱带加宽,这就是管壁效应。这种管壁区大约是从管壁向内算起30倍粒径的厚度。在一般的液相色谱系统中,柱外效应对柱效的影响远远大于管壁效应。1.柱的构造色谱柱由柱管、压帽、卡套(密封环)、筛板(滤片)、接头、螺丝等组成。柱管多用不锈钢制成,压力不高于70 kg/cm2&时,也可采用厚壁玻璃或石英管,管内壁要求有很高的光洁度。为提高柱效,减小管壁效应,不锈钢柱内壁多经过抛光。也有人在不锈钢柱内壁涂敷氟塑料以提高内壁的光洁度,其效果与抛光相同。还有使用熔融硅或玻璃衬里的,用于细管柱。色谱柱两端的柱接头内装有筛板,是烧结不锈钢或钛合金,孔径0.2~20μm(5~10μm),取决于填料粒度,目的是防止填料漏出。色谱柱按用途可分为分析型和制备型两类,尺寸规格也不同:①常规分析柱(常量柱),内径2~5mm(常用4.6mm,国内有4mm和5mm),柱长10~30cm;②窄径柱(narrow bore,又称细管径柱、半微柱semi-microcolumn),内径1~2mm,柱长10~20cm;③毛细管柱(又称微柱microcolumn),内径0.2~0.5mm;④半制备柱,内径>5mm;⑤实验室制备柱,内径20~40mm,柱长10~30cm;⑥生产制备柱内径可达几十厘米。柱内径一般是根据柱长、填料粒径和折合流速来确定,目的是为了避免管壁效应。2.柱的发展方向因强调分析速度而发展出短柱,柱长3~10cm,填料粒径2~3μm。为提高分析灵敏度,与质谱(MS)联接,而发展出窄径柱、毛细管柱和内径小于0.2mm的微径柱(microbore)。细管径柱的优点是:①节省流动相;②灵敏度增加;③样品量少;④能使用长柱达到高分离度;⑤容易控制柱温;⑥易于实现LC-MS联用。但由于柱体积越来越小,柱外效应的影响就更加显著,需要更小池体积的检测器(甚至采用柱上检测),更小死体积的柱接头和连接部件。配套使用的设备应具备如下性能:输液泵能精密输出1~100μl/min的低流量,进样阀能准确、重复地进样微小体积的样品。且因上样量小,要求高灵敏度的检测器,电化学检测器和质谱仪在这方面具有突出优点。3.柱的填充和性能评价色谱柱的性能除了与固定相性能有关外,还与填充技术有关。在正常条件下,填料粒度>20μm时,干法填充制备柱较为合适;颗粒<20μm时,湿法填充较为理想。填充方法一般有4种:①高压匀浆法,多用于分析柱和小规模制备柱的填充;②径向加压法,Waters专利;③轴向加压法,主要用于装填大直径柱;④干法。柱填充的技术性很强,大多数实验室使用已填充好的商品柱。必须指出,高效液相色谱柱的获得,装填技术是重要环节,但根本问题还在于填料本身性能的优劣,以及配套的色谱仪系统的的结构是否合理。无论是自己装填的还是购买的色谱柱,使用前都要对其性能进行考察,使用期间或放置一段时间后也要重新检查。柱性能指标包括在一定实验条件下(样品、流动相、流速、温度)下的柱压、理论塔板高度和塔板数、对称因子、容量因子和选择性因子的重复性,或分离度。一般说来容量因子和选择性因子的重复性在&5%或&10%以内。进行柱效比较时,还要注意柱外效应是否有变化。一份合格的色谱柱评价报告应给出柱的基本参数,如柱长、内径、填料的种类、粒度、色谱柱的柱效、不对称度和柱压降等。4.柱的使用和维护注意事项色谱柱的正确使用和维护十分重要,稍有不慎就会降低柱效、缩短使用寿命甚至损坏。在色谱操作过程中,需要注意下列问题,以维护色谱柱。① 避免压力和温度的急剧变化及任何机械震动。