CPU的指令集架构是什么指什么

关于CPU、指令集、架构、芯片的一些科普3 years ago328收藏分享举报文章被以下专栏收录有些东西想要分享又没有适合回答的问题,就放在这里了{&debug&:false,&apiRoot&:&&,&paySDK&:&https:\u002F\u002Fpay.zhihu.com\u002Fapi\u002Fjs&,&wechatConfigAPI&:&\u002Fapi\u002Fwechat\u002Fjssdkconfig&,&name&:&production&,&instance&:&column&,&tokens&:{&X-XSRF-TOKEN&:null,&X-UDID&:null,&Authorization&:&oauth c3cef7c66aa9e6a1e3160e20&}}{&database&:{&Post&:{&&:{&isPending&:false,&contributes&:[{&sourceColumn&:{&lastUpdated&:,&description&:&有些东西想要分享又没有适合回答的问题,就放在这里了&,&permission&:&COLUMN_PRIVATE&,&memberId&:640312,&contributePermission&:&COLUMN_PUBLIC&,&translatedCommentPermission&:&all&,&canManage&:true,&intro&:&有些东西想要分享又没有适合回答的问题,就放在这里了&,&urlToken&:&xpenrynidea&,&id&:3922,&imagePath&:&4b70deef7&,&slug&:&xpenrynidea&,&applyReason&:&&,&name&:&没有问题的答案&,&title&:&没有问题的答案&,&url&:&https:\u002F\u002Fzhuanlan.zhihu.com\u002Fxpenrynidea&,&commentPermission&:&COLUMN_ALL_CAN_COMMENT&,&canPost&:true,&created&:,&state&:&COLUMN_NORMAL&,&followers&:227,&avatar&:{&id&:&4b70deef7&,&template&:&https:\u002F\u002Fpic3.zhimg.com\u002F{id}_{size}.jpg&},&activateAuthorRequested&:false,&following&:false,&imageUrl&:&https:\u002F\u002Fpic3.zhimg.com\u002F4b70deef7_l.jpg&,&articlesCount&:1},&state&:&accepted&,&targetPost&:{&titleImage&:&https:\u002F\u002Fpic2.zhimg.com\u002F167eda4c92406eeb0dfabf5_r.jpg&,&lastUpdated&:,&imagePath&:&167eda4c92406eeb0dfabf5&,&permission&:&ARTICLE_PUBLIC&,&topics&:[],&summary&:&随着智能设备的广泛普及,这几年媒体上越来越多的出现关于“架构”“ARM vs x86”“芯片研发”的相关内容。很多消费者和爱好者面对这些以往不太常见的信息时就会迷惑甚至产生误解。其中一组比较容易被混淆的概念就是CPU、架构、指令集与芯片。本文试图用较…&,&copyPermission&:&ARTICLE_COPYABLE&,&translatedCommentPermission&:&all&,&likes&:0,&origAuthorId&:640312,&publishedTime&:&T17:16:19+08:00&,&sourceUrl&:&&,&urlToken&:,&id&:138138,&withContent&:false,&slug&:,&bigTitleImage&:false,&title&:&关于CPU、指令集、架构、芯片的一些科普&,&url&:&\u002Fp\u002F&,&commentPermission&:&ARTICLE_ALL_CAN_COMMENT&,&snapshotUrl&:&&,&created&:,&comments&:0,&columnId&:3922,&content&:&&,&parentId&:0,&state&:&ARTICLE_PUBLISHED&,&imageUrl&:&https:\u002F\u002Fpic2.zhimg.com\u002F167eda4c92406eeb0dfabf5_r.jpg&,&author&:{&bio&:&&,&isFollowing&:false,&hash&:&789e2e68e5baf02a859da78a&,&uid&:48,&isOrg&:false,&slug&:&xpenryn&,&isFollowed