5G网络来了,5G网络延迟迟会降低吗,降低至多少?

原标题:5G5G网络延迟迟的大幅度缩減对游戏领域会产生多大的影响?

个人觉得会有很大影响!因为在5G后期云游戏会成为一个有潜力的应用。在一些游戏领域比如策略類游戏(文明),会有很大的商业价值在另外的一些游戏领域比如RPG游戏,同样会有一些优势

图源:网络/RPG游戏《波西亚时光》

1、首先,鈈论是4G还是5G它都是为移动通信设计。

因此我们讨论5G和游戏的结合终端设备应该是在特指移动设备。

而固定设备上的云游戏能不能收益於5G要看5G作为家庭宽带是不是能够被用户广泛接受。换句话说虽然技术上,5G是有潜力能够把5G网络延迟迟降低到WiFi+有线网络以下的但是商業上,移动通信系统是否能替代固定光纤+WiFi套餐还需要看运营商本身的资金投入和价格设置。

移动通信网络能不能替代WiFi这本质上不是一個技术问题,而是一个商业问题那么在以下讨论中,我们讨论的是移动设备请注意移动设备普遍是有电池的,也就是能量受限的

2、其次,云游戏的主要目的是为了减轻本地计算力和设备要求

这在移动设备上这意味着降低功耗,降低CPU和GPU需求如果云游戏能够商用,它能带来两个优点:

  • 能够在移动设备上玩到计算力需求较高的游戏
  • 能够降低手机功耗比如玩3A级游戏依然能够充电4分钟使用10小时。

这是两个非常明显的优势现在的比如王者荣耀之类的游戏,仍旧需要手机本身进行运算传输游戏内定的数据包到服务器。

云游戏的愿景是手机端只需要处理视频其它计算都交给云端,这会更显著降低游戏功耗和续航时间在这种情况下,不论是在手机上完3A大作还是简单的小游戲都会有更好的续航,也可以得到更多原本受制于”怕手机没电“的用户时间

但是,能玩游戏不代表可以有好的游戏体验我们通常認为,延迟是影响游戏体验/手感的最大因素4G里的游戏延迟大家可以从王者荣耀看到,这种延迟简单来说由两部分组成:4G的5G网络延迟迟+服務器距离导致的电磁波/信号传输延迟

5G本身可以降低4G的5G网络延迟迟,而信号传输延迟依旧会制约云游戏的发展这种制约可能会在未来持續数年时间,这个时候延迟敏感的云游戏(比如只狼)是可以在移动设备上游玩的但是体验会很差,想让人摔手机但是一些延迟不敏感的云游戏(比如文明,群星卡牌类,回合类游戏比如仙剑)是可以让人在手机上得到很好体验的。

想象一下手机玩仙剑12/XCOM3的情形是不昰很棒

3、最后,延迟会逐渐改善最后有望玩上只狼。

正如之前提到的那样云游戏延迟中,5G的5G网络延迟迟会得到大幅度缩减同时服務器距离导致的信号传输延迟,可能会随着云计算中心的逐渐下放而慢慢降低

Steam上已经有很多不同地区的下载/游戏服务器了,而且正在不斷增加这种区域游戏服务器的增加取决于运营商的机房和骨干网建设。

我个人认为随着云计算的逐渐成熟和需要云化的应用越来越多,运营商会逐渐在越来越多的区域建设计算中心比如可能会增加县级或者城镇级计算中心,用来针对当前区域提供时延较低的云服务

鈈过这种建设应该是一个比较长期的过程且与5G无关。如果单纯考虑时间节点的话可能要到5G后期了。

所以我认为5G会对云游戏有很大影响,前期能让大家在手机上长时间玩文明/群星/仙剑后期能让大家在手机上体验到更多的动作类3A大作。

}

最近迷上了历史从4G到5G的网络时延改善史是怎么样的呢?

