C++函数模版template 用模版代码的有关问题?

我们已经学过重载(Overloading),对重载函数而言,C++的检查机制能通过函数参数的不同及所属类的不同。正确的调用重载函数。例如,为求两个数的最大值,我们定义MAX()函数需要对不同的数据类型分别定义不同重载(Overload)版本。

但如果在主函数中,我们分别定义了 char a,b; 那么在执行max(a,b);时 程序就会出错,因为我们没有定义char类型的重载版本。

现在,我们再重新审视上述的max()函数,它们都具有同样的功能,即求两个数的最大值,能否只写一套代码解决这个问题呢?这样就会避免因重载函数定义不 全面而带来的调用错误。为解决上述问题C++引入模板机制,模板定义:模板就是实现代码重用机制的一种工具,它可以实现类型参数化,即把类型定义为参数, 从而实现了真正的代码可重用性。模版可以分为两类,一个是函数模版,另外一个是类模版。

函数模板的一般形式如下:

返回类型 函数名(形参表)

说明: template是一个声明模板的关键字,表示声明一个模板关键字class不能省略,如果类型形参多余一个 ,每个形参前都要加class <类型 形参表>可以包含基本数据类型可以包含类类型.

//声明一个函数模版,用来比较输入的两个相同数据类型的参数的大小,class也可以被typename代替,

//T可以被任何字母或者数字代替。

y)其中T为int型,求出n1,n2中的最小值.同理调用min(d1,d2)时,求出d1,d2中的最小值.

说明:其中,template是声明各模板的关键字,表示声明一个模板,模板参数可以是一个,也可以是多个。

例如:定义一个类模板:

一般来说,非类型模板参数可以是常整数(包括枚举)或者指向外部链接对象的指针。

那么就是说,浮点数是不行的,指向内部链接对象的指针是不行的。

C++Template包含函数模板和类模板两种,顾名思义这两种的不同点在于所使用的场合不同,函数模板针对于函数使用,而类模板则针对于类使用.
使用类模板有什么优势呢?现在你要写一个求最大数的方法,你考虑到了N种情况(求两个整数,求两个浮点数,求两个字符,求...),这时候你可能会写N个重载方法,当你缴尽脑汁把一切可能发生的事情都想到的时候这个程序写完了,代码量是很多的,这时候解决这个问题的一个好的办法就是使用C++的模板,我们可以定义一个函数模板,这个模板接收任意类型的参数,编译器会根据你所传入的参数类型编译成对应类型的函数,及对应类型的返回值.
模板,在我的理解中就是定义一个公共的需求,比如这个word文档的模板,定义了大家都有可能用到的样式,C++的模板也就是让你定义一个公共的模块,把一些类似的功能的模块归类为一个模板,使用模板到底有什么好处呢?我觉的可以提高程序的重用性,减少代码的冗余及代码量.

}

c++模板不支持分离编译, 把你模板类的声明和实现放到.h文件里面 。按照这个说的把.h和.cpp文件合并后,果然可以了。

但是为什么呢,为什么模板就不支持分离编译?---继续google ing

搜到了如下文章(文章原文链接:):

首先,一个编译单元(translation unit)是指一个.cpp文件以及它所#include的所有.h文件,.h文件里的代码将会被扩展到包含它的.cpp文件里,然后编译器编译该.cpp文件为一个.obj文件(假定我们的平台是win32),后者拥有PE(Portable Executable,即windows可执行文件)文件格式,并且本身包含的就已经是二进制码,但是不一定能够执行,因为并不保证其中一定有main函数。当编译器将一个工程里的所有.cpp文件以分离的方式编译完毕后,再由连接器(linker)进行连接成为一个.exe文件。

f();的声明,所以,编译器将这里的f看作外部连接类型,即认为它的函数实现代码在另一个.obj文件中,本例也就是test.obj,也就是说,main.obj中实际没有关于f函数的哪怕一行二进制代码,而这些代码实际存在于test.cpp所编译成的test.obj中。在main.obj中对f的调用只会生成一行call指令,像这样:

在编译时,这个call指令显然是错误的,因为main.obj中并无一行f的实现代码。那怎么办呢?这就是连接器的任务,连接器负责在其它的.obj中(本例为test.obj)寻找f的实现代码,找到以后将call f这个指令的调用地址换成实际的f的函数进入点地址。需要注意的是:连接器实际上将工程里的.obj“连接”成了一个.exe文件,而它最关键的任务就是上面说的,寻找一个外部连接符号在另一个.obj中的地址,然后替换原来的“虚假”地址。

