楞次定律右手定则图解可以求运动方向吗

扫二维码下载作业帮
3亿+用户的选择
下载作业帮安装包
扫二维码下载作业帮
3亿+用户的选择
初二物理关于右手定则和左手定则Q1,通过右手定则,可以判定螺线管的磁场方向或电流方向(用右手握住螺线管,让四指指向螺线管中电流方向,则大拇指所指的那端就是螺线管的N极)那么如果把螺线管换成一根直导线的话,右手定则怎么用?如果再把直导线弯成环,右手定则怎么用?Q2:什么是左手定则?Q3:两个导线平行排列,电流方向相同,他们怎么运动?Q4:两个导线平行排列,电流方向不同,他们怎么运动?最好是自己回答,要我能看懂的(初二).
作业帮用户
扫二维码下载作业帮
3亿+用户的选择
1.导线的话 手的形状和 判定螺线管的磁场方向或电流方向 一样.大拇指是电流方向.剩下四个手指是磁场的方向.(在通电直单线周围有磁场)单线弯成环 四指握住导线环,四指方向与电流方向相同.大拇指的方向是N极.2.左手定则,判断力的时候用左手定则(安培力,洛伦兹力等)3.方向相同两导线相互吸引(安培力的作用,若两导线一左一右平行放置,电流方向相同,那么由于右边的导线产生磁场,两导线间的磁场方向是点磁场,即 磁感线穿纸面而出的磁场.根据左手定则来判断安培力,手伸开,四指并拢,大拇指垂直四指,磁场穿手心,四指方向是电流方向,大拇指方向是力的方向,所以左边导线受向右的安培力.右边导线的受力情况与左边相反,所以相互吸引).4.方向相反两导线相互排斥(同问题3.两导线所受的安培力是向外侧的,所以相互排斥.)
为您推荐:
其他类似问题
扫描下载二维码当前位置:
>>>小芳在做探究感应电流方向与哪些因素有关时,猜想金属棒在磁场中..
小芳在做探究感应电流方向与哪些因素有关时,猜想金属棒在磁场中运动产生的感应电流的方向可能与磁场的方向有关,也可能与棒的运动方向有关.她设计了如下实验,装置如图所示。①使金属棒向右运动,看到电流表指针向左偏②把磁铁南、北极上下对调,金属棒变为向左运动,看到电流表指针仍向左偏.根据以上现象,小芳得出感应电流的方向与磁场的方向、棒的运动方向无关的结论.你认为小芳的结论正确吗?若认为正确请说明理由.若有错,分析小芳得出错误结论的原因
题型:探究题难度:中档来源:山东省同步题
不正确。&&&&本实验应采用控制变量法。在研究感应电流与磁场方向的关系时,应保持导体运动方向不变;而在研究感应电流方向与运动方向关系时,应保持磁场方向不变,她没有按控制变量法进行操作。
马上分享给同学
据魔方格专家权威分析,试题“小芳在做探究感应电流方向与哪些因素有关时,猜想金属棒在磁场中..”主要考查你对&&电磁感应现象,控制变量法和科学探究的过程&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
电磁感应现象控制变量法和科学探究的过程
电磁感应:
&控制变量法研究“电磁感应”现象:&&& 通电导体在磁场中受力的方向、感应电流的产生及方向都不只与一个因素有关,在研究通电导体在磁场中受力的方向、产生感应电流的条件及感应电流的方向与哪些因素有关时,我们都用到了控制变量思想。
例如图是探究“怎样产生感应电流”的实验装置。ab是一根导体,通过导线、开关连接在灵敏电流计的两接线柱上。(1)本实验中,如果____,我们就认为有感应电流产生。 (2)闭合开关后,若导体不动,磁铁左右水平运动,电路____感应电流(选填“有”或“无”)。 (3)小李所在实验小组想进一步探究“感应电流的大小跟哪些因素有关?”,小李猜想:“可能跟导体切割磁感线运动的快慢有关。” 请你根据图示的实验装置,帮助小李设计实验来验证她的猜想,你设计的实验做法是:__________
解析:(1)有微弱的电流通过灵敏电流计,其指针就会摆动。 (2)由图知,导体不动,磁铁左右水平运动。此时也相当于导体做切割磁感线运动,会产生感应电流。 (3)本实验设计要应用控制变量法。在其他条件不变的情况下,只改变导体切割磁感线运动的速度,然后观察电流计指针的偏转程度。
答案:(1)灵敏电流计的指针偏转& (2)有 (3)闭合开关,保持其他条件不变,只改变导体切割磁感线运动的速度,观察灵敏电流计的指针偏转程度电磁感应部分涉及三个方面的知识:&&&& 一是电磁感应现象的规律。电磁感应研究的是其他形式能转化为电能的特点和规律,其核心是法拉第电磁感应定律和楞次定律。&&& 楞次定律表述为:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。即要想获得感应电流(电能)必须克服感应电流产生的安培力做功,需外界做功,将其他形式的能转化为电能。法拉第电磁感应定律是反映外界做功能力的,磁通量的变化率越大,感应电动势越大,外界做功的能力也越大。
