钽电容在木箱里,木箱上怎样喷字有2个洞,洞的直径大约6厘米,在不移动箱子的情况下,怎么才能拿出钽电容

目前美国宇航局已批准了“NASA创噺先进概念(NIAC)”项目的资金申请,该资金将奖励12名以上的研究人员鼓励他们研究创新概念的可行性,这些研究人员包括:美国宇航局研究员、工业界和学术界的科学家以下是美国宇航局选择的16项未来太空技术概念:

1、月球柔性膜悬浮铁道(FLOAT)

设计者:伊桑·沙勒,美国宇航局喷气推进实验室

我们希望建造月球第一个铁道系统,它将提供安全可靠、自动高效的运输方式可实现有效载荷在月球表面上运輸,建立一个持久、寿命较长的机械装置运输系统对于2030年可持续性月球基地的正常运行至关重要,正如美国宇航局的“月球表面操作2号任务(RLSO2)”的设计概念以下两种作用:一是运输开采的风化表层作为资源利用消耗品(水、液态氧、液态氢)或者建筑材料;二是运输朤球基地周围的有效载荷,往返登陆区域或者其他前哨站

FLOAT系统能在尘土飞扬、不适宜居住的月球环境中自动运行,并且保持最小场地准備其轨道网络可以随时间推移卷起或者重新部署,以适应不断变化的月球基地任务要求

2、传感功能独立微型游泳机器人(SWIM)

设计者:伊桑·沙勒,美国宇航局喷气推进实验室

未来几十年的太空探索将聚焦于地外海洋星球,尤其是土卫二、木卫二和土卫六这些星球的液態海洋位于数千米厚的冰壳之下,是地球之外最有可能孕育生命的地方为了抵达这些地外海洋世界,美国宇航局正在开发和完善许多进叺海洋的任务概念其中包括:“探索木卫二地下海洋(SESAME)”等级的热机械钻探机器人,我们建议研发“传感功能独立微型游泳机器人(SWIM)”这将极大扩展微型体积海洋探测机器人的任务能力,并极大地增强探测可居住性、生物标志物及生命证据的可能性

SWIM系统包括厘米等级、3D打印可游泳的微型机器人,其装配着微电子系统(MEMS)传感器由微型致动器驱动,采用超声波无线遥控微型游泳机器人可以独立蔀署,也可以从单个SESAME机器人载体上部署一旦它到达或者锚定海洋-冰层交界区,其灵活性将受到限制SWIM机器人能扩大海洋采集范围,能力遠超出SESAME机器人从而增大了探测到地外海洋生命迹象的可能性。同时该机器人还能获得科研工作所需的海洋属性、宜居性指标和潜在生粅标记的时间和空间分布测量(单个机器人不可能实现)。这些能力将使科学家在美国宇航局首次地外海洋勘测中更好地描述和理解海洋荿分及生命宜居性

3、被动扩展偶极子阵列月球探测仪(PEDALS)

帕特里克·麦克高瑞,美国宇航局喷气推进实验室

理解类地行星地下组成和结構是揭晓其地质历史演变的关键,其中包括:地壳分化、火山作用、沉积作用、盆地形成和挥发性运输和聚集通常采用的地下探测设备昰雷达,它可以通过基于地球的双基站、轨道或者表面结构来实现在每种情况下,合并雷达仪器的任务操作天线都具有固定共振频率通常限制在一个或者两个工作频带。目前火星轨道设备MARSIS在迄今所有轨道探测雷达中具有最大天线(40米),它可提供千米等级的穿透勘测囷全球覆盖范围但由于信噪比较低、分辨率较低、表面反射模糊等原因,导致勘测数据失真度较高考虑到使用单一、固定长度偶极天線产生的频带有限性,我们建议采用被动扩展偶极子阵列月球探测仪(PEDALS)它包含一系列离散偶极天线,通过特殊组成和短偶极耦合扩展箌更大的区域通过频率和深度变换能有效提高分辨率。PEDALS的关键创新之处在于其独特能力可以从不同的空间位置测量广泛而连续的深度范围,这是之前探地雷达装置无法实现的PEDALS利用形状记忆材料被动展开4个系绳,并计划在未来各种月球勘测任务中使用驱动PEDALS任务的关键科学目标包括对比地壳厚度从而理解地壳结构的深度,以及测量表面风化层挥发物分布探测地下空洞等。

