WaterSource小区净水机机可以信任吗?

Permavoid& Water Source Control - SportsEdge
& Permavoid& Water Source ControlPreliminary Water Control and Storage System
Permavoid 150 is a 150mm thick modular interlocking plastic storage system designed for use as a combined drainage component and sub-base replacement system. It has exceptionally high compressive strength and bending resistance within joints and creates a horizontal structural ‘raft’ within the pavement that is ideal for the shallow attenuation and conveyance of stormwater.
ABT Permavoid(R) underground storage systems are designed to manage stormwater at the source allowing for simultaneous storage and controlled conveyance, helping nearly any site to turn stormwater from a waste product into a valuable resource. Source Control in stormwater management is the most cost effective means for the urban environment. With ABT Permavoid(R) there is no need to pay to move water, haul soils and clean stone. The modules have a very high void ratio (95%) providing highly efficient water storage capacity. The robust design of Permavoid utilizes proprietary engineered recycled plastics and patented mechanical keys that enable a direct paving course with minimal cover in an environmentally friendly manner.
Features for Sports Field Applications
Minimal Excavation
Minimizes excavation and transportation of poor soils and clean aggregate
Replaces drainage stone / sub-base
Very high (95%) void ratio
One truckload of Permavoid is equivalent to 21 truckloads of spoils and stone
Provides a High Strength Rigid “Raft” for Construction
Robust Structure for Ground Stabilization for sites where subsidence and unstable soils are an issue
Stormwater Attenuation – “Source Control”
Low Impact Development (L.I.D.)
Preliminary Stormwater Control
Slow & Controlled Release
Elimination of Collector Pipes and Associated Excavation
Stormwater Infiltration
Large Surface Area to depth ratio provides exceptional infiltration performance
Mechanical Keys
The interlocking components create a monolithic structural slab that’s not only perfect for synthetic turf sports fields, but handles demanding vehicular loads
Unique jointing system provides creep resistance (Permatie)
Environmentally Friendly Product
Manufactured from Recycled and Recyclable Material
Lightweight and Easily Handled and Installed on Site (6.62 lbs. per unit)
Permavoid Downloads
Product Brochures
Permavoid CAD Drawings and Details
XT-4 Section Detail
XT-6 Section Detail
XT-8 Section Detail
Pro-S Section Detail
Permavoid Specifications
Permavoid Photos (click&to&enlarge)
Installation
Product Detail
DISCLAIMER: The customer and the customer’s architects, engineers, consultants and other professionals are completely responsible for the selection, installation, and maintenance of any product purchased from ABT, and EXCEPT AS EXPRESSLY PROVIDED IN ABT’S STANDARD WARRANTIES, ABT MAKES NO WARRANTY, EXPRESS OR IMPLIED, AS TO THE SUITABILITY, DESIGN, MERCHANTABILITY, OR FITNESS OF THE PRODUCT FOR CUSTOMER’S APPLICATION. Copies of ABT’s standard warranties are available upon request.
(C) Copyright
SportsEdge(R)
All products available in Canada and Mexico.From Wikipedia, the free encyclopedia
A graphical distribution of the locations of water on Earth. Only 3% of the Earth's water is fresh water. Most of it is in icecaps and glaciers (69%) and groundwater (30%), while all lakes, rivers and swamps combined only account for a small fraction (0.3%) of the Earth's total freshwater reserves.
Water resources
that are potentially useful. Uses of water include , , ,
activities.
All living things require water to grow and reproduce.
97% of the water on the Earth is salt water and on slightly over two thirds of this is frozen in
. The remaining unfrozen freshwater is
found mainly as groundwater, with only a small fraction present above ground or in the air.
Fresh water is a , yet the world's supply of
is steadily decreasing, with depletion occurring most prominently in Asia, South America and North America, although it is still unclear how much natural renewal balances this usage, and whether
are threatened. The framework for allocating water resources to water users (where such a framework exists) is known as .
volcano in northern Chile
Surface water is water in a river,
or fresh water .
Surface water is naturally replenished by
and naturally lost through discharge to the , ,
Although the only natural input to any surface water system is precipitation within its , the total quantity of water in that system at any given time is also dependent on many other factors.
These factors include storage capacity in lakes, wetlands and artificial , the permeability of the
beneath these storage bodies, the
characteristics of the land in the watershed, the timing of the precipitation and local evaporation rates. All of these factors also affect the proportions of water loss.