温度的突然变化或者使色谱柱从高处掉下都会影响柱内的填充状况;柱压的突然升高或降低也会冲动柱内填料,因此在调节流速时应该缓慢进行,在阀进样时阀的转动不能过缓(如前所述)。② 应逐渐改变溶剂的组成,特别是反相色谱中,不应直接从有机溶剂改变为全部是水,反之亦然。③ 一般说来色谱柱不能反冲,只有生产者指明该柱可以反冲时,才可以反冲除去留在柱头的杂质。否则反冲会迅速降低柱效。④ 选择使用适宜的流动相(尤其是pH),以避免固定相被破坏。有时可以在进样器前面连接一预柱,分析柱是键合硅胶时,预柱为硅胶,可使流动相在进入分析柱之前预先被硅胶“饱和",避免分析柱中的硅胶基质被溶解。⑤ 避免将基质复杂的样品尤其是生物样品直接注入柱内,需要对样品进行预处理或者在进样器和色谱柱之间连接一保护柱。保护柱一般是填有相似固定相的短柱。保护柱可以而且应该经常更换。⑥ 经常用强溶剂冲洗色谱柱,清除保留在柱内的杂质。在进行清洗时,对流路系统中流动相的置换应以相混溶的溶剂逐渐过渡,每种流动相的体积应是柱体积的20倍左右,即常规分析需要50~75ml。下面列举一些色谱柱的清洗溶剂及顺序,作为参考:硅胶柱以正已烷(或庚烷)、二氯甲烷和甲醇依次冲洗,然后再以相反顺序依次冲洗,所有溶剂都必须严格脱水。甲醇能洗去残留的强极性杂质,已烷使硅胶表面重新活化。反相柱以水、甲醇、乙腈、一氯甲烷(或氯仿)依次冲洗,再以相反顺序依次冲洗。如果下一步分析用的流动相不含缓冲液,那么可以省略最后用水冲洗这一步。一氯甲烷能洗去残留的非极性杂质,在甲醇(乙腈)冲洗时重复注射100~200μl四氢呋喃数次有助于除去强疏水性杂质。四氢呋喃与乙腈或甲醇的混合溶液能除去类脂。有时也注射二甲亚砜数次。此外,用乙腈、丙酮和三氟醋酸(0.1%)梯度洗脱能除去蛋白质污染。阳离子交换柱可用稀酸缓冲液冲洗,阴离子交换柱可用稀碱缓冲液冲洗,除去交换性能强的盐,然后用水、甲醇、二氯甲烷(除去吸附在固定相表面的有机物)、甲醇、水依次冲洗。⑦ 保存色谱柱时应将柱内充满乙腈或甲醇,柱接头要拧紧,防止溶剂挥发干燥。绝对禁止将缓冲溶液留在柱内静置时间过长或更长时间。⑧ 色谱柱使用过程中,如果压力升高,一种可能是烧结滤片被堵塞,这时应更换滤片或将其取出进行清洗;另一种可能是大分子进入柱内,使柱头被污染;如果柱效降低或色谱峰变形,则可能柱头出现塌陷,死体积增大。在后两种情况发生时,小心拧开柱接头,用洁净小钢将柱头填料取出1~2mm高度(注意把被污染填料取净)再把柱内填料整平。然后用适当溶剂湿润的固定相(与柱内相同)填满色谱柱,压平,再拧紧柱接头。这样处理后柱效能得到改善,但是很难恢复到新柱的水平。柱子失效通常是柱端部分,在分析柱前装一根与分析柱相同固定相的短柱(5~30mm),可以起到保护、延长柱寿命的作用。采用保护柱会损失一定的柱效,这是值得的。通常色谱柱寿命在正确使用时可达2年以上。以硅胶为基质的填料,只能在pH2~9范围内使用。柱子使用一段时间后,可能有一些吸附作用强的物质保留于柱顶,特别是一些有色物质更易看清被吸着在柱顶的填料上。新的色谱柱在使用一段时间后柱顶填料可能塌陷,使柱效下降,这时也可补加填料使柱效恢复。每次工作完后,最好用洗脱能力强的洗脱液冲洗,例如ODS柱宜用甲醇冲洗至基线平衡。当采用盐缓冲溶液作流动相时,使用完后应用无盐流动相冲洗。含卤族元素(氟、氯、溴)的化合物可能会腐蚀不锈钢管道,不宜长期与之接触。装在HPLC仪上柱子如不经常使用,应每隔4~5天开机冲洗15分钟。四、检测器检测器是HPLC仪的三大关键部件之一。其作用是把洗脱液中组分的量转变为电信号。