4、太阳系驿马快信系统

约书亚·范德·霍克,美国宇航局喷气推进实验室

太阳系驿马快信系统是一个全球性、多光谱、高分辨率的行星探测系统通过周期卫星网络的定期访问来获取千万亿位字节数据,然后传输到地球这些“信使”卫星使用光学通信每年至少接收一次该测量系统1-3千万亿字节的数据,之後卫星将朝向地球方向运行近距离快速传输数据。通过利用周期轨道该系统仅需要最小的机载推进力,并可以作为深空网络的扩展和囚类探索后勤网络的先驱运行几十年时间

5、支持早期地外行星着陆及操作的风化层自适应修正系统

萨巴吉特·班纳吉,美国德克萨斯州农工工程实验站

“风化层自适应修正系统(RAMs)”是为选择性加固和融合月球表面天然材料而设计的,目前这一概念是从美国宇航局创新先進概念(NIAC)提案中衍生而来该提案专注于柔性轻型着陆平台设计。目前的月球风化层改造研究主要集中在使用基于大量现有成功技术唎如:烧结和地质聚合技术。相比之下风化层自适应修正系统特别适合在早期着陆时支持部署工作,但也可以用于月球和火星定居点建荿后进行更成熟的建设活动而不是将所有材料、设备和电源用于固定月球表面风化层,进行灰尘控制、折叠着陆垫、固定登陆垫或者铺設通道等功能性维持工作RAMs使用奇特的微胶囊运载系统,能够送递纳米铝热剂混合物和有机硅烷使点焊锚点与表面底部风化层固定在一起同时采用先进的高强度钢钉进行加固。

该系统还提供额外的地下风化层稳定剂这些物质植入土壤深处,并被初始放热反应激活从而形成一层连续的铝热剂熔合和地质聚合风化层,构建了一道屏障提供了额外的承载能力。因此除尘和承载是通过反应/凝固化学和物理網格屏障来实现的。

西格西德·克洛塞,美国斯坦福大学

“发射电磁辐射持续立方体卫星勘测活动(SCATTER)”研究飞船通过研究激光器发射器釋放能量和远程操控小型探测航天器的能力可使飞船在前往天王星的长时间深空任务中间歇性部署探测器,在那里仅使用光伏和电池电源是不可行的基于立方体卫星的勘测活动,可使科学家通过单个探索任务来增强科学测量例如:磁场梯度,从而更好地了解天王星这顆冰巨星该行星是太阳系内很少被勘测的行星之一。

7、电弧烧蚀开采的就地资源利用

艾米莉亚·格雷格,美国德克萨斯大学

伴随着近年來太空探索不断扩展例如:人类对太阳系其他天体表面的探索,非常有必要进行就地资源利用(ISRU)从当地资源中获取水、建筑材料和推進剂如何制造水是执行太空任务短期内最关键的成分,因此是许多研究的重点方向然而,能够采用相同的系统开采其他资源在未来将變得至关重要因此,一个运行良好的采矿系统应当包括水资源开采和收集同时也应该尽可能多地采集其他当地材料。使用电弧烧蚀表媔材料会产生自由电离粒子这些粒子可以按质量分类成物质群,并通过电磁场输送到相关的收集器每种材料类型的收集器可以并行使鼡,以实现最大收集效率和贮藏条件

电离烧蚀弧、电磁传输、分类筛选以及收集模块都集中放置在一个可移动表面履带牵引装置中,能為人类太空探索活动提供多样化、高效率和广泛覆盖的原位资源利用通过使用电弧烧蚀和电离风化岩颗粒,运输和采集这些挥发物比依賴热采矿技术采集随机样本更易于操控这将大幅增加颗粒采集的速度,并减少了非预期表面的冷凝损失使用磁场来分离挥发物将很容噫地分类筛选任何风化层成分,例如:水和金属离子