Human activities can have a large and sometimes devastating impact on these factors.
Humans often increase storage capacity by constructing reservoirs and decrease it by draining wetlands.
Humans often increase runoff quantities and velocities by paving areas and channelizing the stream flow.
The total quantity of water available at any given time is an important consideration. Some human water users have an intermittent need for water.
For example, many
require large quantities of water in the spring, and no water at all in the winter.
To supply such a farm with water, a surface water system may require a large storage capacity to collect water throughout the year and release it in a short period of time.
Other users have a continuous need for water, such as a
that requires water for cooling.
To supply such a power plant with water, a surface water system only needs enough storage capacity to fill in when average stream flow is below the power plant's need.
Nevertheless, over the long term the average rate of precipitation within a watershed is the upper bound for average consumption of natural surface water from that watershed.
Natural surface water can be augmented by importing surface water from another watershed through a
or . It can also be artificially augmented from any of the other sources listed here, however in practice the quantities are negligible. Humans can also cause surface water to be "lost" (i.e. become unusable) through .
is estimated to have the largest supply of fresh water in the world, followed by
Panorama of a natural wetland (, New Zealand)
Throughout the course of a river, the total volume of water transported downstream will often be a combination of the visible free water flow together with a substantial contribution flowing through rocks and sediments that underlie the river and its floodplain called the . For many rivers in large valleys, this unseen component of flow may greatly exceed the visible flow. The hyporheic zone often forms a dynamic interface between surface water and groundwater from aquifers, exchanging flow between rivers and aquifers that may be fully charged or depleted. This is especially significant in
areas where pot-holes and underground rivers are common.
Relative groundwater travel times in the subsurface
Groundwater is fresh water located in the subsurface
space of soil and . It is also water that is flowing within
below the . Sometimes it is useful to make a distinction between groundwater that is closely associated with surface water and deep groundwater in an aquifer (sometimes called "").
is a common water source in Central
Groundwater can be thought of in the same terms as surface water: inputs, outputs and storage.
The critical difference is that due to its slow rate of turnover, groundwater storage is generally much larger (in volume) compared to inputs than it is for surface water. This difference makes it easy for humans to use groundwater unsustainably for a long time without severe consequences.
Nevertheless, over the long term the average rate of seepage above a groundwater source is the upper bound for average consumption of water from that source.
The natural input to groundwater is seepage from surface water.
The natural outputs from groundwater are
and seepage to the oceans.
If the surface water source is also subject to substantial evaporation, a groundwater source may become .
This situation can occur naturally under
bodies of water, or artificially under
In coastal areas, human use of a groundwater source may cause the direction of seepage to ocean to reverse which can also cause .
Humans can also cause groundwater to be "lost" (i.e. become unusable) through pollution.
Humans can increase the input to a groundwater source by building reservoirs or detention ponds.
Iceberg near
Several schemes have been proposed to make use of
as a water source, however to date this has only been done for research purposes.
runoff is considered to be surface water.
The Himalayas, which are often called "The Roof of the World", contain some of the most extensive and rough high altitude areas on Earth as well as the greatest area of glaciers and permafrost outside of the poles. Ten of Asia’s largest rivers flow from there, and more than a billion people’s livelihoods depend on them. To complicate matters, temperatures there are rising more rapidly than the global average. In Nepal, the temperature has risen by 0.6 degrees Celsius over the last decade, whereas globally, the Earth has warmed approximately 0.7 degrees Celsius over the last hundred years.
Desalination is an artificial process by which saline water (generally ) is converted to fresh water.
The most common desalination processes are
Desalination is currently expensive compared to most alternative sources of water, and only a very small fraction of total human use is satisfied by desalination. It is usually only economically practical for high-valued uses (such as household and industrial uses) in
areas. However, there is growth in desalination for agricultural use, and highly populated areas such as Singapore or California.[] The most extensive use is in the .
It is estimated that 70% of worldwide water is used for irrigation, with 15-35% of irrigation withdrawals being unsustainable. It takes around 2,000 - 3,000 litres of water to produce enough food to satisfy one person's daily dietary need. This is a considerable amount, when compared to that required for drinking, which is between two and five litres. To produce food for the now over 7 billion people who inhabit the planet today requires the water that would fill a canal ten metres deep, 100 metres wide and 2100 kilometres long.