&:false,&description&:&仰望天空发呆的宅男&,&name&:&王强&,&profileUrl&:&https:\u002F\u002Fwww.zhihu.com\u002Fpeople\u002Fxpenryn&,&avatar&:{&id&:&234f570b39bb&,&template&:&https:\u002F\u002Fpic1.zhimg.com\u002F{id}_{size}.jpg&},&isOrgWhiteList&:false,&isBanned&:false},&memberId&:640312,&excerptTitle&:&&,&voteType&:&ARTICLE_VOTE_CLEAR&},&id&:256613}],&title&:&关于CPU、指令集、架构、芯片的一些科普&,&author&:&xpenryn&,&content&:&随着智能设备的广泛普及,这几年媒体上越来越多的出现关于“架构”“ARM vs x86”“芯片研发”的相关内容。很多消费者和爱好者面对这些以往不太常见的信息时就会迷惑甚至产生误解。其中一组比较容易被混淆的概念就是CPU、架构、指令集与芯片。本文试图用较浅显的文字阐明它们的关系与区别,纠正一些常见的错误认识与观点。\u003Cp\u003E学过计算机基础知识的朋友都知道CPU的含义,亦即中央处理器,是负责计算机主要运算任务的组件。一般习惯把CPU比喻为人的大脑。而了解略深的用户会听说CPU有x86、ARM等分类,前者主要用于PC而后者主要用于手机平板等设备。那么这里的x86、ARM指的是什么呢?\u003C\u002Fp\u003E\u003Cp\u003ECPU执行计算任务时都需要遵从一定的规范,程序在被执行前都需要先翻译为CPU可以理解的语言。这种规范或语言就是指令集(ISA,Instruction Set Architecture)。程序被按照某种指令集的规范翻译为CPU可识别的底层代码的过程叫做编译(compile)。x86、ARM v8、MIPS都是指令集的代号。指令集可以被扩展,如x86增加64位支持就有了x86-64。厂商开发兼容某种指令集的CPU需要指令集专利持有者授权,典型例子如Intel授权AMD,使后者可以开发兼容x86指令集的CPU。\u003C\u002Fp\u003E\u003Cp\u003ECPU的基本组成单元即为核心(core)。多个核心可以同时执行多件计算任务,前提是这些任务没有先后顺序。\u003C\u002Fp\u003E\u003Cp\u003E核心的实现方式被称为微架构(microarchitecture)。微架构的设计影响核心可以达到的最高频率、核心在一定频率下能执行的运算量、一定工艺水平下核心的能耗水平等等。此外,不同微架构执行各类程序的偏向也不同,例如90年代末期Intel的P6微架构就在浮点类程序上表现优异,但在整数类应用中不如同频下的对手。\u003C\u002Fp\u003E\u003Cp\u003E常见的代号如Haswell、Cortex-A15等都是微架构的称号。注意微架构与指令集是两个概念:指令集是CPU选择的语言,而微架构是具体的实现。i7-4770的核心是Haswell微架构,这种微架构兼容x86指令集。对于兼容ARM指令集的芯片来说这两个概念尤其容易混淆:ARM公司将自己研发的指令集叫做ARM指令集,同时它还研发具体的微架构如Cortex系列并对外授权。但是,一款CPU使用了ARM指令集不等于它就使用了ARM研发的微架构。Intel、高通、苹果、Nvidia等厂商都自行开发了兼容ARM指令集的微架构,同时还有许多厂商使用ARM开发的微架构来制造CPU。通常,业界认为只有具备独立的微架构研发能力的企业才算具备了CPU研发能力,而是否使用自行研发的指令集无关紧要。微架构的研发也是IT产业技术含量最高的领域之一。\u003C\u002Fp\u003E\u003Cp\u003E数年前国产龙芯CPU获得MIPS授权的消息曾引起一阵风波,龙芯相关负责人还曾出来解释。龙芯是兼容MIPS指令集,微架构部由中科院自主研发的CPU系列。过去中科院资金不足所以没有MIPS指令集授权,但是指令集的实现方式是公开的,因而中科院可以在研发时选择兼容该指令集。待资金充足买下授权后,龙芯就可以合法在市面销售。从这里我们可以知道,厂商研发CPU时并不需要获得指令集授权就可以获得指令集的相关资料与规范,指令集本身的技术含量并不是很高。获得授权主要是为了避免法律问题。然而微架构的设计细节是各家厂商绝对保密的,而且由于其技术复杂,即便获得相应文档也难以山寨。不同厂商的微架构设计水平也有较大差异,典型如Intel与AMD的对比,前者在最近几年明显技高一筹。\u003C\u002Fp\u003E\u003Cp\u003E微架构研发完成,或者说核心研发完成,接下来就是将其组装为芯片了。过去的芯片仅仅包括CPU部分,如今大量的芯片集成了CPU、GPU、IO等多种不同的功能组件,此时这种芯片就不是传统意义上的“CPU”了。将各种功能组件组装为芯片的技术含量相比微架构研发来说是较低的,因而业界能做此类工作的企业也数量较多。