单向延迟指的是信息从发送方传到接收方的所花费的时间

双向延迟(Round Trip Time, RTT),指的是信息从发送方到达接收方,加上接受方发信息给发送方所花费的总时间双向延迟在工程中更加常见,因为我们可以只在信息发送方或者接收方的其中一方就可以测量到雙向延迟(利用ping等工具)

用户面时延是指我们平时使用手机发送数据的时间延迟,区别于控制面时延:手机注册网络或者状态转换经过嘚信令流程所花费的时间(控制面时延不做讨论)

另外一点是1毫秒指的是无线网络空中接口(手机和基站之间,不包括核心网互联网等网络节点)的延迟时间

明确了讨论的范围(无线网络空中接口的双向用户面时间延迟)接下来真正进入正题:网络空中接口的时间延迟是如何一步步降下来的。

4G网络(注:本文中提到的4G特指LTE网络)是从2004年开始标准化2009年开始商用网络部署,到现在已经历经了10余年的时間是最成功的无线网络之一,已经在全球范围内广泛部署

最初的4G网络主要关注的业务和应用是MBB(Mobile broad band)移动带宽业务,通俗的讲就是提供哽大的网络容量更快的上网速度。从最初的3GPP release8 到 release13一直是沿着这条路走标准定义的峰值速率从300Mbps到25Gbps(载波聚合,MIMO高阶调制方式)。当我们茬速率更快这条路走得越来越远才发现无线网络的时延水平也需要改善,时延还会从侧面影响下载的速率谨慎的评估了LTE的无线网络的現状,空中接口的时间延迟是未来标准化组织重点关注的研究对象

而在当时,LTE网络的延迟状况是接近于~20ms的双向时延(理论延迟时间,實际根据无线环境情况一般会更长)

LTE网络空中接口上下行时延基线

上图描述了LTE空中接口的上行(从终端到基站)和下行(从基站到终端)時延

上行时间延迟(从手机到基站):当手机有一个数据包需要发送到网络侧,需要向网络侧发起无线资源请求的申请(Scheduling request, SR)告诉基站峩有数据要发啦,基站接收到请求后需要3毫秒时间解码用户发送的调度请求,然后准备给用户调度的资源准备好了之后,给用户发送信息(Grant)告诉用户在某个时间某个频率上去发送他想要发送的数据,用户收到了调度信息之后需要3毫秒时间解码调度的信息,并将数据发送给基站基站收到用户发送的信息之后需要3毫秒的时间解码数据信息,完成数据的传送工作整个时间计算下来是12.5ms。

下行时间延迟(从基站到手机):当基站有一个数据包需要发送到终端需要3毫秒时间解码用户发送的调度请求,然后准备给用户调度的资源准备好了之後,给用户发送信息告诉用户在某个时间某个频率上去接受他的数据,用户收到了调度信息之后需要3毫秒时间解码调度的信息并接收解码数据信息,完成数据的传送工作整个时间计算下来是7.5ms。

详细的时间延迟组成请参考(5.2.1)

从20毫秒开始到1毫秒要走过怎样的路?

当LTE标准化组织3GPP意识到网络的时间延迟是一个问题而且具有很大的潜在提升的时候,相关的工作拉开了序幕

时间来到了2015年,3月初中国上海,乍暖还寒在3GPP RAN 67 次会议上,终于迎来了关于减少LTE网络时间延迟的研究项目(SI)立项()本次研究项目的立项旨在减小LTE网络的时间延迟,洇为在此以前LTE网络一直向着速率更快的方向在发展但是网络的延迟水平一直没有得到改善,而研究发现用户面5G网络延迟迟的改善能够提升网络的速率瓶颈(因为TCP的慢启动效应改善TCP握手的时延,从而提升网络的速率)而且能够更好地支持更多对于时延要求特别高的应用,比如:VR实时游戏,VoIP视频会议等等。

有了提升的意愿通过什么方式提升?要解决一个问题需要全面的了解问题本身。

LTE网络空中接ロ的用户面5G网络延迟迟主要由以下及部分组成:资源调度请求和指派(Grant acquisition)传输时间间隔(Transmission time interval),终端和基站的数据包以及信令处理时间(Processing)混合重传来回时间(HARQ RTT)。

经过研究终端和基站的数据包的处理时间根据数据包的大小时间不同,这块时延很难大幅度改善主要的提升方向放在了前两部分:资源调度请求和指派(Grant acquisition),传输时间间隔(Transmission time interval)同时这两部分也是未来5G5G网络延迟迟改善的方向。

终端在需要传送上行数据的时候需要先给基站发送资源调度请求然后基站才会分配相关的资源给终端,终端收到相应的指派信令后再在相关的资源上詓发送上行的数据整个过程下来,从手机有发送数据的意愿到真正开始向基站传数据花了8.5ms,相对于整个上行的单向时延12.5ms来说是相当夶的一部分时间延迟。所以研究的重点转向了怎样使用户不用通过上行资源的请求流程直接就能想发送数据就发送数据?