Around fifty years ago, the common perception was that water was an infinite resource. At that time, there were fewer than half the current number of people on the planet. People were not as wealthy as today, consumed fewer calories and ate less meat, so less water was needed to produce their food. They required a third of the volume of water we presently take from rivers. Today, the competition for water resources is much more intense. This is because there are now seven billion people on the planet, their consumption of water-thirsty meat and vegetables is rising, and there is increasing competition for water from ,
biofuel crops, and water reliant food items. In the future, even more water will be needed to produce food because the Earth's population is forecast to rise to 9 billion by 2050. An additional 2.5 or 3 billion people, choosing to eat fewer cereals and more meat and vegetables could add an additional five million kilometres to the virtual canal mentioned above.
An assessment of water management in agriculture sector was conducted in 2007 by the
to see if the world had sufficient water to provide food for its growing population. It assessed the current availability of water for agriculture on a global scale and mapped out locations suffering from water scarcity. It found that a fifth of the world's people, more than 1.2 billion, live in areas of , where there is not enough water to meet all demands.
A further 1.6 billion people live in areas experiencing , where the lack of investment in water or insufficient human capacity make it impossible for authorities to satisfy the demand for water. In addition, one third of the world's population does not have access to clean drinking water, which is more than 2.3 billion people. The report found that it would be possible to produce the food required in future, but that continuation of today's food production and environmental trends would lead to crises in many parts of the world. To avoid a global water crisis, farmers will have to strive to increase productivity to meet growing demands for food, while industry and cities find ways to use water more efficiently.
In some areas of the world, irrigation is necessary to grow any crop at all, in other areas it permits more profitable crops to be grown or enhances crop yield.
Various irrigation methods involve different trade-offs between crop yield, water consumption and capital cost of equipment and structures. Irrigation methods such as
and overhead
irrigation are usually less expensive but are also typically less efficient, because much of the water evaporates, runs off or drains below the root zone.
Other irrigation methods considered to be more efficient include , , and some types of sprinkler systems where the sprinklers are operated near ground level.
These types of systems, while more expensive, usually offer greater potential to minimize runoff, drainage and evaporation.
Any system that is improperly managed can be wasteful, all methods have the potential for high efficiencies under suitable conditions, appropriate irrigation timing and management.
Some issues that are often insufficiently considered are salinization of groundwater and contaminant accumulation leading to water quality declines.
As global populations grow, and as demand for food increases in a world with a fixed water supply, there are efforts under way to learn how to produce more food with less water, through improvements in irrigation
and , agricultural , crop types, and water monitoring.
is a small but growing agricultural use of water.
Freshwater commercial fisheries may also be considered as agricultural uses of water, but have generally been assigned a lower priority than irrigation (see
A power plant in
It is estimated that 22% of worldwide water is used in industry.
Major industrial users include hydroelectric dams, , which use water for cooling,
refineries, which use water in chemical processes, and manufacturing plants, which use water as a solvent. Water withdrawal can be very high for certain industries, but consumption is generally much lower than that of agriculture.
Water is used in renewable power generation. Hydroelectric power derives energy from the force of water flowing downhill, driving a turbine connected to a generator. This hydroelectricity is a low-cost, non-polluting, renewable energy source. Significantly, hydroelectric power can also be used for
unlike most renewable energy sources which are . Ultimately, the energy in a hydroelectric powerplant is supplied by the sun. Heat from the sun evaporates water, which condenses as rain in higher altitudes and flows downhill.
plants also exist, which use grid electricity to pump water uphill when demand is low, and use the stored water to produce electricity when demand is high.
Hydroelectric power plants generally require the creation of a large artificial lake. Evaporation from this lake is higher than evaporation from a river due to the larger surface area exposed to the elements, resulting in much higher water consumption. The process of driving water through the turbine and tunnels or pipes also briefly removes this water from the natural environment, creating water withdrawal. The impact of this withdrawal on wildlife varies greatly depending on the design of the powerplant.
Pressurized water is used in water blasting and water jet cutters. Also, very high pressure water guns are used for precise cutting. It works very well, is relatively safe, and is not harmful to the environment. It is also used in the cooling of machinery to prevent overheating, or prevent saw blades from overheating. This is generally a very small source of water consumption relative to other uses.
