信号波形图如何求表达式与系统,已知表达式画波形

学习笔记(信号波形图如何求表達式与系统)

信号波形图如何求表达式的概念、描述和分类

1、常常把来自外界的各种报道统称为消息;

信息是消息中有意义的内容;

信号波形图如何求表达式是反映信息的各种物理量是系统直接进行加工、变换以实现通信的对象。

信号波形图如何求表达式是信息的表现形式信息是信号波形图如何求表达式的具体内容;信号波形图如何求表达式是信息的载体,通过信号波形图如何求表达式传递信息

2、系統(system):是指若干相互关联的事物组合而成具有特定功能的整体。

3、信号波形图如何求表达式的描述——数学描述波形描述。

1)确定信号波形图如何求表达式(规则信号波形图如何求表达式)和随机信号波形图如何求表达式

确定信号波形图如何求表达式或规则信号波形图如何求表达式 ——可以用确定时间函数表示的信号波形图如何求表达式;随机信号波形图如何求表达式——若信号波形图如何求表达式不能用確切的函数描述它在任意时刻的取值都具有不确定性,只可能知道它的统计特性

2)连续信号波形图如何求表达式和离散信号波形图如哬求表达式

连续时间信号波形图如何求表达式——在连续的时间范围内(-∞<t<∞)有定义的信号波形图如何求表达式称为连续时间信号波形图洳何求表达式,简称连续信号波形图如何求表达式实际中也常称为模拟信号波形图如何求表达式;离散时间信号波形图如何求表达式——仅在一些离散的瞬间才有定义的信号波形图如何求表达式称为离散时间信号波形图如何求表达式,简称离散信号波形图如何求表达式實际中也常称为数字信号波形图如何求表达式。

3)周期信号波形图如何求表达式和非周期信号波形图如何求表达式

周期信号波形图如何求表达式——是指一个每隔一定时间T按相同规律重复变化的信号波形图如何求表达式;非周期信号波形图如何求表达式——不具有周期性嘚信号波形图如何求表达式称为非周期信号波形图如何求表达式。

4)能量信号波形图如何求表达式与功率信号波形图如何求表达式

能量信號波形图如何求表达式——信号波形图如何求表达式总能量为有限值而信号波形图如何求表达式平均功率为零;功率信号波形图如何求表達式——平均功率为有限值而信号波形图如何求表达式总能量为无限大

5)一维信号波形图如何求表达式与多维信号波形图如何求表达式

信号波形图如何求表达式可以表示为一个或多个变量的函数,称为一维或多维函数

若当t<0时f(t)=0,当t>0时f(t)≠0的信号波形图如何求表达式,称为因果信號波形图如何求表达式;非因果信号波形图如何求表达式指的是在时间零点之前有非零值。

信号波形图如何求表达式的+、-、×运算:两信号波形图如何求表达式f1(·)和f2(·)的相+、-、×指同一时刻两信号波形图如何求表达式之值对应相加减乘。

反转: 将f(t)→f(–t)或f(k)→f(–k)称为对信号波形图如何求表达式f(·)的反转或反折从图形上看是将f (·)以纵坐标为轴反转180°。

尺度变换(横坐标展缩):将f(t)→f(at),称为对信号波形图如何求表达式f(t)的尺度变换若a>1,则f(at)将f(t)的波形沿时间轴压缩至原来的1/a;若0<a<1则f(at)将f(t)的波形沿时间轴扩展为原来的a倍。

微分:信号波形图如何求表达式f(t)的微分运算指f(t)对t取导数即:

信号波形图如何求表达式经过微分运算后突出显示了它的变化部分,起到了锐化的作用

积分:信号波形圖如何求表达式f(t)的积分运算指f(t)在(-∞,t)区间内的定积分表达式为:

信号波形图如何求表达式经过积分运算后,使得信号波形图如何求表达式突出变化部分变得平滑了起到了模糊的作用,利用积分可以削弱信号波形图如何求表达式中噪声的影响

5、典型的连续时间信号波形图如何求表达式

1)实指数信号波形图如何求表达式(对时间的微、积分仍是指数。)

a>0时信号波形图如何求表达式将随时间而增长;a<0时,信号波形图如何求表达式将随时间而衰减;a=0时信号波形图如何求表达式不随时间而变化,为直流信号波形图如何求表达式

τ是指数信号波形图如何求表达式的时间常数,τ越大,指数信号波形图如何求表达式增长或衰减的速率越慢。

对时间的微、积分仍是同频率囸弦。

实际不存在但可以用于描述各种信号波形图如何求表达式。

σ>0时增幅振荡正、余弦信号波形图如何求表达式;σ<0时,衰减振荡囸、余弦信号波形图如何求表达式;σ=0时等振幅振荡正、余弦信号波形图如何求表达式;ω=0时实指数信号波形图如何求表达式;σ=0且ω=0時,直流信号波形图如何求表达式

Sa(t)具有以下性质:,;Sa(0)=1Sa(t)=0(t=±π,±2π,…)。

6、单位阶跃函数和单位冲激函数

可以方便地表示某些信号波形图如何求表达式用阶跃函数表示信号波形图如何求表达式的作用区间,积分计算;

单位冲激函数为偶函数:

冲激偶的抽樣特性:

冲激偶的加权特性:

单位冲激函数是个奇异函数它是对强度极大,作用时间极短一种物理量的理想化模型

3)冲激函数與阶跃函数关系:

阶跃函数序列与冲激函数序列。

直流分量fD与交流分量fA(t):其中fD为直流分量即信号波形图如何求表达式的平均值。

偶分量与奇汾量其中fe=为偶分量,fo=为奇分量

一种分解为矩形窄脉冲分量:

另一分解为阶跃信号波形图如何求表达式分量之叠加

对于瞬时值为複数的信号波形图如何求表达式f(t)可分解为实、虚部两个部分之和。

正交函数分量用正交函数集来表示一个信号波形图如何求表达式,組成信号波形图如何求表达式的各分量就是相互正交的

8、系统:若干相互作用、相互联系的事物按一定规律组成具有特定功能的整体称為系统。

连续系统与离散系统:输入和输出均为连续时间信号波形图如何求表达式的系统称为连续时间系统;输入和输出均为离散时间信號波形图如何求表达式的系统称为离散时间系统

连续时间系统的数学模型是用微分方程来描述,而离散时间系统的数学模型是用差分方程来描述

动态系统与即时系统:若系统在任一时刻的响应不仅与该时刻的激励有关,而且与它过去的历史状况有关则称为动态系统或記忆系统;含有记忆元件(电容、电感等)的系统是动态系统,否则称即时系统或无记忆系统

线性系统与非线性系统:能同时满足齐次性与疊加性的系统称为线性系统。满足叠加性是线性系统的必要条件;不能同时满足齐次性与叠加性的系统称为非线性系统

时不变系统与时變系统:满足时不变性质的系统称为时不变系统。

时不变性质:若系统满足输入延迟多少时间其激励引起的响应也延迟多少时间。

因果系統与非因果系统:激励引起的响应不会出现在激励之前的系统称为因果系统;也就是说,如果响应r(t)并不依赖于将来的激励[如e(t+1)]那么系统僦是因果的。

稳定系统与不稳定系统:一个系统若对有界的激励f(.)所产生的响应y=f(.)也是有界时,则称该系统为有界输入有界输出稳定简称穩定;即若│f(.)│<∞,其│yf(.)│<∞则称系统是稳定的。

线性时不变系统:LTI连续系统的微分特性和积分特性

线性性质包括两方面:齐次性和可加性若系统既是齐次的又是可加的,则称该系统是线性的即T[a f1(·) + bf2(·)] = a T[ f1(·)] + bT[ f2(·)]。

当动态系统满足下列三个条件时该系统为线性系统:可分解性+零状态线性+零输入线性

10、描述连续动态系统的数学模型是微分方程,描述离散动态系统的数学模型是差分方程

解析描述-系统模拟框图描述。

11、系统分析研究的主要问题:

对给定的具体系统求出它对给定激励的响应;也可以说,系统分析就是建立表征系统的数学方程并求出解答

采用的数学工具:卷积积分与卷积和,傅里叶变换拉普拉斯变换,Z变换

第二章 连续系统的时域分析

零输入响应与零状态响應

1、微分方程的一般形式:

齐次解是齐次微分方程的解,yh(t)的函数形式由上述微分方程的特征根确定而特解的函数形式与激励函数的形式囿关。

齐次解的函数形式仅与系统本身的特性有关而与激励f(t)数形式无关,称为系统的固有响应或自由响应;特解的函数形式由激励确定称为强迫响应。

2、全响应=齐次解(自由响应)+特解(强迫响应)

齐次解:写出特征方程,求出特征根(自然频率或固有频率);根据特征根的特点齐次解有不同的形式;一般形式(无重根):

特解:根据输入信号波形图如何求表达式的形式有对应特解的形式,用待定系数法确定;在输入信号波形图如何求表达式为直流和正弦信号波形图如何求表达式时特解就是稳态解。

用初始值确定积分常数一般情况丅,n阶方程有n个常数可用n个初始值确定。

3、0-状态称为零输入时的初始状态即初始值是由系统的储能产生的;

0+状态称为加入输入后的初始状态,即初始值不仅有系统的储能还受激励的影响。

从0-状态到0+状态的跃变:当系统已经用微分方程表示时系统的初始值从0-状态到0+状態有没有跳变决定于微分方程右端自由项是否包含δ(t)及其各阶导数;如果包含有δ(t)及其各阶导数,说明相应的0-状态到0+状态发生了跳变

0+状態的确定:已知0-状态求0+状态的值,可用冲激函数匹配法;求0+状态的值还可以用拉普拉斯变换中的初值定理求出

4、各种响应用初始值确定積分常数:

在经典法求全响应的积分常数时,用的是0+状态初始值;

在求系统零输入响应时用的是0-状态初始值;

在求系统零状态响应时,鼡的是0+状态初始值这时的零状态是指0-状态为零。

目的:用来求解初始值求(0+)和(0-)时刻值的关系;

应用条件:如果微分方程右边包含δ(t)及其各阶导数,那么(0+)时刻的值不一定等于(0-)时刻的值;

原理:利用t=0时刻方程两边的δ(t)及各阶导数应该平衡的原悝来求解(0+)

6、零输入响应:没有外加激励信号波形图如何求表达式的作用,只有起始状态所产生的响应;

零状态响应:不考虑起始時刻系统储能的作用由系统外加激励信号波形图如何求表达式所产生的响应;

1)零输入响应,即求解对应齐次微分方程的解:

当特征方程的根(特征根)为n个单根(不论实根、虚根、复数根)λ1λ2, …λn时,则yx(t)的通解表达式为:

当特征方程的根(特征根)为n个重根(不论实根、虚根、复数根) λ12=…=λn时yx(t)的通解表达式为:

求系统的特征根,写出yx(t)的通解表达式;

由于激励为零所以零输入的初始值:,确定积分常数C1、C2、…、Cn

将确定出的积分常数C1、C2、…、Cn代入通解表达式即得yx(t)。

2)零状态响应即求解对应非齐次微分方程的解:

求系统的特征根,写出的通解表达式yfh(t);

根据f(t)的形式确定特解形式,代入方程解得特解yfp(t);

求全解若方程右边有冲激函数(及其各阶导数)时,根据冲激函数匹配法求得确定积分常数C1、C2、…、Cn

将确定出的积分常数C1、C2、…、Cn代入全解表达式,即得

几种典型自由项函数相应的特解:

自由响应(Natural)+强迫响应(forced);

零输入响应是自由响应的一部分,零状态响应有自由响应的一部分和强迫响应构成

8、冲激响应:系统在单位冲激信号波形图如何求表达式δ(t)作用下产生的零状态响应,称为单位冲激响应简称冲激响应,一般用h(t)表示

阶跃响应:系统在单位阶跃信号波形圖如何求表达式u(t)作用下的零状态响应,称为单位阶跃响应简称阶跃响应,一般用g(t)表示

阶跃响应与冲激响应的关系:线性时不变系統满足微、积分特性、。阶跃响应是冲击响应的积分注意积分限,对于因果系统为

任意信号波形图如何求表达式作用下的零状态响应:

卷积定义:已知定义在区间(–∞,∞)上的两个函数f1(t)和f2(t)则定义积分:

于是,任意信号波形图如何求表达式的零状态响应即为:

卷积嘚计算步骤可分解为四步:

4)积分:τ从–∞到∞对乘积项积分。

应用微积分性质的条件是必须成立即必须有。

f(t)与阶跃函数的卷积:

利用卷积积分的性质来计算卷积积分可使卷积积分的计算大大简化。

1、从本章开始由时域转入变换域分析

首先讨论傅里叶变换,傅里葉变换是在傅里叶级数正交函数展开的基础上发展而产生的这方面的问题也称为傅里叶分析(频域分析),将信号波形图如何求表达式進行正交分解即分解为三角函数或复指数函数的组合。

频域分析将时间变量变换成频率变量揭示了信号波形图如何求表达式内在的频率特性以及信号波形图如何求表达式时间特性与其频率特性之间的密切关系。

2、已知一些基本信号波形图如何求表达式将任意一个信号波形图如何求表达式e(t)(或者我们需要研究的信号波形图如何求表达式)用一个基本信号波形图如何求表达式的线性组合来表示(信号波形圖如何求表达式分解)。

如果已知基本信号波形图如何求表达式通过LTI系统的响应r(t)那么任意信号波形图如何求表达式通过系统的响应就可鉯用r(t)的线性组合来表示。

3、由系统的组成来说:当输入为指数信号波形图如何求表达式时系统的输出一定也是一个指数信号波形图如何求表达式,只不过指数信号波形图如何求表达式幅值发生变化

指数信号波形图如何求表达式通过LTI系统的输出,利用卷积法(输入为):

4、设激励信号波形图如何求表达式为sin(ω0t),系统的频率响应为则系统的稳态响应为:

正弦信号波形图如何求表达式为sin(ω0t)作为激励的稳态响应為与激励同频率的信号波形图如何求表达式,幅度H(jω0)由加权相移φ(ω0),H(jω)代表了系统对信号波形图如何求表达式的处理效果

第二節 周期信号波形图如何求表达式傅里叶级数分析

三角函数形式的傅氏级数

指数函数形式的傅氏级数

函数的对称性与傅里叶级数的关系

傅里葉有限级数与最小方均误差

2、傅里叶级数的三角展开式

cn~ω关系曲线称为幅度频谱图

φn~ω关系曲线称为相位频谱图

4、指数函数形式的傅里叶级数

复指数正交函数集:{ ejnω1t }n=±1,±2…。

周期信号波形图如何求表达式可分解为(-∞∞)区间的指数信号波形图如何求表达式ejnω1t的线性组合。

5、两种系数之间的关系:

其中an、φ(nω1)为关于ω的偶函数;bn、F(nω1)为关于ω的奇函数。

6、周期信号波形图如何求表达式的傅里叶级数有两种形式:三角形式和指数形式;

三角函数形式的频谱图为单边频谱指数形式的频谱图为双边频谱;

三个性质:收敛性、谐波性、唯一性;

引入负频率:函数分解为虚指数,必须有共轭对才能保证原实函数的性质不变。

7、偶函数的傅里叶形式:

傅里叶级数中不含正弦项只含直流项和余弦项,F(nω1)为实函数

奇函数中的傅里叶函数中无余弦分量,F(nω1)为虚函数

奇谐函数的傅里叶形式:

奇谐函数傅里叶级数的偶次谐波为零。

偶谐函数的傅里叶形式:

偶谐函数傅里叶形式的奇次谐波为零

8、能量信号波形图如哬求表达式:一个信号波形图如何求表达式如果能量有限,称之为能量信号波形图如何求表达式;

功率信号波形图如何求表达式:如果一個信号波形图如何求表达式功率是有限的称之为功率信号波形图如何求表达式。

连续信号波形图如何求表达式能量:;离散信号波形图洳何求表达式能量:

物理可实现的信号波形图如何求表达式常常是时间t (或n)的实函数(或序列),其在各时刻的函数(或序列)值为实数称它们為实信号波形图如何求表达式;

函数(或序列)值为复数的信号波形图如何求表达式称为复信号波形图如何求表达式。

周期信号波形图如哬求表达式平均功率 = 直流、基波及各次谐波分量有效值的平方和;也就是说时域和频域的能量是守恒的,总平均功率 = 各次谐波的平均功率之和

|Fn|2~ω绘成的线状图形,表示各次谐波的平均功率随频率的分布情况,称为功率谱系数

9、傅里叶有限级数与最小方均误差

设有限级数傅里叶级数为用来逼近,那么误差函数为方均误差为。

如果完全逼近则项数n=∞。

10、对于周期信号波形图如何求表达式f(t)=f(t+nT) 当其滿足狄氏条件时,可展成:

可见ejωt通过线性系统后响应随时间变化服从e-jωt , H(jω)相当加权函数

H(jω)为h(t)的傅立叶变换,也称为系统频率特性戓系统函数

第三节 典型周期信号波形图如何求表达式的傅里叶级数

1、本节以周期矩形脉冲信号波形图如何求表达式为例进行分析,其脉沖宽度为τ,脉冲高度为E周期为T1

1)包络线形状为抽样函数;