HPLC的检测器要求灵敏度高、噪音低(即对温度、流量等外界变化不敏感)、线性范围宽、重复性好和适用范围广。1.分类1)按原理可分为光学检测器(如紫外、荧光、示差折光、蒸发光散射)、热学检测器(如吸附热)、电化学检测器(如极谱、库仑、安培)、电学检测器(电导、介电常数、压电石英频率)、放射性检测器(闪烁计数、电子捕获、氦离子化)以及氢火焰离子化检测器。2)按测量性质可分为通用型和专属型(又称选择性)。通用型检测器测量的是一般物质均具有的性质,它对溶剂和溶质组分均有反应,如示差折光、蒸发光散射检测器。通用型的灵敏度一般比专属型的低。专属型检测器只能检测某些组分的某一性质,如紫外、荧光检测器,它们只对有紫外吸收或荧光发射的组分有响应。3)按检测方式分为浓度型和质量型。浓度型检测器的响应与流动相中组分的浓度有关,质量型检测器的响应与单位时间内通过检测器的组分的量有关。4)检测器还可分为破坏样品和不破坏样品的两种。2.性能指标1)噪音和漂移:在仪器稳定之后,记录基线1小时,基线带宽为噪音,基线在1小时内的变化为漂移。它们反映检测器电子元件的稳定性,及其受温度和电源变化的影响,如果有流动相从色谱柱流入检测器,那么它们还反映流速(泵的脉动)和溶剂(纯度、含有气泡、固定相流失)的影响。噪音和漂移都会影响测定的准确度,应尽量减小。2)灵敏度(sensitivity):表示一定量的样品物质通过检测器时所给出的信号大小。对浓度型检测器,它表示单位浓度的样品所产生的电信号的大小,单位为mV·ml/g。对质量型检测器,它表示在单位时间内通过检测器的单位质量的样品所产生的电信号的大小,单位为mV·s/g。3)检测限(detection limit)检测器灵敏度的高低,并不等于它检测最小样品量或最低样品浓度能力的高低,因为在定义灵敏度时,没有考虑噪声的大小,而检测限与噪声的大小是直接有关的。检测限指恰好产生可辨别的信号(通常用2倍或3倍噪音表示)时进入检测器的某组分的量(对浓度型检测器指在流动相中的浓度——注意与分析方法检测限的区别,单位g/ml或mg/ml;对质量型检测器指的是单位时间内进入检测器的量,单位g/s或mg/s)。又称为敏感度(detectability)。D=2N/S,式中N为噪声,S为灵敏度。通常是把一个已知量的标准溶液注入到检测器中来测定其检测限的大小。检测限是检测器的一个主要性能指标,其数值越小,检测器性能越好。值得注意的是,分析方法的检测限除了与检测器的噪声和灵敏度有关外,还与色谱条件、色谱柱和泵的稳定性及各种柱外因素引起的峰展宽有关。4)线性范围(linear range):指检测器的响应信号与组分量成直线关系的范围,即在固定灵敏度下,最大与最小进样量(浓度型检测器为组分在流动相中的浓度)之比。也可用响应信号的最大与最小的范围表示,例如Waters 996 PDA检测器的线性范围是-0.1~2.0A。定量分析的准确与否,关键在于检测器所产生的信号是否与被测样品的量始终呈一定的函数关系。输出信号与样品量最好呈线性关系,这样进行定量测定时既准确又方便。但实际上没有一台检测器能在任何范围内呈线性响应。通常A=BCx,B为响应因子,当x=1时,为线性响应。对大多数检测器来说,x只在一定范围内才接近于1,实际上通常只要x=0.98~1.02就认为它是呈线性的。线性范围一般可通过实验确定。我们希望检测器的线性范围尽可能大些,能同时测定主成分和痕量成分。此外还要求池体积小,受温度和流速的影响小,能适合梯度洗脱检测等。