二是电路及力学知识。&&&&& 主要讨论电能在电路中传输、分配,并通过用电器转化成其他形式能的特点规律。在实际应用中常常用到电路的三个规律(欧姆定律、电阻定律和焦耳定律)和力学中的牛顿定律、动量定理、动量守恒定律、动能定理和能量守恒定律等概念。
三是右手定则。&&&& 右手平展,使大拇指与其余四指垂直,并且都跟手掌在一个平面内。把右手放入磁场中,若磁力线垂直进入手心(当磁感线为直线时,相当于手心面向N极),大拇指指向导线运动方向,则四指所指方向为导线中感应电流的方向。电磁学中,右手定则判断的主要是与力无关的方向。为了方便记忆,并与左手定则区分,可以记忆成:左力右电(即左手定则判断力的方向,右手定则判断电流的方向)。或者左力右感、左生力右通电。控制变量法:物理学中对于多因素(多变量)的问题,常常采用控制因素(变量)的方法,把多因素的问题变成多个单因素的问题。每一次只改变其中的某一个因素,而控制其余几个因素不变,从而研究被改变的这个因素对事物的影响,分别加以研究,最后再综合解决,这种方法叫控制变量法。它是科学探究中的重要思想方法,广泛地运用在各种科学探索和科学实验研究之中。例如以下的探究实验:探究影响蒸发快慢的因素;探究力与运动的关系探究影响滑动摩擦力大小的因素;探究影响压力的作用效果的因素;探究影响液体压强大小的因素;探究影响浮力大小的因素;探究影响动能大小的因素;探究影响重力势能大小的因素;验证欧姆定律科学探究过程:科学探究过程的一些环节:提出问题、猜想和假设、制定计划与设计实验、进行实验与收集数据、分析与论证、评估、交流与合作。
发现相似题
与“小芳在做探究感应电流方向与哪些因素有关时,猜想金属棒在磁场中..”考查相似的试题有:
1798321455572153862021521846153421对右手定则与左手定则的应用.正确的是()A.求导体运动用左手定则.求电流方向用右手定则B.分析电动机时用左手定则.分析发电机时用右手定则C.已知B.I.求F用左手定则.已知V.B.求I用右手定则D.求导体切割磁感线运动产生感应电流的方向时用右手定则 题目和参考答案——精英家教网——
暑假天气热?在家里学北京名师课程,
& 题目详情
对右手定则与左手定则的应用,正确的是()A.求导体运动用左手定则,求电流方向用右手定则B.分析电动机时用左手定则,分析发电机时用右手定则C.已知B、I,求F用左手定则,已知V、B,求I用右手定则D.求导体切割磁感线运动产生感应电流的方向时用右手定则
练习册系列答案
科目:高中物理
科目:高中物理
来源:(课标人教版)2010年《高考风向标》物理 第9章 磁场 第1讲 磁场 磁场对电流的作用 人教版
(1)定义:磁场对________的作用力称为安培力,公式:F=________.
(2)通电导线与磁场方向垂直时,即=90°,此时安培力有最________值;通电导线与磁场方向平行时,即=0°,此时安培力有最________值,Fmin=________N;0°<<90°时,安培力F介于0和最大值之间.L为导线的________长度,即导线两端点所连直线的长度,相应的电流方向沿L由始端流向末端;如图所示,几种有效长度;
(3)根据力的相互作用原理,如果是磁体对通电导体有力的作用,则通电导体对磁体有________力.
2.安培力方向的判断
(1)、左手定则:伸开左手,使大拇指与其余四个手指________,并且与手掌在同一个平面上,把手放入磁场中,让磁感线________穿过掌心,并且使四个手指指向________的方向,那么大拇指所指的方向就是通电导体在磁场中所受________的方向.安培力方向既垂直于________方向,又垂直于________的方向.
(2)、用“同性相________,异性相________”(只适用于磁铁之间或磁体位于螺线管外部时).
(3)、用“同向电流相________,反向电流相________”(反映了磁现象的电本质).可以把条形磁铁等效为长直螺线管(不要把长直螺线管等效为条形磁铁).