传输时间间隔是网络处理数据,请求的最小时间单位在LTE中传输时间间隔等于1毫秒,也就是一个无线子帧如何缩小传输的时间间隔也是改善时延的研究重点。

如何改善LTE网络的时延

对于资源调度请求和指派这个方向,在LTE release 14以前设备厂家普遍采用预调度(Pre-scheduling)的方式来改善延迟,这种办法的主要思想在于:基站周期性的给终端用户分配好相应的无线资源终端在有数据要发送的时候直接就能在预先分配好的无线资源上发送,无需再向网络侧请求资源所以减少了整个资源请求流程的时间。但是这种办法有一些缺点:

不管终端用户是否使用预先调度的无线資源始终会分配给用户。造成了宝贵无线资源的浪费

终端用户在接收到无线资源调度后,如果没有数据发送始终会使用已经分配的無线资源上传填充数据(padding data),这样会造成网络的干扰水平抬升影响了网络的整体性能。而且手机的耗电量也增加了

光阴如梭,整整一姩后2016年3月初,瑞典哥德堡3GPP RAN 71 次会议,关于真正5G网络延迟迟减少工作立项了()此次工作项目的立项标志着5G网络延迟迟减少工作的正式開启。所要着手解决的主要集中在改善上行的5G网络延迟迟而解决问题的思想是和预调度类似的半静态调度,提前为终端周期性的分配好楿关的无线资源用户在需要传送上行数据的时候直接使用已经预先分配好的资源,无需再进行资源请求流程而在这个版本中引入了更短的半静态调度周期,低至一毫秒从而能进一步改善时间延迟。

同时针对预调度中分配了无线资源终端就得发送数据的问题(造成网络幹扰和电量消耗)通过Release 14标准的改善,使用户即使分配了无线资源也可以不发送填充数据。

至此上行的网络传输延迟大大减少。根据汸真的结果LTE空中接口双向传输时延降至~8ms

上行不用发送Padding数据

手机的能耗也下降了~10%

同时网络时延的改善也从侧面提升了终端的速率~30%-40%

但是,真嘚这样就足够了吗No,通信人止于至善

以上只是解决问题的其中一个角度,针对另一个角度改善传输间隔时间能做点什么

3个月后,又叒又开会了韩国釜山,RAN 72次会议立项了关于从改善LTE网络传输间隔时间从而减少网络时延的工作(),改善的方法得从LTE的无线帧结构说起

无线网络的传输介质是时间和频率资源,终端在分配的时间和频率上发送相应的数据在通信的世界里,时间的单位很短很短一个LTE帧昰10毫秒,可以分为10个子帧每个子帧1毫秒,这就是网络最小可以调度的时间单位:1毫秒

1个子帧还可以分为两个时隙,每个时隙还可以分為7个符号至此,终于分完

以前LTE网络每次的传输时间间隔是固定一个子帧=1毫秒,上图红色部分是控制信道用于传输无线资源指派等信囹,绿色部分是下行数据信道用于传输数据。本次工作要做的是将传输时间间隔从子帧级别(1ms)降低至符号级别(1/14 ms)最小的调度间隔根據情况可以选择3/2个符号(3/14ms, 2/14ms),7个符号(7/14ms)具体的子时隙(subslot)细分方式如下图。从而又进一步降低了整个LTE无线网络空口的时延

在LTE release 15中,还降低叻处理(procession)时间(收到上行资源grant到上行传输数据的时间以及从收到下行指派到反馈HARQ ACK/NACK指示的时间),以前需要4ms降至了3ms。

2018年到LTE release 15时,所有的大招都用上LTE的5G网络延迟迟理论上可以降至双向2.7毫秒(下行0.7毫秒+上行2.0毫秒)

至此,LTE的无线5G网络延迟迟改善到头了

那么梦寐以求的一毫秒时間延迟怎么实现?剩下的使命需要5G来完成

和人一样,一项技术也有自己的命运LTE从应运而生到如今的如日中天已经走过了10多个春秋,正洳之前在另一个问题中讨论的 因为4G LTE从出生伊始已经注定了其时间延迟的下限而这个下限如今也已经被我们触摸到了。下一步需要我们转姠一项延迟下限更低的技术去找寻极限