几种检测器的主要性能:UV荧光安培质谱蒸发光散射信号吸光度荧光强度电流离子流强度散射光强噪音10-510-310-9线性范围105104105宽选择性是是是否否流速影响无无有无温度影响小小大小检测限(g/ml)10-1010-1310-13<10-9g/s10-9池体积(μl)2~10~7<1————梯度洗脱适宜适宜不宜适宜适宜细管径柱难难适宜适宜适宜样品破坏无无无有无5)池体积:除制备色谱外,大多数HPLC检测器的池体积都小于10μl。在使用细管径柱时,池体积应减少到1~2μl甚至更低,不然检测系统带来的峰扩张问题就会很严重。而且这时池体、检测器与色谱柱的连接、接头等都要精心设计,否则会严重影响柱效和灵敏度。3.紫外检测器(ultraviolet detector)UV检测器是HPLC中应用最广泛的检测器,当检测波长范围包括可见光时,又称为紫外-可见检测器。它灵敏度高,噪音低,线性范围宽,对流速和温度均不敏感,可于制备色谱。由于灵敏高,因此既使是那些光吸收小、消光系数低的物质也可用UV检测器进行微量分析。但要注意流动相中各种溶剂的紫外吸收截止波长。如果溶剂中含有吸光杂质,则会提高背景噪音,降低灵敏度(实际是提高检测限)。此外,梯度洗脱时,还会产生漂移。注:将溶剂装入1cm的比色皿,以空气为参比,逐渐降低入射波长,溶剂的吸光度A=1时的波长称为溶剂的截止波长。也称极限波长。中国药典对UV法溶剂的要求是:以空气为空白,溶剂和吸收池的吸收度在220~240nm范围内不得超过0.40,在241~250nm范围内不得过0.20,在251~300nm范围内不得过0.10,在300nm以上不得过0.05。UV检测器的工作原理是Lambert-Beer定律,即当一束单色光透过流动池时,若流动相不吸收光,则吸收度A与吸光组分的浓度C和流动池的光径长度L成正比:A=lg=lg=ECL式中I0为入射光强度,I为透射光强度,T为透光率,E为吸收系数。UV检测器分为固定波长检测器、可变波长检测器和光电二极管阵列检测器(photodiode array detector,PDAD)。按光路系统来分,UV检测器可分为单光路和双光路两种。可变波长检测器又可分单波长(单通道)检测器和双波长(双通道)检测器。PDAD是80年代出现的一种光学多通道检测器,它可以对每个洗脱组分进行光谱扫描,经计算机处理后,得到光谱和色谱结合的三维图谱。其中吸收光谱用于定性(确证是否是单一纯物质),色谱用于定量。常用于复杂样品(如生物样品、中草药)的定性定量分析。4.与检测器有关的故障及其排除1)流动池内有气泡如果有气泡连续不断地通过流动池,将使噪音增大,如果气泡较大,则会在基线上出现许多线状“峰",这是由于系统内有气泡,需要对流动相进行充分的除气,检查整个色谱系统是否漏气,再加大流量驱除系统内的气泡。如果气泡停留在流动池内,也可能使噪音增大,可采用突然增大流量的办法除去气泡(最好不连接色谱柱);或者启动输液泵的同时,用手指紧压流动池出口,使池内增压,然后放开。可反复操作数次,但要注意不使压力增加太多,以免流动池破裂。2)流动池被污染无论参比池或样品池被污染,都可能产生噪音或基线漂移。可以使用适当溶剂清洗检测池,要注意溶剂的互溶性;如果污染严重,就需要依次采用1mol/L硝酸、水和新鲜溶剂冲洗,或者取出池体进行清洗、更换窗口。3)光源灯出现故障紫外或荧光检测器的光源灯使用到极限或者不能正常工作时,可能产生严重噪音,基线漂移,出现平头峰等异常峰,甚至使基线不有回零。这时需要更换光源灯。4)倒峰倒峰的出现可能是检测器的极性接反了,改正后即可变成正峰。