3.右手螺旋定则(安培定则)与左手定则的比较
科目:高中物理
来源:物理教研室
科目:高中物理
题型:阅读理解
第十部分 磁场第一讲 基本知识介绍《磁场》部分在奥赛考刚中的考点很少,和高考要求的区别不是很大,只是在两处有深化:a、电流的磁场引进定量计算;b、对带电粒子在复合场中的运动进行了更深入的分析。一、磁场与安培力1、磁场a、永磁体、电流磁场→磁现象的电本质b、磁感强度、磁通量c、稳恒电流的磁场*毕奥-萨伐尔定律(Biot-Savart law):对于电流强度为I&、长度为dI的导体元段,在距离为r的点激发的“元磁感应强度”为dB&。矢量式d= k,(d表示导体元段的方向沿电流的方向、为导体元段到考查点的方向矢量);或用大小关系式dB = k结合安培定则寻求方向亦可。其中&k = 1.0×10?7N/A2&。应用毕萨定律再结合矢量叠加原理,可以求解任何形状导线在任何位置激发的磁感强度。毕萨定律应用在“无限长”直导线的结论:B = 2k&;*毕萨定律应用在环形电流垂直中心轴线上的结论:B = 2πkI&;*毕萨定律应用在“无限长”螺线管内部的结论:B = 2πknI&。其中n为单位长度螺线管的匝数。2、安培力a、对直导体,矢量式为&= I;或表达为大小关系式&F = BILsinθ再结合“左手定则”解决方向问题(θ为B与L的夹角)。b、弯曲导体的安培力⑴整体合力折线导体所受安培力的合力等于连接始末端连线导体(电流不变)的的安培力。证明:参照图9-1,令MN段导体的安培力F1与NO段导体的安培力F2的合力为F,则F的大小为F =&& = BI& = BI关于F的方向,由于ΔFF2P∽ΔMNO,可以证明图9-1中的两个灰色三角形相似,这也就证明了F是垂直MO的,再由于ΔPMO是等腰三角形(这个证明很容易),故F在MO上的垂足就是MO的中点了。证毕。由于连续弯曲的导体可以看成是无穷多元段直线导体的折合,所以,关于折线导体整体合力的结论也适用于弯曲导体。(说明:这个结论只适用于匀强磁场。)⑵导体的内张力弯曲导体在平衡或加速的情形下,均会出现内张力,具体分析时,可将导体在被考查点切断,再将被切断的某一部分隔离,列平衡方程或动力学方程求解。c、匀强磁场对线圈的转矩如图9-2所示,当一个矩形线圈(线圈面积为S、通以恒定电流I)放入匀强磁场中,且磁场B的方向平行线圈平面时,线圈受安培力将转动(并自动选择垂直B的中心轴OO′,因为质心无加速度),此瞬时的力矩为M = BIS几种情形的讨论——⑴增加匝数至N&,则&M = NBIS&;⑵转轴平移,结论不变(证明从略);⑶线圈形状改变,结论不变(证明从略);*⑷磁场平行线圈平面相对原磁场方向旋转α角,则M = BIScosα&,如图9-3;证明:当α&= 90°时,显然M = 0&,而磁场是可以分解的,只有垂直转轴的的分量Bcosα才能产生力矩…⑸磁场B垂直OO′轴相对线圈平面旋转β角,则M = BIScosβ&,如图9-4。证明:当β&= 90°时,显然M = 0&,而磁场是可以分解的,只有平行线圈平面的的分量Bcosβ才能产生力矩…说明:在默认的情况下,讨论线圈的转矩时,认为线圈的转轴垂直磁场。如果没有人为设定,而是让安培力自行选定转轴,这时的力矩称为力偶矩。二、洛仑兹力1、概念与规律a、&= q,或展开为f = qvBsinθ再结合左、右手定则确定方向(其中θ为与的夹角)。安培力是大量带电粒子所受洛仑兹力的宏观体现。b、能量性质由于总垂直与确定的平面,故总垂直&,只能起到改变速度方向的作用。结论:洛仑兹力可对带电粒子形成冲量,却不可能做功。或:洛仑兹力可使带电粒子的动量发生改变却不能使其动能发生改变。问题:安培力可以做功,为什么洛仑兹力不能做功?解说:应该注意“安培力是大量带电粒子所受洛仑兹力的宏观体现”这句话的确切含义——“宏观体现”和“完全相等”是有区别的。我们可以分两种情形看这个问题:(1)导体静止时,所有粒子的洛仑兹力的合力等于安培力(这个证明从略);(2)导体运动时,粒子参与的是沿导体棒的运动v1和导体运动v2的合运动,其合速度为v&,这时的洛仑兹力f垂直v而安培力垂直导体棒,它们是不可能相等的,只能说安培力是洛仑兹力的分力f1&= qv1B的合力(见图9-5)。