Water is also used in many large scale industrial processes, such as thermoelectric power production, oil refining, fertilizer production and other chemical plant use, and natural gas extraction from shale rock. Discharge of untreated water from industrial uses is pollution. Pollution includes discharged solutes (chemical pollution) and increased water temperature (thermal pollution). Industry requires pure water for many applications and utilizes a variety of purification techniques both in water supply and discharge. Most of this pure water is generated on site, either from natural freshwater or from municipal . Industrial consumption of water is generally much lower than withdrawal, due to laws requiring industrial grey water to be treated and returned to the environment. Thermoelectric power plants using
have high consumption, nearly equal to their withdrawal, as most of the withdrawn water is evaporated as part of the cooling process. The withdrawal, however, is lower than in
Drinking water
It is estimated that 8% of worldwide water use is for domestic purposes. These include , , , , cleaning, laundry and . Basic domestic water requirements have been estimated by
at around 50 liters per person per day, excluding water for gardens.
Drinking water is water that is of sufficiently high quality so that it can be consumed or used without risk of immediate or long term harm. Such water is commonly called potable water. In most developed countries, the water supplied to domestic, commerce and industry is all of drinking water standard even though only a very small proportion is actually consumed or used in food preparation.
Whitewater rapids
Sustainable management of water resources (including provision of safe and reliable supplies for drinking water and irrigation, adequate sanitation, protection of aquatic ecosystems, and flood protection) poses enormous challenges in many parts of the world.
water use is usually a very small but growing percentage of total water use.
Recreational water use is mostly tied to reservoirs.
If a reservoir is kept fuller than it would otherwise be for recreation, then the water retained could be categorized as recreational usage.
Release of water from a few reservoirs is also timed to enhance
boating, which also could be considered a recreational usage. Other examples are anglers, water skiers, nature enthusiasts and swimmers.
Recreational usage is usually non-consumptive.
are often targeted as using excessive amounts of water, especially in drier regions. It is, however, unclear whether recreational irrigation (which would include private gardens) has a noticeable effect on water resources. This is largely due to the unavailability of reliable data. Additionally, many golf courses utilize either primarily or exclusively treated effluent water, which has little impact on potable water availability.
Some governments, including the Californian Government, have labelled golf course usage as agricultural in order to deflect ' charges of wasting water. However, using the above figures as a basis, the actual statistical effect of this reassignment is close to zero.
In Arizona, an organized lobby has been established in the form of the Golf Industry Association, a group focused on educating the public on how golf impacts the environment.
Recreational usage may reduce the availability of water for other users at specific times and places.
For example, water retained in a reservoir to allow boating in the late summer is not available to farmers during the spring planting season.
Water released for whitewater rafting may not be available for hydroelectric generation during the time of peak electrical demand.
Explicit environment water use is also a very small but growing percentage of total water use.
Environmental water may include water stored in impoundments and released for environmental purposes (held environmental water), but more often is water retained in waterways through regulatory limits of abstraction.
Environmental water usage includes watering of natural or artificial wetlands, artificial lakes intended to create wildlife habitat, , and water releases from reservoirs timed to help fish spawn, or to restore more natural flow regimes
Like recreational usage, environmental usage is non-consumptive but may reduce the availability of water for other users at specific times and places.
For example, water release from a reservoir to help fish spawn may not be available to farms upstream, and water retained in a river to maintain waterway health would not be available to water abstractors downstream.
Estimate of the share of people in developing countries with access to drinking water
The concept of water stress is relatively simple: According to the , it applies to situations where there is not enough water for all uses, whether agricultural, industrial or domestic.
Defining thresholds for stress in terms of available water
is more complex, however, entailing assumptions about water use and its efficiency. Nevertheless, it has been proposed that when annual per capita renewable freshwater availability is less than 1,700 cubic meters, countries begin to experience periodic or regular water stress. Below 1,000 cubic meters, water
scarcity begins to hamper economic development and human health and well-being.
In 2000, the world population was 6.2 billion. The UN estimates that by 2050 there will be an additional 3.5 billion people with most of the growth in
that already suffer water stress. Thus, water demand will increase unless there are corresponding increases in
of this vital resource. In building on the data presented here by the UN, the
goes on to explain that access to water for producing food will be one of the main challenges in the decades to come. Access to water will need to be balanced with the importance of managing water itself in a sustainable way while taking into account the impact of climate change, and other environmental and social variables.
Business activity ranging from industrialization to services such as tourism and entertainment continues to expand rapidly. This expansion requires increased water services including both
and , which can lead to more pressure on water resources and natural .
The trend towards
is accelerating. Small private
that work well in low-density communities are not feasible within high-density . Urbanization requires significant investment in water
in order to deliver water to individuals and to process the concentrations of wastewater – both from individuals and from business. These polluted and contaminated waters must be treated or they pose unacceptable public health risks.