2)其最大值在n=0处为Eτ/T1

3)离散谱(谐波性);

4)第一个零点坐标为2π/τ;

5)F(nω1)是复函数。

矩形脉冲的频谱说明了周期信号波形图如何求表达式频谱的特点:离散性、谐波性、收敛性

第一个零点集中了信號波形图如何求表达式绝大部分能量(平均功率);由频谱的收敛性可知,信号波形图如何求表达式的功率集中在低频段

周期矩形脉冲信号波形图如何求表达式的功率

3、在满足一定失真条件下信号波形图如何求表达式可以用某段频率范围的信号波形图如何求表达式来表示,此频率范围称为频带宽度

对于一般周期信号波形图如何求表达式,将幅度下降为的频率区间定义为频带宽度

由f(t)求F(ω)称为傅里叶变换

F(ω)一般为复信号波形图如何求表达式可表示为:,其中幅度频谱、相位频谱

由F(ω)求f(t)称为傅里叶反变换:

2、傅里叶变换可表示为不同的形式:

实部为偶函数,虚部为奇函数;摸为偶函数相位为奇函数。

其意义为无穷多个频域范围为0→∞、振幅為无穷小的连续三角函数之和;或者无穷多个频域范围为-∞→+∞、振幅为无穷小的连续指数函数之和

3、傅里叶变换存在的条件:,即f(t)绝对可积

第五节 典型非周期信号波形图如何求表达式的傅里叶变换

时域无限宽,频带无限窄():

幅度频谱为相位频谱为。

6、升余弦脉冲信号波形图如何求表达式(

其幅度频谱为其频谱比矩形脉冲更集中。

第六节 冲激函数和阶跃函数的傅里叶变换

2、冲激偶的傅里葉变换

第七节 傅里叶变换的基本性质

1、傅里叶变换具有惟一性傅氏变换的性质揭示了信号波形图如何求表达式的时域特性和频域特性之間确定的内在联系。

(c1、c2为常数)。

(a为非零常数)。

0<a<1时域扩展频带压缩,幅度上升a倍;a>1时域压缩频域扩展a倍,幅度降低a倍

此例说明:信号波形图如何求表达式的持续时间与信号波形图如何求表达式占有频带成反比。

有时为加速信号波形图如何求表达式的传遞要将信号波形图如何求表达式持续时间压缩,则要以展开频带为代价

幅度频谱无变化,只影响相位频谱

时域微分性质:若,则;

頻域微分性质:若则。

如果f(t)中有确定的直流分量应先取出单独求傅里叶变换,余下部分再用微分性质

,则,也可以记作

10、一個未经调制的高频正弦信号波形图如何求表达式为:

载波振幅随调制信号波形图如何求表达式的变化规律而变称为调幅;载波频率随调制信号波形图如何求表达式的变化规律而变称为调频;载波相位随调制信号波形图如何求表达式的变化规律而变称为调相。

第八节 卷积特性(卷积定理)

1、时域卷积定理:若、则。

时域卷积对应频域频谱密度函数乘积

频域卷积定理:若、,则

频谱函数的卷积对应相应时間函数乘积的2π倍。

1)筛选性,对δ(t)的k阶导数

4)冲激偶的面积为零

3、能量为有限值的信号波形图如何求表达式称能量信号波形图洳何求表达式;平均功率为有限值的信号波形图如何求表达式称功率信号波形图如何求表达式

信号波形图如何求表达式f(t)的能量定义為:ΔE=

信号波形图如何求表达式f(t)的平均功率定义为:ΔP=

4、Parseval定理:周期信号波形图如何求表达式的功率等于该信号波形图如何求表達式在完备正交函数集中各分量功率之和

Parseval定理:非周期信号波形图如何求表达式在时域中求得的信号波形图如何求表达式能量等于在频域中求得的信号波形图如何求表达式能量。

5、能量信号波形图如何求表达式的能量密度频谱函数G(ω)

为能量密度频谱表示在ω处的单位频带中的信号波形图如何求表达式能量。

非周期信号波形图如何求表达式可分为无限多个振幅为无限小的频率分量,各频率分量的能量也是无穷小量;为了表示信号波形图如何求表达式的频谱特征可以借助能量密度的概念;能谱G(ω)~ω表示信号波形图如何求表达式的能量密度在频域中随频率的变化情况。

6、连续时间系统的频域分析:LTI系统的全响应=零输入响应+零状态响应。

其中称为系统函数頻域分析是变换域分析法的一种,另外还有复频域分析法、Z域分析法等

第九节 周期信号波形图如何求表达式的傅里叶变换

一般周期信号波形图如何求表达式的傅里叶变换

单位冲激序列的傅氏变换

周期矩形脉冲序列的傅氏变换

2、正弦信号波形图如何求表达式的傅里叶变换

由歐拉公式,已知由频移性质得:

3、一般周期信号波形图如何求表达式的傅里叶变换

周期信号波形图如何求表达式的F(ω)只存在于ω=nω1處,频率范围无限小幅度为∞。

可由F0(ω)求周期函数fT(t)的谱系数F(nω1)即单个脉冲的F0(ω)与周期信号波形图如何求表达式fT(t)嘚谱系数F(nω1):

4、周期单位冲激序列的傅里叶变换

,因为δT(t)的傅氏级数谱系数是

δT(t)的频谱密度函数仍是冲激序列,强度和间隔都是ω1

5、周期矩形脉冲序列的傅氏变换

第十节 抽样信号波形图如何求表达式的傅里叶变换

1、理想抽样(周期单位冲激抽样)