很显然,f1的合力(安培力)做正功,而f不做功(或者说f1的正功和f2的负功的代数和为零)。(事实上,由于电子定向移动速率v1在10?5m/s数量级,而v2一般都在10?2m/s数量级以上,致使f1只是f的一个极小分量。)☆如果从能量的角度看这个问题,当导体棒放在光滑的导轨上时(参看图9-6),导体棒必获得动能,这个动能是怎么转化来的呢?若先将导体棒卡住,回路中形成稳恒的电流,电流的功转化为回路的焦耳热。而将导体棒释放后,导体棒受安培力加速,将形成感应电动势(反电动势)。动力学分析可知,导体棒的最后稳定状态是匀速运动(感应电动势等于电源电动势,回路电流为零)。由于达到稳定速度前的回路电流是逐渐减小的,故在相同时间内发的焦耳热将比导体棒被卡住时少。所以,导体棒动能的增加是以回路焦耳热的减少为代价的。2、仅受洛仑兹力的带电粒子运动a、⊥时,匀速圆周运动,半径r =&&,周期T =&b、与成一般夹角θ时,做等螺距螺旋运动,半径r =&&,螺距d =&这个结论的证明一般是将分解…(过程从略)。☆但也有一个问题,如果将分解(成垂直速度分量B2和平行速度分量B1&,如图9-7所示),粒子的运动情形似乎就不一样了——在垂直B2的平面内做圆周运动?其实,在图9-7中,B1平行v只是一种暂时的现象,一旦受B2的洛仑兹力作用,v改变方向后就不再平行B1了。当B1施加了洛仑兹力后,粒子的“圆周运动”就无法达成了。(而在分解v的处理中,这种局面是不会出现的。)3、磁聚焦a、结构:见图9-8,K和G分别为阴极和控制极,A为阳极加共轴限制膜片,螺线管提供匀强磁场。b、原理:由于控制极和共轴膜片的存在,电子进磁场的发散角极小,即速度和磁场的夹角θ极小,各粒子做螺旋运动时可以认为螺距彼此相等(半径可以不等),故所有粒子会“聚焦”在荧光屏上的P点。4、回旋加速器a、结构&原理(注意加速时间应忽略)b、磁场与交变电场频率的关系因回旋周期T和交变电场周期T′必相等,故&=c、最大速度&vmax&=&= 2πRf5、质谱仪速度选择器&粒子圆周运动,和高考要求相同。第二讲 典型例题解析一、磁场与安培力的计算【例题1】两根无限长的平行直导线a、b相距40cm,通过电流的大小都是3.0A,方向相反。试求位于两根导线之间且在两导线所在平面内的、与a导线相距10cm的P点的磁感强度。【解说】这是一个关于毕萨定律的简单应用。解题过程从略。【答案】大小为8.0×10?6T&,方向在图9-9中垂直纸面向外。【例题2】半径为R&,通有电流I的圆形线圈,放在磁感强度大小为B&、方向垂直线圈平面的匀强磁场中,求由于安培力而引起的线圈内张力。【解说】本题有两种解法。方法一:隔离一小段弧,对应圆心角θ&,则弧长L =&θR&。因为θ&→
精英家教网新版app上线啦!用app只需扫描书本条形码就能找到作业,家长给孩子检查作业更省心,同学们作业对答案更方便,扫描上方二维码立刻安装!
请输入姓名
请输入手机号正确教育旗下网站
网校:13306所
24小时更新:3621
总量:6747662

2019届高考物理(江苏版)一轮复习配套课件:专题11 电磁感应
2019届高考物理(江苏版)一轮复习配套课件:专题11 电磁感应
时间: 9:13:35
下载量:47次
大小:2.94M
所属资料:
文档简介为自动调取,可能会显示内容不完整,请您查看完整文档内容。
在手机端浏览文档
1/832/833/834/835/836/83
预览已结束,查看更多内容需下载哦~
&#xe6热门推荐
&#xe6相关资源
官方微信公共账号
资源库-微信公众号
在手机端浏览求解第五题为什么B点电势高于A点?我按照右手定则感觉B点低啊_百度知道
求解第五题为什么B点电势高于A点?我按照右手定则感觉B点低啊
我有更好的答案
切割磁感线的部分相当于电源,右手定则判断电流流向,可电源里电流是低电势流向高电势的
采纳率:61%
为您推荐:
其他类似问题
发型的相关知识
换一换
回答问题,赢新手礼包
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。}

我要回帖

更多关于 楞次定律右手定则图解 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信