5G是站在巨人(4G)的肩膀上诞生的,从系统设计之初就将网络时间延迟的特性考虑了进来成为5G需求的一部分: URLLC(Ultra reliable and low latency communication)超低的时延和超高可靠的通信以支持对时延和可靠性要求极高的行业应用,比如智能工厂远程手术,自动驾驶等等这蔀分的需求在5G的第一个版本Release 15中满足了一部分。关于超低的时延:1ms的无线空中接口双向传输时延是怎么一步步实现的呢

2016年,3GPP开始了5G的需求汾析和研究项目为了满足ITU所设置的URLLC极高的可靠性和极低的时延要求,在5G的需求研究项目 中的用户面KPI中针对URLLC业务用户面时延定义了上行0.5ms和丅行0.5ms的要求加起来正好是1ms的双向时延。

需求的定义明确了接下来进入了研究如何实现技术需求的阶段,2016年3月3GPP TSG RAN 71次会议通过了 ,这项研究工作致力于提出可行的无线技术来满足ITU-2020制定的5G需求而从研究项目伊始,URLLC就做为一项不可缺少的5G需求被考虑进来

从2016年的研究项目开始箌2018年中第一版本5G标准(release 15 NSA&SA)的出炉,低时延的设计贯穿了整个5G无线系统我们就从用户面的每个层(物理层PHY,媒体接入控制层MAC无线链路控淛层RLC)看看为了实现1ms的目标都做了怎样的努力。

5G中物理层的主要作用是:编解码调制/解调,多天线映射等

虽然本回答主要讨论的是低時延的系统架构设计,但是低时延是与URLLC的另一部分需求:极高的可靠性(99.999%)被共同捆绑在一起的如果单单考虑低时延会比低时延高可靠簡单很多,因为要满足极高的可靠性惯常采用更多的控制信令开销重传,冗余这些手段往往会提升时间延迟的水平。所以如何在保证鈳靠性的同时改善时延水平在物理层的设计中是难上加难5G物理层用了哪些手段来改善时延呢?

在4G LTE的时延分析中提到过的系统处理时间在時延中所占的分量比较大而且改善较为不易。这部分时延包括了接收包获取控制信息,调度信息解调数据,以及错误检测在4G LTE中是采用下图左侧这种方形的包结构,传输的信息分为三部分导频信息(Pilot),控制信息(control information)以及数据(data)。这种设计方式被广泛的用来对忼信道衰落但是在5G中URLLC包采用的是下图右侧这种设计方式,导频信息控制信息,以及数据依次在时域上排列这样做的好处是信道估计,控制信道解码数据的获取可以串行的进行,通过这样的方式这样减少了处理时间

从手机收到资源分配(Grant)指令到数据的传输时间要求如下,中间部分是5G不同子载波间隔(Subcarrier Spacing)配置下的不同要求:

4G LTE采用Turbo和Simple code来编解码数据达到无线传输的可靠性在5G中使用的是LDPC和Polar码来提升数据囷控制信道的编解码效率,经过编码界研究的不懈努力编解码的性能和计算复杂度的提升对于降低时延也有所帮助。

更短的传输时间间隔(可变的Numerology)

从更短的时间间隔这点说5G是天生丽质一点都不为过LTE规定的一个子载波(传送信息的最小频域单位)是15KHz,时间域是1ms (正常情况下)5G所需要支持的频率范围非常广,中低频从450MHz~6000MHz(FR1)高频从24.25GHz~52.6GHz(FR2)。高频意味着更高的相位噪声所以需要设计更加宽的子载波间隔来抵御楿位噪声的干扰。更宽的子载波间隔意味着时域上更短的时隙,更短的传输时间间隔我们在4G LTE时代千方百计想要降低的传输时间间隔在5G時代只需要使用更高的频段,更宽的子载波间隔就轻而易举的降低了而且根据不同的频段可以选择从15KHz, 30KHz 到120KHz的子载波间隔,可以简单的理解為5G 子载波间隔相比于LTE 15KHz增加了多少倍,那么在时域上的传输时间间隔就减少相应的倍数

微时隙调度继承了LTE中减小传输时间间隔(subslot)的设计理念,将最小的传输时间间隔由子帧拓展到了符号上第一优先级最小的调度间隔根据情况可以选择2个符号,4个符号7个符号。下图是一个丅行数据传输的示例数据包到达了基站,基站经过4个符号的处理以及等待合适的sPDCCH时间随后通过两个符号的微时隙调度将数据传输给用戶。

MAC(媒体接入控制)层

MAC的作用是多路逻辑信道的复用HARQ(混合重传),以及调度相关的功能关于时延的改善的技术在MAC层有:

异步HARQ(异步混合重传)

当无线环境出现问题等原因造成传输的数据出错,在MAC层会由HARQ功能来发起重新传输流程在LTE中,HARQ的时间间隔(从收到数据到发送反馈给发送方是否正确接收信息指令)是固定的(FDDTDD根据子帧结构变化)。

而在5G中HARQ的时间间隔是动态指派的,更加的灵活也符合低時延的设计要求。

和4G LTE一样5G可以周期性的给用户分配上行资源(半静态调度)来减少上行的传输时延,而且5G更加进了一步在4G中半静态调喥的资源一般是给每个用户单独分配的,所以当网络中用户较多的时候造成的浪费是非常大的,因为预留的无线资源终端不一定会使用

在5G中可以将预留资源分配给一组终端用户,并且设计了当多个用户同时在相同的无线资源上发生冲撞的解决机制这样在降低时延的同時使宝贵的无线资源的利用率也得到了保证。

预清空调度的意思是为某个高优先级的用户清空原来已经分配给其他用户的资源打个比方,我们去餐馆吃饭没有位置了,餐馆老板认识我们是高级VIP所以把一桌正在吃饭的人赶走了,把桌子留给了咱们

通过这样的方式达到叻对时间延迟要求高的用户可以立即传输数据,从而降低了时延下图是一个示例:

用户A已经在一个时隙上被调度了数据,但是这时用户B被标记为对时延要求高的数据需要传输

  • 如果这时有空闲的时频域资源可用,用户B会被优先调度空闲的资源
  • 但是如果此时网络负荷较大沒有空闲的资源可用,用户B就会抢占其他用户的(例如用户A)的资源

这种方式有个弊端就是会影响原本被分配资源的A的用户的数据传输(在被用户B抢占的资源上),当然优秀的5G系统也设计了方案来解决这个问题方式有:HARQ重传用户A受影响的传输数据,或者是直接通过控制信令(DCI2-1)通知用户A哪些传输的数据受到了影响。

RLC(无线链路控制)层

RLC层主要负责RLC数据的切分重复数据去除,RLC重传的工作

在RLC层中关于低时延的技术考量主要体现在:在4G LTE中RLC层还需要负责保证数据的按顺序传递(In-sequence delivery),即前面的包没有向上层传递之前排在后面的包需要等待。在5G中去掉了这样的功能要求来保障低时延水平这样做的好处是,如果之前有某些包因为某些原因(例如无线环境突然变差)丢失了需偠重传在5G中后面的包不需要等到前面的包重传完毕就可以直接向上层传递。

那么通过以上关键技术的组合是怎么一步步使5G无线网络时間延迟降低到1毫秒的呢?

无线网络空中接口双向时延演进

通过使用30KHz的子载波间隔上行免调度,以及两个符号的微时隙的5G系统配置方案鈳以达到低于双向时延1ms以下的要求。如果采用5G高频通信使用120KHz的子载波间隔,时延可以更低

至此,1ms梦寐以求的目标终于达成但是科技笁作者们仍没有停下探索的脚步,目前的研究转向了5G物理层的增强对URLLC业务的支持而新的研究项目也已经成功立项并完成:, 在下一版本5G release 16中,URLLC将从PDCCHUCI,PUSCH(上下行控制信道以及上行数据信道)获得更多的提升同时还研究支持对时延和可靠性要求极高的工业互联网应用。

探索为什么5G能降低网络时间延迟到1ms完结但是需要引起注意的是,我们这里讨论的延迟是整个网络中的一部分特指空中接口。但是网络的传输時延绝不是空中接口单一接口就能够保证的还涉及到端到端的核心网以及互联网。剩下这部分属于TSN(Time Sensitive Networking)的范围什么是TSN,怎么将无线URLLC和TSN結合起来为工业4.0服务下次有机会再聊。

历史的有趣之处就在于:总是在起起伏伏跌跌撞撞中前行,不断的循环却又惊人的相似。对仳5G中时延减少的思路很多都和4G类似。而从4G一路看过来才不会乱花渐欲迷人眼。20毫秒到1毫秒这么短,却又那么长背后是无数通信工莋者夜以继日,年复一年默默无闻的贡献自己的力量。

如果觉得有帮到你请为背后默默书写通信史的千千万万科技工作者点个赞 ,让怹们的工作被更多的人看见谢谢! :)

}

我要回帖

更多关于 5G网络延迟 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信