3、抽样定悝:在一个频带限制在(0,fh)内的时间连续信号波形图如何求表达式f(t)如果以小于等于1/(2fh)的时间间隔对它进行抽样,那么根据这些抽样徝就能完全恢复原信号波形图如何求表达式

或者说,如果一个连续信号波形图如何求表达式f(t)的频谱中最高频率不超过fh这种信号波形图如何求表达式必定是个周期性的信号波形图如何求表达式,当抽样频率f S≥2fh时抽样后的信号波形图如何求表达式就包含原连续信号波形图如何求表达式的全部信息,而不会有信息丢失当需要时,可以根据这些抽样信号波形图如何求表达式的样本来还原原来的连续信号波形图如何求表达式

4、重建原信号波形图如何求表达式的必要条件:;不满足此条件,就会发生频谱混叠现象即抽样频率fs≥2fm是必要条件,或抽样间隔Ts≤1/2fm

Ts=1/2fm是最大抽样间隔,称为"奈奎斯特抽样间隔";fs=2fm是最低允许抽样频率称为"奈奎斯特抽样频率"。

1)在一周期内如果有间斷点存在,则间断点的数目应是有限个;

2)在一周期内极大值和极小值的数目应是有限个;

3)在一周期内,信号波形图如何求表达式绝對可积

6、系统的响应波形与激励波形不相同,称信号波形图如何求表达式在传输过程中产生了失真

幅度失真:系统对信号波形图如何求表达式中各频率分量的幅度产生不同程度的衰减,引起幅度失真

相位失真:系统对各频率分量产生的相移不与频率成正比,造成各频率分量在时间轴上的相对位置变化引起相位失真。

7、理想低通滤波器的频域特性:

第四章 拉普拉斯变换、连续时间系统的 s 域分析

拉普拉斯变换的定义、收敛域

拉氏变换与傅里叶变换的关系

1、拉氏变换是求解常系数线性微分方程的工具优点如下:

1)求解步骤得到简化,可以紦初始条件包含到变换式里,直接求得全响应;

2)拉氏变换分别将时域的"微分"与"积分"运算转换为s域的"乘法"和"除法"运算也即把微积分方程轉化为代数方;

3)将指数函数、超越函数等复杂函数转化为简单的初等函数;

4)将时域中的卷积运算转化为s域中的乘法运算,由此建立起系统函数H(s)的概念;

5)利用系统函数零、极点分布可以简明、直观地表达系统性能的许多规律

2、当f(t)满足绝对可积条件时,存在傅里叶變换:

由于绝对可积条件限制了某些增长信号波形图如何求表达式傅里叶变换的存在考虑在f(t)上乘以收敛因子,若f1(t)绝对可积,則存在傅里叶变换:

双边拉氏变换双边拉氏变换的收敛域有两个边界,一个是由t>0的函数决定的左边界σ1另一个是由t<0的函数决定嘚右边界σ2;若σ1<σ2,则双边拉氏变换存在收敛域为σ1<σ<σ2,若σ1>σ2则双边拉氏变换不存在。

3、f(t)为原函数F(s)为象函數。

4、要使f(t)的拉氏变换存在必须有。若存在σ0使得σ>σ0时,成立则s平面上σ>σ0的区域称为F(s)的收敛域。

1)对仅在有限时间范圍内取非零值的能量有限信号波形图如何求表达式,收敛域为整个s平面;

2)对幅度既不增长也不衰减而等于稳定值的信号波形图如何求表达式,收敛域为s右半平面;

3)随时间t成正比增长或随tn成正比增长的信号波形图如何求表达式,收敛域为s右半平面;

4)按指数阶规律eαt增长的信号波形图如何求表达式,收敛域为σ>α;

5)对于一些比指数函数增长更快的函数不能进行拉氏变换。

5、常用函数的拉氏變换:

4)延时特性(时域平移)

当F(s)为真分式时

否则,(分别为多项式与真分式)。

当F(s) 的全部极点在s左半平面(允许在s=0处有一阶极点以保证终值存在)时,

、,则(时域卷积定理)、(s域卷积定理)

6、拉普拉斯逆变换:部分分式展开法(仅适用于F(s)为有理分式情況)、围线积分法(留数法)。

部分分式法的实质是利用拉氏变换的线性特性 先将F(s)分解为若干简单函数之和, 再分别对这些简单象函数求原函数

p1,p2,…,pn既可以是各不相同的单极点,也可能出现有相同的极点即有重极点;分母多项式的阶次一般高于分子多项式(m<n)但也有可能m≥n。

7、设描述LTI系统的n阶微分方程为:

若系统的起始状态为零则,对上式两边同时取拉氏变换得,有:

系统函数为系统零状态响应的拉氏變换与激励的拉氏变换之比

H(p)是一个算子,H(s)是变量s的函数;H(s)只描述系统的零状态特性而H(p)既描述零状态特性,又描述零输入特性

集总参數LTI系统的H(s)为有理分式:

8、系统函数,激励响应。

响应(系统函数极点)(激励信号波形图如何求表达式极点);(自由响应)(强迫响應)

9、频率响应特性:是指稳定系统在正弦信号波形图如何求表达式激励下,稳态响应随信号波形图如何求表达式频率的变化情况

幅頻响应特性:幅度随频率的变化情况;相频响应特性:相位随频率的变化情况。

其中为幅频响应特性,为相频响应特性

10、滤波特性的汾类:

主要是通带与阻带的不同。

11、全通网络:幅频特性对于全部频率的正弦信号波形图如何求表达式都能按同样的幅度传输系数通过。

极点位于左半平面零点位于右半平面,且零、极点对于jω轴互为镜像。

全通网络用于相位校正

最小相移网络:极点全部在左半平面,零点也全部在左半平面或jω轴上的网络,称为最小相移网络;含有零点在右半平面的网络称为非最小相移网络。

非最小相移网络可代之鉯最小相移网络与全通网络的级联

12、若系统对任意的有界输入,其零状态响应也是有界的则称此系统为(BIBO)稳定系统

即对所有的產生的响应,Me、Mr为有界正值

连续时间LTI系统BIBO稳定的充分必要条件是: H(s) 的收敛域包含虚轴;连续时间因果LTI系统BIBO稳定的充分必要条件是:H(s) 的极點全部在左半平面。

由H(s)的极点分布判断因果LTI系统的稳定性

1)极点全部在左半平面h(t)衰减,系统稳定;

2)虚轴上有一阶极点其他极點全部在左半平面,h(t)等幅振荡系统临界稳定;

3)有极点在右半平面,或虚轴上有二阶或二阶以上极点h(t)增长,系统不稳定

13、拉氏变换与傅里叶变换的关系:

当σ0>0时,f(t)是增长函数不存在傅里叶变换;

当σ0<0时,f(t)是衰减函数存在傅里叶变换,

当σ0=0時f(t)为等幅或增幅振荡,存在傅里叶变换(包含奇异函数项)

第五章 傅里叶变换应用于通信系统

1、幅度失真:系统对信号波形图洳何求表达式中各频率分量幅度产生不同程度的衰减使响应各频率分量的相对幅度产生变化。

相位失真:系统对信号波形图如何求表达式中各频率分量产生相移不与频率成正比使响应各频率分量在时间轴上的相对位置产生变化。

线性系统:幅度失真与相位失真都不产生噺的频率分量

非线性系统:由于非线性特性对所传输信号波形图如何求表达式产生非线性失真,非线性失真可能产生新的频率分量

2、信号波形图如何求表达式的失真有正反两方面:

1)如果有意识地利用系统进行波形变换,则要求信号波形图如何求表达式经系统必然产生夨真;

2)如果要进行原信号波形图如何求表达式的传输则要求传输过程中信号波形图如何求表达式失真最小,即要研究无失真传输的条件

无失真传输概念(即时域波形传输不变):

信号波形图如何求表达式无失真传输的条件(对系统提出的要求):

1)(频域角度)系統的频率振幅响应特性是常数K相位特性是通过原点的直线(群延时,相位要求即是群延时特性为常数)即;

2)(时域角度)要求系统嘚冲激响应仍为冲激函数,即

3、理想低通滤波器:具有矩形幅度特性和线性相移特性(实际不可实现)。

频域特性:若ωc为截止频率則低于ωc的所有信号波形图如何求表达式无失真传送,高于ωc的所有信号波形图如何求表达式完全衰减;相移特性也满足无任何失真传输偠求

理想低通滤波器 输入信号波形图如何求表达式波形 输出信号波形图如何求表达式波形

如果具有跃变不连续点的信号波形图如何求表達式通过低通滤波器传输,则不连续点在输出将被圆滑产生渐变;因为信号波形图如何求表达式随时间信号波形图如何求表达式的急剧妀变,意味着包含许多高频分量而较平坦的信号波形图如何求表达式则主要包含低频分量,低通滤波器滤掉了一些高频分量

通过阶跃函数的响应可以证明:上升时间和滤波器截止频率成反比,截止频率越低在输出端信号波形图如何求表达式上升越缓慢;响应由最小升臸最大值所需时间tr=2π/ωc=1/B,即上升时间与系统的介质频率或带宽成反比

滤波器阶跃响应上升时间与带宽不能同时减少,对不同的滤波器二鍺之乘积取不同的常数值且它具有下限,即为"测不准原理"

4、调制作用的实质:把各种信号波形图如何求表达式的频谱搬移,使它们互鈈重叠地占据不同的频率范围

幅度调制是用调制信号波形图如何求表达式去控制高频载波的振幅,使其按调制信号波形图如何求表达式嘚规律而变化的过程 一般模型如图所示。

调幅(AM)的时域和频域表示式分别为:

AM信号波形图如何求表达式的总功率包括载波功率和边带功率兩部分只有边带功率才与调制信号波形图如何求表达式有关,因此从功率上讲,AM信号波形图如何求表达式的功率利用率比较低

抑制載波双边带调制(DSB-SC):双边带信号波形图如何求表达式(DSB),其时域和频域表示式分别为:

单边带调制(SSB)

残留边带调制(VSB):在VSB中,不是完全抑制一个边带(如同SSB中那样)而是逐渐切割,使其残留一小部分

包络检波:由非线性器件和低通滤波器两部分组成。

同步检波:接收端与发射端具有相同频率的本地载波

5、使高频载波的频率或相位按调制信号波形图如何求表达式的规律变化而振幅保持恒定的调制方式,称为频率调制(FM)相位调制(PM) 分别简称为调频和调相。

频率或相位的变化都可以看成是载波角度的变化故调频和调相又统称为角度調制

相位调制:是指瞬时相位偏移随调制信号波形图如何求表达式m(t)而线性变化即φ(t)=Kpm(t),其中Kp是常数于是,调相信号波形图如哬求表达式可表示为sPM(t)=Acos[ωct+Kpm(t)]

频率调制,是指瞬时频率偏移随调制信号波形图如何求表达式m(t)而线性变化即,其中Kf是一个常数相位偏移,可得调频信号波形图如何求表达式为sFM(t)

FM和PM非常相似, 如果预先不知道调制信号波形图如何求表达式m(t)的具体形式则无法判断已調信号波形图如何求表达式是调相信号波形图如何求表达式还是调频信号波形图如何求表达式。

如果将调制信号波形图如何求表达式先微汾而后进行调频,则得到的是调相波这种方式叫间接调相;如果将调制信号波形图如何求表达式先积分,而后进行调相 则得到的是調频波,这种方式叫间接调频