用示差折光检测器时,如果组分的折光指数低于流动相的折光指数,也会出现倒峰,这就需要选择合适的流动相。如果流动相中含有紫外吸收的杂质,使用紫外检测器时,无吸收的组分就会产生倒峰,因此必须用高纯度的溶剂作流动相。在死时间附近的尖锐峰往往是由于进样时的压力变化,或者由于样品溶剂与流动相不同所引起的。五、数据处理和计算机控制系统早期的HPLC仪器是用记录仪记录检测信号,再手工测量计算。其后,使用积分仪计算并打印出峰高、峰面积和保留时间等参数。80年代后,计算机技术的广泛应用使HPLC操作更加快速、简便、准确、精密和自动化,现在已可在互联网上远程处理数据。计算机的用途包括三个方面:①采集、处理和分析数据;②控制仪器;③色谱系统优化和专家系统。六、恒温装置在HPLC仪中色谱柱及某些检测器都要求能准确地控制工作环境温度,柱子的恒温精度要求在&0.1~0.5℃之间,检测器的恒温要求则更高。温度对溶剂的溶解能力、色谱柱的性能、流动相的粘度都有影响。一般来说,温度升高,可提高溶质在流动相中的溶解度,从而降低其分配系数K,但对分离选择性影响不大;还可使流动相的粘度降低,从而改善传质过程并降低柱压。但温度太高易使流动相产生气泡。色谱柱的不同工作温度对保留时间、相对保留时间都有影响。在凝胶色谱中使用软填料时温度会引起填料结构的变化,对分离有影响;但如使用硬质填料则影响不大。总的说来,在液固吸附色谱法和化学键合相色谱法中,温度对分离的影响并不显著,通常实验在室温下进行操作。在液固色谱中有时将极性物质(如缓冲剂)加入流动相中以调节其分配系数,这时温度对保留值的影响很大。不同的检测器对温度的敏感度不一样。紫外检测器一般在温度波动超过&0.5℃时,就会造成基线漂移起伏。示差折光检测器的灵敏度和最小检出量常取决于温度控制精度,因此需控制在&0.001℃左右,微吸附热检测器也要求在&0.001℃以内。IV.固定相和流动相在色谱分析中,如何选择最佳的色谱条件以实现最理想分离,是色谱工作者的重要工作,也是用计算机实现HPLC分析方法建立和优化的任务之一。本章着重讨论填料基质、化学键合固定相和流动相的性质及其选择。一、基质(担体)HPLC填料可以是陶瓷性质的无机物基质,也可以是有机聚合物基质。无机物基质主要是硅胶和氧化铝。无机物基质刚性大,在溶剂中不容易膨胀。有机聚合物基质主要有交联苯乙烯-二乙烯苯、聚甲基丙烯酸酯。有机聚合物基质刚性小、易压缩,溶剂或溶质容易渗入有机基质中,导致填料颗粒膨胀,结果减少传质,最终使柱效降低。1.基质的种类1)硅胶硅胶是HPLC填料中最普遍的基质。除具有高强度外,还提供一个表面,可以通过成熟的硅烷化技术键合上各种配基,制成反相、离子交换、疏水作用、亲水作用或分子排阻色谱用填料。硅胶基质填料适用于广泛的极性和非极性溶剂。缺点是在碱性水溶性流动相中不稳定。通常,硅胶基质的填料推荐的常规分析pH范围为2~8。硅胶的主要性能参数有:①平均粒度及其分布。②平均孔径及其分布。与比表面积成反比。③比表面积。在液固吸附色谱法中,硅胶的比表面积越大,溶质的k值越大。④含碳量及表面覆盖度(率)。在反相色谱法中,含碳量越大,溶质的k值越大。⑤含水量及表面活性。在液固吸附色谱法中,硅胶的含水量越小,其表面硅醇基的活性越强,对溶质的吸附作用越大。⑥端基封尾。在反相色谱法中,主要影响碱性化合物的峰形。⑦几何形状。硅胶可分为无定形全多孔硅胶和球形全多孔硅胶,前者价格较便宜,缺点是涡流扩散项及柱渗透性差;后者无此缺点。⑧硅胶纯度。对称柱填料使用高纯度硅胶,柱效高,寿命长,碱性成份不拖尾。2)氧化铝具有与硅胶相同的良好物理性质,也能耐较大的pH范围。