In 60% of European cities with more than 100,000 people, groundwater is being used at a faster rate than it can be replenished. Even if some water remains available, it
to capture it.
could have significant impacts on water resources around the world because of the close connections between the climate and . Rising temperatures will increase
and lead to increases in precipitation, though there will be regional variations in . Both
may become more frequent in different regions at different times, and dramatic changes in
are expected in mountainous areas. Higher temperatures will also affect water quality in ways that are not well understood. Possible impacts include increased . Climate change could also mean an increase in demand for farm irrigation, garden sprinklers, and perhaps even swimming pools. There is now ample evidence that increased hydrologic variability and change in climate has and will continue have a profound impact on the water sector through the hydrologic cycle, water availability, water demand, and water allocation at the global, regional, basin, and local levels.
Due to the , competition for water is growing such that many of the world's major aquifers are becoming depleted. This is due both for direct human consumption as well as agricultural irrigation by groundwater. Millions of
of all sizes are currently extracting groundwater throughout the world. Irrigation in dry areas such as northern , Nepal and
is supplied by groundwater, and is being extracted at an unsustainable rate.
Cities that have experienced aquifer drops between 10 and 50 meters include , ,
Polluted water
is one of the main concerns of the world today. The governments of numerous countries have striven to find solutions to reduce this problem. Many pollutants threaten water supplies, but the most widespread, especially in developing countries, is the discharge of raw
this method of sewage disposal is the most common method in underdeveloped countries, but also is prevalent in quasi-developed countries such as China, India, Nepal and .
Sewage, sludge, garbage, and even toxic pollutants are all dumped into the water.
Even if sewage is treated, problems still arise. Treated sewage forms sludge, which may be placed in landfills, spread out on land, incinerated or dumped at sea. In addition to sewage,
runoff is a significant source of pollution in some parts of the world, along with urban
runoff and
dumped by industries and governments.
Competition for water has widely increased, and it has become more difficult to conciliate the necessities for water supply for human consumption, food production, ecosystems and other uses. Water administration is frequently involved in contradictory and complex problems. Approximately 10% of the worldwide annual runoff is used for human necessities. Several areas of the world are flooded, while others have such low precipitations that human life is almost impossible. As population and development increase, raising water demand, the possibility of problems inside a certain country or region increases, as it happens with others outside the region.
Over the past 25 years, politicians, academics and journalists have frequently predicted that disputes over water would be a source of future wars. Commonly cited quotes include: that of former Egyptian Foreign Minister and former Secretary-General of the United Nations Boutrous Ghali, who forecast, “The next war in the Middle East will be fought over water, not politics”; his successor at the UN, Kofi Annan, who in 2001 said, “Fierce competition for fresh water may well become a source of conflict and wars in the future,” and the former Vice President of the World Bank, Ismail Serageldin, who said the wars of the next century will be over water unless significant changes in governance occurred. The water wars hypothesis had its roots in earlier research carried out on a small number of transboundary rivers such as the Indus, Jordan and Nile. These particular rivers became the focus because they had experienced water-related disputes. Specific events cited as evidence include Israel’s bombing of Syria’s attempts to divert the Jordan’s headwaters, and military threats by Egypt against any country building dams in the upstream waters of the Nile. However, while some links made between conflict and water were valid, they did not necessarily represent the norm.
The only known example of an actual inter-state conflict over water took place between 2500 and 2350 BC between the
and . Water stress has most often led to conflicts at local and regional levels. Tensions arise most often within national borders, in the downstream areas of distressed
Areas such as the lower regions of China's
in , for example, have already been experiencing
for several years. Water stress can also exacerbate conflicts and
tensions which are not directly caused by water.
Gradual reductions over time in the quality and/or quantity of fresh water can add to the instability of a region by depleting the health of a population, obstructing , and exacerbating larger conflicts.
Water resources that span international boundaries are more likely to be a source of collaboration and cooperation than war. Scientists working at the
have been investigating the evidence behind water war predictions. Their findings show that, while it is true there has been conflict related to water in a handful of international basins, in the rest of the world’s approximately 300 shared basins the record has been largely positive. This is exemplified by the hundreds of treaties in place guiding equitable water use between nations sharing water resources. The institutions created by these agreements can, in fact, be one of the most important factors in ensuring cooperation rather than conflict.