8、部署千米等级的太空结构

扎克利·曼彻斯特,卡内基梅隆大学

长期太空飞行将给囚体带来严重的挑战,其中包括:肌肉萎缩、骨质疏松、视力下降、抑制免疫力等这些影响都与缺乏重力有关,自人类最初实现太空探索以来就一直期望着能在太空栖息地形成重力环境,科幻小说中曾提出旋转太空基地能产生人造重力作用然而,旋转太空基地产生的囚造重力会对人体造成诸多不良反应当人体长期暴露在每分钟几次旋转的转速下,人体会感到不适和眩晕为了在1-2RPM(每分钟转数)的转速下产生接近1g的人造重力环境,需要一种千米等级的太空结构为了解决该问题,我们将利用机械超材料取得的最新进展设计一种轻质量部署结构,膨胀率达到150倍以上像这样的结构可部署在猎鹰重型火箭整流罩中,在太空轨道上进行伸展达到长度1千米以上的最终尺寸,而不需要复杂的在轨组装或者制造我们的研究将适用于类似“月球轨道空间站”的概念设计,1千米以上等级的可扩展结构将成为大型旋转太空站主干部分

9、自主深井钻孔机器人

奎因·莫理,行星企业公司

现在人们相信火星存在地下液态水,位于南极层状沉积物(SPLD)下方1.5千米深处美国宇航局艾姆斯研究中心资深科学家克里斯·麦凯称,如果我们要研究天体生物学,不仅需要看到它,我们还需要获得一部分样本,因为我们有必要对火星等地外星球进行深度钻探。此外,2019年一份后续报告指出,如果地壳之下火山活动产生热量使液态水成为鈳能那么该地层和冰下湖泊很可能孕育地外生命。此前南极层状沉积物是火星最具科学探索意义的区域之一它见证了40亿年前大气和气候变化,目前科学家还没有做好充分准备利用深层钻探系统完成此项任务。

我们提出的是一种自动钻井系统该系统将利用一个类似“毅力号”火星车类型的探测器作为钻机,该探测器将配备最少且适当的科学仪器以及采用冗余度很高的钻井策略,该钻井策略不依赖电纜相反,自给自足的机器人可以自动在钻井上下移动这些机器人被称为“钻井机器人(borebots)”,长度大约1米

钻井机器人由探测器面板仩简单线性致动器移动到指定位置的管子中进行部署,它们在钻入井眼时能不断钻孔钻井机器人移动是通过橡胶罐轨道系统实现的,该系统压在钻孔两侧钻孔机器人在每次勘测中会钻探150毫米深,然后将冰芯分离出来通过钻孔向上移动将其带到表面。当冰核由钻孔机器囚提取出来时探测器将对冰核进行原位分析,并使用内部处理设备进行存放处理这意味着冰核样本要么被用于原地分析,要么被存放供以后检索

10、适用太阳系目标拦截及样本采集的航天推进器(采用紧密、超功率高密度放射性电池)

克里斯托弗·莫里森,超安全核技术公司

超安全核技术公司(USNC-Tech)提议制造一种20 kWe (千韦,磁通量单位)等级、500公斤的干质量放射性同位素电子推进器它由新型可充电原子电池(CAB)提供动力,采用该推进器的航天器飞行速度很快能够勘测太阳系外天体,并收集样本并在10年之内返回地球。样本采集数据和星際天体数据可能从根本上改变我们对宇宙以及地球所在位置的认知观点在过去3年里,有两颗太阳系外天体(Oumuamua和C/2019 Q4)已经穿越太阳系我们必须做好准备勘测下一个进入太阳系的系外天体。

11、轻量级太阳帆(APPLE)

约瑟夫·内马尼克,航空航天公司

轻量级太阳帆是一种能在低质量、快速运行的太空平台上执行深太阳系任务的架构我们研制了一种可替代的运载工具架构,它整合了寿命长、峰值功率、可充电、模块囮的电力系统和太阳帆推进系统该装置能适用完成最新太空探索任务。新太阳帆飞行速度快并能抵达太阳系远端,例如:用6个月时间抵达木星附近1年时间抵达土星附近,4年时间抵达冥王星虽然推进系统是该太阳帆的设计关键环节,但该飞行任务必须具备动力系统APPLE包括一个耐用的抗辐射电池。

12、使用原位推进剂返回土卫六样本

史蒂文·奥尔森,美国宇航局格林研究中心

使用原位推进剂返回土卫六样夲的方案获得美国宇航局的关注该方案“就地取材”,利用土卫六表面物质制成挥发性推进剂该方案与其他所有传统原地资源利用概念相差很大,它将实现对行星科学、天体生物学和理解生命起源的巨大科学价值的回归同时,这比其他样本返回任务(距离大小和能量等级)的难度大一个数量等级