6、FM抗噪声性能最好,DSB、SSB、VSB抗噪声性能次之AM抗噪声性能最差。

AM调制的优点是接收设备简单缺点是功率利鼡率低,抗干扰能力差;AM制式用于通信质量要求不高的场合目前主要用在中波和短波的调幅广播中。

DSB调制的优点是功率利用率高但带寬与AM相同, 接收要求同步解调设备较复杂;只用于点对点的专用通信,运用不太广泛

SSB调制优点是功率和频带利用率都较高,抗干扰和忼选择性衰落能力均优于AM, 而带宽只有AM的一半;缺点是发送和接收设备都复杂SSB制式普遍用在频带比较拥挤的场合,如短波波段的无线电广播和频分多路复用系统中

VSB调制的部分抑制了发送边带,VSB的性能与SSB相当VSB解调原则上也需同步解调,但在某些VSB系统中附加一个足够大的載波,就可用包络检波法解调合成信号波形图如何求表达式它综合了AM、 SSB和DSB三者的优点,使VSB对商用电视广播系统特别具有吸引力

FM波的幅喥恒定不变,带来了抗快衰落能力利用自动增益控制和带通限幅还消除快衰落造成的幅度变化效应。窄带FM对微波中继系统颇具吸引力; 寬带FM的抗干扰能力强可实现带宽与信噪比的互换。宽带FM广泛应用于长距离高质量的通信系统中如空间和卫星通信、调频立体声广播、 超短波电台等。宽带FM的缺点是频带利用率低存在门限效应,因此在接收信号波形图如何求表达式弱干扰大的情况下宜采用窄带FM。

7、脉沖编码调制传输方式:

发送端主要由抽样量化编码三部分组成

PAM信号波形图如何求表达式时具有离散时间连续幅度(阶梯信号波形图洳何求表达式)的信号波形图如何求表达式();其中量化与编码共同完成模拟-数字转换(A/D)功能(),PCM信号波形图如何求表达式是具有②进制的数字信号波形图如何求表达式

量化是把一个连续幅度值的信号波形图如何求表达式变成一个离散幅度值的信号波形图如何求表達式。

编码是把一个离散幅度值的信号波形图如何求表达式变成二进制的数字信号波形图如何求表达式

8、PCM通信系统的特点:

1)在远距离通信中数字信号波形图如何求表达式经多级中继器转发之后不会积累噪声,除非噪音大到足以影响中继器的判断

2)当组合多种信号波形圖如何求表达式源(语音、图像、数据信号波形图如何求表达式)传输时具有很好的灵活性,

3)在模拟信号波形图如何求表达式的量化與重建的过程中产生量化噪音,可通过合理设计A/D和D/A进行限制

4)传输时占用频带相对明显加宽。

8、将若干路信号波形图如何求表达式以某種方式汇合统一在同一信道中传输称为多路复用

频分复用原理:在发送端将各路信号波形图如何求表达式频谱搬移到各不相同的频率范围使它们互不重叠,这样就可复用同一信道传输;在接收端利用若干滤波器将各路信号波形图如何求表达式分离再经解调即可还原為各路原始信号波形图如何求表达式。

时分复用的理论依据:抽样定理-fm至+fm的信号波形图如何求表达式,可由间隔为1/2fm的抽样值惟一确定從这些瞬时抽样值可以正确恢复原始的连续信号波形图如何求表达式。

信道仅在抽样瞬间被占用其余的空闲时间可供传送第二路、第三蕗、……等各路抽样信号波形图如何求表达式使用;在接收端,这些抽样值由适当的同步检测器分离;将各路信号波形图如何求表达式的抽样值有序地排列就可实现时分复用

码分复用是指利用一组正交码序列来区分各路信号波形图如何求表达式,它们占用的频带和时间都鈳以重叠码分复用的典型应用是移动通信中的码分多址通信(CDMA)。

第六章 离散信号波形图如何求表达式与系统时域分析

离散系统时域分析经典法

离散系统的单位序列响应

1、如果信号波形图如何求表达式仅在一些离散的瞬间具有确定的数值则称之为离散时间信号波形图如哬求表达式

一般用f(kT)表示其中k=0、±1、±2、…,T为离散间隔也把这种按一定规则有秩序排列的一系列数值称为序列,简记为f(k)常用序列{f(k)}表示。

同时也可以用数据表格形式给出或以图形方式表示。

2、离散时间信号波形图如何求表达式的时域运算

需要注意的是对f(k)进行展縮变换后所得序列y(k)可能会出现k为非整数情况,在此情况下舍去这些非整数的k及其值

还应指出,对于离散信号波形图如何求表达式压缩后洅展宽不能恢复原序列了

f(k)的后向差分记为、;

f(k)的前向差分记为、。

3、常用的离散时间信号波形图如何求表达式

单位阶跃序列和单位序列嘚关系:

3)单位矩形序列(门序列)

若离散信号波形图如何求表达式f(k)满足则f(k)为周期离散时间信号波形图如何求表达式。

当系统同时满足齐次性和叠加性时则称该系统满足线性

若离散时间系统的响应可分解为零输入响应和零状态响应(可分解性); 且零输入响应和零状态響应分别满足齐次性和叠加性(零输入线性、零状态线性)则称该系统为线性离散时间系统

时变与时不变离散时间系统:若则,称为时鈈变系统否则称为时变系统。

因果离散时间系统:如果系统响应总是出现在激励施加之后则该系统称为因果系统,否则称之为非因果系统

离散时间系统的基本运算单元:延时器、加法器、数乘器。

离散时间系统的模拟(模拟框图)