(IUCN) published the book Share: Managing water across boundaries. One chapter covers the functions of trans-boundary institutions and how they can be designed to promote cooperation, overcome initial disputes and find ways of coping with the uncertainty created by climate change. It also covers how the effectiveness of such institutions can be monitored.
In 2025, water shortages will be more prevalent among poorer countries where resources are limited and population growth is rapid, such as the , , and parts of .[] By 2025, large urban and peri-urban areas will require new infrastructure to provide safe water and adequate sanitation. This suggests growing conflicts with agricultural water users, who currently consume the majority of the water used by humans.[]
Generally speaking the more developed countries of ,
and Russia will not see a serious threat to water supply by the year 2025, not only because of their relative wealth, but more importantly their populations will be better aligned with available water resources.[]
North Africa, the Middle East,
and northern China will face very severe water shortages due to physical scarcity and a condition of overpopulation relative to their
with respect to water supply.[]
Africa, Southern China and India will face water supply shortages by 2025; for these latter regions the causes of scarcity will be economic constraints to developing safe drinking water, as well as excessive .[]
Water supply and sanitation require a huge amount of capital
in infrastructure such as pipe networks, pumping stations and water treatment works. It is estimated that
(OECD) nations need to invest at least USD 200 billion per year to replace aging water infrastructure to guarantee supply, reduce leakage rates and protect water quality.
International attention has focused upon the needs of the developing countries. To meet the
targets of halving the proportion of the population lacking access to safe drinking water and basic sanitation by 2015, current annual investment on the order of USD 10 to USD 15 billion would need to be roughly doubled. This does not include investments required for the maintenance of existing infrastructure.
Once infrastructure is in place, operating water supply and sanitation systems entails significant ongoing costs to cover personnel, energy, chemicals, maintenance and other expenses. The sources of money to meet these capital and operational costs are essentially either user fees, public funds or some combination of the two. An increasing dimension to consider is the flexibility of the water supply system.
Spragg Bag
(European action plan)
. United States Geological Survey.
. GreenFacts Website.
Gleeson, T Wada, Y Bierkens, Marc F. P.; van Beek, Ludovicus P. H. (9 August 2012). . . 488 (7410): 197–200. :.  .
. Worldwater.org.
July 23, 2009, at the .
United Nations Press Release POP/952, 13 March 2007.
Molden, D. (Ed). Water for food, Water for life: . Earthscan/IWMI, 2007.
Chartres, C. and Varma, S. Out of water. From Abundance to Scarcity and How to Solve the World’s Water Problems FT Press (USA), 2010
. Fao.org.
National Water Commission (2010). Australian environmental water management report. NWC, Canberra
. Silk Road Intelligencer.
. Un.org. .
. Google.com. . :.
The World Bank, 2010 .
. Reports.eea.europa.eu. .
The World Bank, 2009 .
. Wds.worldbank.org.
Ocean dumping of sewage sludge is prohibited in the United States by the
Zwarteveen, M. y R. Boelens. 2009. Investigación interdisciplinaria sobre justicia hídrica: unas aproximaciones conceptuales. Primera Conferencia de Justicia Hídrica. Cusco, 22-26 noviembre 2009.
Masters, G.M. y W.P. Ela. 2008. Introducción a la ingeniería mediambiental. Tercera Edición. Pearson. Prentice Hall. Espa?a. 737 pp.
Rasler, Karen A.; Thompson, W. R. (2006). "Contested Territory, Strategic Rivalries, and Conflict Escalation". International Studies Quarterly. 50 (1): 145–168. :.
Wolf, Aaron T (2001). "Water and Human Security". . 118: 29.
Postel, S. L.; Wolf, A. T. (2001). "Dehydrating Conflict". Foreign Policy. 126: 60–67.
, Success Stories, Issue 8, 2010,
Share: managing Water across Boundaries. Edited by Sadoff et al, 2008,
. Water-academy.org. .
. Building Research. 40: 545–557. 2012. :.
Zhang, S.X.; V. Babovic (2012).
(PDF). Journal of Hydroinformatics.
When the Rivers Run Dry: Water—The Defining Crisis of the Twenty-First Century Beacon Press, 2006,    
The International Bank for Reconstruction and Development-The World Bank, 2010.
The World Bank, 2010.
The World Bank, 2009,  .
Vazken Andréassian and Jean Margat, Rivers and Rivals. Quae publishing, Versailles, 2012,  .
: Hidden categories:}

我要回帖

更多关于 净水机 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信