它也是刚性的,不会在溶剂中收缩或膨胀。但与硅胶不同的是,氧化铝键合相在水性流动相中不稳定。不过现在已经出现了在水相中稳定的氧化铝键合相,并显示出优秀的pH稳定性。3)聚合物以高交联度的苯乙烯-二乙烯苯或聚甲基丙烯酸酯为基质的填料是用于普通压力下的HPLC,它们的压力限度比无机填料低。苯乙烯-二乙烯苯基质疏水性强。使用任何流动相,在整个pH范围内稳定,可以用NaOH或强碱来清洗色谱柱。甲基丙烯酸酯基质本质上比苯乙烯-二乙烯苯疏水性更强,但它可以通过适当的功能基修饰变成亲水性的。这种基质不如苯乙烯-二乙烯苯那样耐酸碱,但也可以承受在pH13下反复冲洗。所有聚合物基质在流动相发生变化时都会出现膨胀或收缩。用于HPLC的高交联度聚合物填料,其膨胀和收缩要有限制。溶剂或小分子容易渗入聚合物基质中,因为小分子在聚合物基质中的传质比在陶瓷性基质中慢,所以造成小分子在这种基质中柱效低。对于大分子像蛋白质或合成的高聚物,聚合物基质的效能比得上陶瓷性基质。因此,聚合物基质广泛用于分离大分子物质。2.基质的选择硅胶基质的填料被用于大部分的HPLC分析,尤其是小分子量的被分析物,聚合物填料用于大分子量的被分析物质,主要用来制成分子排阻和离子交换柱。硅胶氧化铝苯乙烯-二乙烯苯甲基丙烯酸酯耐有机溶剂++++++++++适用pH范围++++++++抗膨胀/收缩++++++++耐压+++++++++表面化学性质+++++++++效能+++++++注:+++好& ++一般& +差二、化学键合固定相将有机官能团通过化学反应共价键合到硅胶表面的游离羟基上而形成的固定相称为化学键合相。这类固定相的突出特点是耐溶剂冲洗,并且可以通过改变键合相有机官能团的类型来改变分离的选择性。1.键合相的性质目前,化学键合相广泛采用微粒多孔硅胶为基体,用烷烃二甲基氯硅烷或烷氧基硅烷与硅胶表面的游离硅醇基反应,形成Si-O-Si-C键形的单分子膜而制得。硅胶表面的硅醇基密度约为5个/nm2,由于空间位阻效应(不可能将较大的有机官能团键合到全部硅醇基上)和其它因素的影响,使得大约有40~50%的硅醇基未反应。残余的硅醇基对键合相的性能有很大影响,特别是对非极性键合相,它可以减小键合相表面的疏水性,对极性溶质(特别是碱性化合物)产生次级化学吸附,从而使保留机制复杂化(使溶质在两相间的平衡速度减慢,降低了键合相填料的稳定性。结果使碱性组分的峰形拖尾)。为尽量减少残余硅醇基,一般在键合反应后,要用三甲基氯硅烷(TMCS)等进行钝化处理,称封端(或称封尾、封顶,end-capping),以提高键合相的稳定性。另一方面,也有些ODS填料是不封尾的,以使其与水系流动相有更好的“湿润"性能。由于不同生产厂家所用的硅胶、硅烷化试剂和反应条件不同,因此具有相同键合基团的键合相,其表面有机官能团的键合量往往差别很大,使其产品性能有很大的不同。键合相的键合量常用含碳量(C%)来表示,也可以用覆盖度来表示。所谓覆盖度是指参与反应的硅醇基数目占硅胶表面硅醇基总数的比例。pH值对以硅胶为基质的键合相的稳定性有很大的影响,一般来说,硅胶键合相应在pH=2~8的介质中使用。2.键合相的种类化学键合相按键合官能团的极性分为极性和非极性键合相两种。常用的极性键合相主要有氰基(-CN)、氨基(-NH2)和二醇基(DIOL)键合相。极性键合相常用作正相色谱,混合物在极性键合相上的分离主要是基于极性键合基团与溶质分子间的氢键作用,极性强的组分保留值较大。极性键合相有时也可作反相色谱的固定相。