5、差分方程时域经典求解

,则称の为其对应的齐次差分方程

对于该n阶其次差分方程,其对应的特征方程为

1)若n个特征根互补相同,则其次差分方程解的形式为

2)若λ是特征方程的r重根即有λ12=……=λr,而其余n-r各根均为单根则其次差分方程解的形式为

非齐次差分方程的特解形式

6、离散时间系统嘚响应的分解方式:零输入响应和零状态响应自由响应和强迫响应,暂态响应和稳态响应

7、对于线性时不变离散时间系统,若激励为單位序列δ(k)时其系统的零状态响应h(k)称为单位序列响应

1)迭代法是一种递推法通过不断迭代求得单位序列响应。

2)等效初值法当k>0時,系统等效为一个零输入系统求系统单位序列响应转化为求系统等效零输入响应。

8、离散系统的时域分解

设两个离散时间信号波形圖如何求表达式为f1(k)和f2(k),定义f1(k)与f2(k)的卷积和运算为

4)移位性质:若,则;

5)其他性质:若则;

9、卷积和的图解法计算四步骤:

反褶、平移、相乘、求和。

10、对于线性时不变离散时间系统若激励为单位序列,单位序列响应为h(k),则激励与系统零状态响应之间有如下关系:

第七章 离散信号波形图如何求表达式与系统

离散时间系统的数学模型——差分方程

常系数线性差分方程的求解

离散时间系统的单位样值(单位冲激)响应

1、连续时间信号波形图如何求表达式:f(t)是连续变化的t的函数除若干不连续点之外对于任意时间值都可以给出确定的函数值,函数的波形都是具有平滑曲线的形状一般也称模拟信号波形图如何求表达式。

连续时间系统:系统的输入、输出都是连续的时间信号波形图如何求表达式

离散时间信号波形图如何求表达式:时间变量是离散的,函数只在某些规定的时刻有确定的值在其他时间没有定義。

离散时间系统:系统的输入、输出都是离散的时间信号波形图如何求表达式

采样过程就是对模拟信号波形图如何求表达式的时间取離散的量化值过程,得到离散信号波形图如何求表达式;幅值只能分级变化数字信号波形图如何求表达式就是离散信号波形图如何求表達式在各离散点的幅值被量化的信号波形图如何求表达式。

连续时间系统——微分方程描述:

离散时间系统——差分方程描述:

3、序列的彡种形式:单边序列、双边序列、有限长序列

8)重排(压缩、扩展):或;

时移性;比例性;抽样性。

注意:δ(t)用面积(强度)表示t→0,幅度→∞;δ(n)在n=0取有限值不是面积。

利用单位样值信号波形图如何求表达式表示任意序列:

u(n)可以看作是无数个单位样值之和:δ(n)与u(n)是差和关系,不再是微商关系

它与u(n)的关系:

6)正弦序列;余弦序列

ω0——正弦序列的频率,序列值依次周期性重复嘚速率

数字频率ω0可以连续变化,但只能在(-π,π)范围内取值

复序列用极坐标表示为

5、由微分方程导出差分方程

1)输出序列的第n个徝不仅决定于同一瞬间的输入样值,而且还与前面输出值有关每个输出值必须依次保留;

2)差分方程中变量的最高和最低序号差数为阶數。

如果一个系统的第n个输出决定于刚过去的几个输出值及输入值那么描述它的差分方程就是几阶的。

3)微分方程可以用差分方程来逼菦微分方程解是精确解,差分方程解是近似解两者有许多类似之处。

4)差分方程描述离散时间系统输入序列与输出序列间的运算关系与系统框图有对应关系,应该会写会画

6、常系数线性差分方程的求解:

2)时域经典法:齐次解+特解;

3)零输入响应+零状态响应(利用卷积求系统的零状态响应);

4)z变换法反变换y(n)。

求差分方程齐次解步骤:差分方程特征方程特征根→y(n)的解析式由起始状态定常數

7、单位样值响应:即δ(n)作用下,系统的零状态响应表示为 h(n)。

因果系统:输出变化不领先于输入变化的系统

对于线性时不变系统是洇果系统的充要条件:

单位样值响应绝对和为有限值(绝对可和)收敛

8、任意序列x(n)表示为δ(n)的加权移位之线性组合:

系统对x(n)的响应=每一樣值产生的响应之和,在各x(m)处由加权

卷积和的公式表明:h(n)将输入输出联系起来,即零状态响应= x(n)* h(n)

4)x(n)*δ(n) 不存在微分、积分性质。

离散卷积過程:序列倒置移位相乘取和

3)对位相乘求和法求卷积;

10、反卷积:在式中,已知y(n)、h(n)求x(n)的过程。

连续时间系统状态方程的建立與求解

1、研究系统的输入与输出的关系通称为端口法。

对于动态系统在任意时刻,都能与激励一起确定系统全部响应的一组独立完备嘚变量称为系统的状态变量。

状态变量在某一时刻t0的值称为系统在t0时刻的状态。

状态变量在t=0-时刻的值称为系统的初始状态或起始状态X(0-)也称为初始状态向量或起始状态向量。

从已知的激励与初始状态求状态向量的一阶向量微分方程,称为状态方程

2、一阶向量微分方程的形式: (A常称为系统矩阵,B常称为控制矩阵)

状态方程与输出方程,共同构成了描述系统特性的完整方程(即数学模型)统称为系统方程。

3、以系统的状态方程与输出方程为研究对象对系统特性进行系统分析的方法,称为状态变量法

1)选择系统的状态变量;

2)列写系統的状态方程;

3)求解状态方程,以得到状态向量;

4)列写系统的输出方程;

5)将第(3)步求得的状态向量及已知的激励向量代入第(4)步所列絀的输出方程中,即得所求响应向量

}

专业课习题解析课程西安电子科技大学第一章信号波形图如何求表达式与系统

1-6已知信号波形图如何求表达式f(t)的波形如图1-5所示画出下列各函数的波形。

}

我要回帖

更多关于 信号波形图如何求表达式 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信