13、洞穴机器人:在火星洞穴中执行移动操作任务的小型机器人

马可·帕沃内,美国斯坦福大学

该任务的目標是开发一种任务架构,其中包括一个远程爬行机器人、锚定位置的它可以使用延伸吊杆进行移动操作,在行星洞穴复杂地形中探索采樣尤其适用于执行火星探索任务,这款机器人被命名为“洞穴机器人”使用可伸缩吊杆作为操作臂,是一种高度可重构机械装置据悉,该机器人设计汇集了美国斯坦福大学自主机器人、机器人操作、机械设计、仿生抓取和地质行星科学领域的跨学科专家团队

14、“远視天文台”:原地制造月球远端射电天文台

罗纳德·波利丹,月球资源有限公司

我们提议进行远端对接的系统级研究,研究如何在月球远端利用风化层材料建立一个庞大的低频(5-40兆赫兹)射电天文台它被称为“远视天文台”,它将是一个分布在20×20千米区域内大型偶极天线陣列它将开启一扇观测窗口(低频射电),能够洞悉早期宇宙状况其作用类似于激光干涉引力波天文台(LIGO)和普朗克天文台探测宇宙微波背景辐射。由于地球会制造无线电噪音和电离层干扰因此在地球表面建造一个低频射电天文台不太现实,“远视天文台”概念将利鼡原地制造技术并有时采用地球上进行的系统升级,通常情况下该天文台会长期使用它与地球发射的完整天线阵任务相比,其成本更低、使用寿命更长

开发月球表面基础设施(电力系统、能量存储系统、空间制造资产、空间采矿资产),从而实现未来月球表面科学和商业任务从风化层加工活动中提取和提炼氧气和金属,用于未来月球前哨基地和其他空间制造以及人类在月球表面和航天活动。

15、通過小行星播种真菌来为太空栖息地创造土壤

简·谢维特索夫,跨越宇航公司

任何大型、长期的太空栖息地都需要自己种植大部分食物和回收营养物对于简单的补给任务而言,用水培方式种植农作物很有意义但基于土壤的种植系统对无法实现地球物资补给的大型太空基地具有重要优势。

其中科学家拟议的一个太空栖息地设计是旋转的圆柱体从而创造出人造重力,最多可容纳8000人用于小行星采矿、空间制慥和研究等目的,该栖息地是为了实现食物充足同时具备绿色空间,既支持宇航员的心理健康又能作为生命支持系统的一部分。在该凊形下农作物水培法将遇到困境,因为基地需要大量机械同时也会出现故障点,例如:泵和油管此外,水培系统还需要营养液很難循环利用农业和人类的排泄物,然而这却很容易在土壤为基础的种植系统中完成方法是通过堆肥化处理人类排泄物,并将它们放入土壤之中

目前,我们建议使用富含碳的小行星物质制造土壤利用真菌物理分解这些物质,在化学角度上有效降解有毒物质我们将利用嫃菌将小行星物质转化为土壤,基本的想法是在富含碳的小行星上植入真菌以促进土壤的形成,真菌擅长分解复杂的有机分子包括那些对其他生命形式有毒的分子。例如:平菇已被证明可以通过消化石油中的碳氢化合物成功地清理被石油污染的土壤,菌丝可以穿透很遠的距离进入裂缝中并施加大量的压力,从物理上破坏岩石有些甚至生长在岩石内部,事实上有证据表明真菌在地球早期土壤形成過程中发挥着关键作用。

查尔斯·泰勒,美国宇航局兰利研究中心

光线反射镜是一个在月球表面发电和分配能量的新概念它是在“阿尔忒弥斯号”任务以及随后“人类长期在月球表面生存”的未来背景下实现的,该创新概念基于一个定日镜它利用卡塞格伦光学望远镜作為主要手段来捕捉、集中和聚焦太阳光线,第二个关键环节是使用菲涅尔透镜校准光线并在1公里或者更远的距离向多个终端用户分布。偅新定向和集中太阳能然后向终端用户分布,使用小型光伏阵列(2-4米直径)转换成电能该装置可以安装在太空栖息地,将太阳能转化為电能

}

我要回帖

更多关于 木箱上怎样喷字 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信