常用的非极性键合相主要有各种烷基(C1~C18)和苯基、苯甲基等,以C18应用最广。非极性键合相的烷基链长对样品容量、溶质的保留值和分离选择性都有影响,一般来说,样品容量随烷基链长增加而增大,且长链烷基可使溶质的保留值增大,并常常可改善分离的选择性;但短链烷基键合相具有较高的覆盖度,分离极性化合物时可得到对称性较好的色谱峰。苯基键合相与短链烷基键合相的性质相似。另外C18柱稳定性较高,这是由于长的烷基链保护了硅胶基质的缘故,但C18基团空间体积较大,使有效孔径变小,分离大分子化合物时柱效较低。3.固定相的选择分离中等极性和极性较强的化合物可选择极性键合相。氰基键合相对双键异构体或含双键数不等的环状化合物的分离有较好的选择性。氨基键合相具有较强的氢键结合能力,对某些多官能团化合物如甾体、强心甙等有较好的分离能力;氨基键合相上的氨基能与糖类分子中的羟基产生选择性相互作用,故被广泛用于糖类的分析,但它不能用于分离羰基化合物,如甾酮、还原糖等,因为它们之间会发生反应生成Schiff&碱。二醇基键合相适用于分离有机酸、甾体和蛋白质。分离非极性和极性较弱的化合物可选择非极性键合相。利用特殊的反相色谱技术,例如反相离子抑制技术和反相离子对色谱法等,非极性键合相也可用于分离离子型或可离子化的化合物。ODS(octadecyl silane)是应用最为广泛的非极性键合相,它对各种类型的化合物都有很强的适应能力。短链烷基键合相能用于极性化合物的分离,而苯基键合相适用于分离芳香化合物。另外,美国药典对色谱法规定较严,它规定了柱的长度,填料的种类和粒度,填料分类也较详细,这样使色谱图易于重现;而中国药典仅规定填料种类,未规定柱的长度和粒度,这使检验人员难于重现实验,在某些情况下还浪费时间和试剂。三、流动相1.流动相的性质要求一个理想的液相色谱流动相溶剂应具有低粘度、与检测器兼容性好、易于得到纯品和低毒性等特征。选好填料(固定相)后,强溶剂使溶质在填料表面的吸附减少,相应的容量因子k降低;而较弱的溶剂使溶质在填料表面吸附增加,相应的容量因子k升高。因此,k值是流动相组成的函数。塔板数N一般与流动相的粘度成反比。所以选择流动相时应考虑以下几个方面:①流动相应不改变填料的任何性质。低交联度的离子交换树脂和排阻色谱填料有时遇到某些有机相会溶胀或收缩,从而改变色谱柱填床的性质。碱性流动相不能用于硅胶柱系统。酸性流动相不能用于氧化铝、氧化镁等吸附剂的柱系统。②纯度。色谱柱的寿命与大量流动相通过有关,特别是当溶剂所含杂质在柱上积累时。③必须与检测器匹配。使用UV检测器时,所用流动相在检测波长下应没有吸收,或吸收很小。当使用示差折光检测器时,应选择折光系数与样品差别较大的溶剂作流动相,以提高灵敏度。④粘度要低(应&2cp)。高粘度溶剂会影响溶质的扩散、传质,降低柱效,还会使柱压降增加,使分离时间延长。最好选择沸点在100℃以下的流动相。⑤对样品的溶解度要适宜。如果溶解度欠佳,样品会在柱头沉淀,不但影响了纯化分离,且会使柱子恶化。⑥样品易于回收。应选用挥发性溶剂。2.流动相的选择在化学键合相色谱法中,溶剂的洗脱能力直接与它的极性相关。在正相色谱中,溶剂的强度随极性的增强而增加;在反相色谱中,溶剂的强度随极性的增强而减弱。正相色谱的流动相通常采用烷烃加适量极性调整剂。反相色谱的流动相通常以水作基础溶剂,再加入一定量的能与水互溶的极性调整剂,如甲醇、乙腈、四氢呋喃等。极性调}

我要回帖

更多关于 出血时间测定 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信