这个过程如果说的更深入就是:

call f这行指令其实并不是这样的,它实际上是所谓的stub,也就是一个jmp 0xABCDEF。这个地址可能是任意的,然而关键是这个地址上有一行指令来进行真正的call f动作。也就是说,这个.obj文件里面所有对f的调用都jmp向同一个地址,在后者那儿才真正”call”f。这样做的好处就是连接器修改地址时只要对后者的call XXX地址作改动就行了。但是,连接器是如何找到f的实际地址的呢(在本例中这处于test.obj中),因为.obj与.exe的格式是一样的,在这样的文件中有一个符号导入表和符号导出表(import table和export table)其中将所有符号和它们的地址关联起来。这样连接器只要在test.obj的符号导出表中寻找符号f(当然C++对f作了mangling)的地址就行了,然后作一些偏移量处理后(因为是将两个.obj文件合并,当然地址会有一定的偏移,这个连接器清楚)写入main.obj中的符号导入表中f所占有的那一项即可。

这就是大概的过程。其中关键就是:

编译main.cpp时,编译器不知道f的实现,所以当碰到对它的调用时只是给出一个指示,指示连接器应该为它寻找f的实现体。这也就是说main.obj中没有关于f的任何一行二进制代码。

编译test.cpp时,编译器找到了f的实现。于是乎f的实现(二进制代码)出现在test.obj里。

连接时,连接器在test.obj中找到f的实现代码(二进制)的地址(通过符号导出表)。然后将main.obj中悬而未决的call XXX地址改成f实际的地址。完成。

然而,对于模板,你知道,模板函数的代码其实并不能直接编译成二进制代码,其中要有一个“实例化”的过程。举个例子:

也就是说,如果你在main.cpp文件中没有调用过f,f也就得不到实例化,从而main.obj中也就没有关于f的任意一行二进制代码!如果你这样调用了:

然而实例化要求编译器知道模板的定义,不是吗?

看下面的例子(将模板的声明和实现分离):

编译器在#1处并不知道A<int>::f的定义,因为它不在test.h里面,于是编译器只好寄希望于连接器,希望它能够在其他.obj里面找到A<int>::f的实例,在本例中就是test.obj,然而,后者中真有A<int>::f的二进制代码吗?NO!!!因为C++标准明确表示,当一个模板不被用到的时侯它就不该被实例化出来,test.cpp中用到了A<int>::f了吗?没有!!所以实际上test.cpp编译出来的test.obj文件中关于A::f一行二进制代码也没有,于是连接器就傻眼了,只好给出一个连接错误。但是,如果在test.cpp中写一个函数,其中调用A<int>::f,则编译器会将其实例化出来,因为在这个点上(test.cpp中),编译器知道模板的定义,所以能够实例化,于是,test.obj的符号导出表中就有了A<int>::f这个符号的地址,于是连接器就能够完成任务。

关键是:在分离式编译的环境下,编译器编译某一个.cpp文件时并不知道另一个.cpp文件的存在,也不会去查找(当遇到未决符号时它会寄希望于连接器)。这种模式在没有模板的情况下运行良好,但遇到模板时就傻眼了,因为模板仅在需要的时候才会实例化出来,所以,当编译器只看到模板的声明时,它不能实例化该模板,只能创建一个具有外部连接的符号并期待连接器能够将符号的地址决议出来。然而当实现该模板的.cpp文件中没有用到模板的实例时,编译器懒得去实例化,所以,整个工程的.obj中就找不到一行模板实例的二进制代码,于是连接器也黔驴技穷了。

}

工作中遇到一个问题,我有一个容器,装着各式各样的对象的指针,需要把拥有

方法的指针内容dump出去,而对于没有dump方法的对象,直接忽略。

首先想到的是给每个对象提供一个查询操作,从而得知是否拥有dump方法。显然这个方法不能让人满意,需要更改大量的class实现。C++如果我能自动判断某个类型是否拥有某方法,这个问题可以完美的解决,因为是否含有某方法编译期已经确定了,所以是有可能通过一些技巧来实现这个功能的。

查阅了大量的模板偏特化,匹配失败不是错误,终于找到了Mr.Right:


点击(此处)折叠或打开


点击(此处)折叠或打开



sizeof操作符不需要计算表达式的值,是一个编译期的操作,定义指针类型可以只有声明没有定义
所以HELPS和Test都不需要实现,仅有声明就可以通过编译
巧妙的探测了自定义类型A是否含有void U::hello() 方法。

}

我要回帖

更多关于 template 用模版 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信