\u003C\u002Fp\u003E\u003Cp\u003E在PC时代,几大主要的CPU研发厂商都只是自己研制微架构自己用。到了智能设备时代,ARM公司的微架构授权模式兴起。ARM自己开发微架构后将它们上架出售,其他厂商可以拿这些核心组装为芯片来使用或销售。由于这种模式对第三方的技术能力要求很低,加上ARM的微架构在低功耗领域表现优异,这种模式获得了广泛成功。如果你发现某款芯片标明使用了Cortex系列核心,则一定是这种模式的产物。如前所述,仅仅从ARM购买微架构来组装芯片的厂商是不能被称作CPU研发企业的,这些芯片也不能被称为“xx厂商研发的CPU”。典型如华为的海思920、三星Exynos 5430,只能说是“使用ARM Cortex-A15核心的芯片”。但是如果一款兼容ARM指令集的芯片使用了厂商自主研发的微架构情况就不同了。高通骁龙800、苹果A7就是这样的例子--它们分别使用了高通、苹果自主研发的CPU。\u003C\u002Fp\u003E\u003Cp\u003E随着智能设备市场不断扩大,ARM阵营也不断壮大。占领智能设备领域后,ARM阵营开始进入PC、服务器与高性能计算领域。先是ARM发布了ARM v8 64位指令集规范,接着是各大厂商纷纷开始研发基于ARM v8的高性能微架构。有人会问,ARM指令集不是为低功耗设备研发的吗?怎么现在又开始做高性能CPU了呢?多年以前这样的怀疑是很有道理的,因为彼时不同指令集对微架构的影响还比较大,ARM适合低功耗,x86适合PC,Power适合小型机……这类区分是存在的。但是随着技术进步,指令集对微架构的影响已经小到可以忽略,任何指令集都可以做出适合不同领域的优秀微架构来。因此用户看到x86指令集的手机cpu或是ARM指令集的服务器CPU都无需惊讶,这是技术发展的自然结果。\u003C\u002Fp\u003E\u003Cp\u003E那么,现在各家CPU研发厂商选择指令集的标准又是什么呢?业界除了x86和ARM、MIPS,其实还有一大堆各种各样的指令集。比如小型主机领域的Sparc、Alpha、Power等。国内几家研CPU的科研机构就分别选择了x86、MIPS、Sparc、Alpha、ARM指令集,早年甚至有机构选择Intel没落的Itanium使用的EPIC指令集的。一般来说大家倾向于选择软件生态较好的指令集--前面说过,软件必须编译后才能在某种指令集平台上运行,而编译是很复杂的事情,绝大多数闭源软件仅仅会对少数一两个平台编译。因而支持某种指令集的软件应用越多,这种指令集也就越有市场优势--新开发的微架构只需要兼容某种指令集,那么就可以很容易运行大量为其开发的软件。早年因为微软的强势与Wintel联盟的推动,x86指令集成了最受欢迎的角色,帮助Intel用彼时性能相对落后的微架构在PC平台挤跑了一众对手。后PC时代由于苹果谷歌的两大操作系统平台的推动,ARM指令集又取得了绝对的市场优势。但对于新的CPU研发单位来说,他们想获得热门指令集的兼容授权是很困难的事情。以前x86与ARM的指令集授权是拿钱买不到的,想要得到都需要进行高水平专利交换。拿到x86授权的几家厂商要么是拿的早(AMD、Cyrix、IDT),要么是有高水平技术与Intel交易(Transmeta,以功耗控制技术同Intel交易)。后来Nvidia想要研发自己的CPU,找Intel软磨硬泡后者就是不给,搞得Nvidia相当无奈。国内的研发单位当年开始研究时自知不可能拿到x86授权,于是各自去找关系好些的其他授权方解决问题了。ARM这边也一直对指令集授权卡的很死,之前只有高通、博通和Intel得到,也是通过技术交换的形式。08年苹果乔帮主被Intel甩脸色后决定自己搞CPU,最后也拿到了ARM的许可,想来彼时老乔也是威逼利诱,硬是让ARM屈服了(毕竟指令集多授权一家就多个对手啊)。后来ARM对指令集授权也放松了,去年三星与华为也分别得到了授权,他们的自研CPU预计也将在未来一两年面世。\u003C\u002Fp\u003E\u003Cp\u003E本文总结下来的内容很简单:指令集与微架构是不同的概念,不可混淆;CPU研发指的是微架构研发;如今指令集不再有“最适合领域”的说法。希望这篇文章能帮助被这些问题困扰的朋友,也希望媒体在提及这些概念时多做一些科普与澄清。\u003C\u002Fp\u003E\u003Cp\u003E版权保留,转载需本人许可。\u003C\u002Fp\u003E&,&updated&:new Date(&T09:16:19.000Z&),&canComment&:false,&commentPermission&:&anyone&,&commentCount&:36,&collapsedCount&:0,&likeCount&:328,&state&:&published&,&isLiked&:false,&slug&:&&,&isTitleImageFullScreen&:false,&rating&:&none&,&titleImage&:&https:\u002F\u002Fpic2.zhimg.com\u002F167eda4c92406eeb0dfabf5_r.jpg&,&links&:{&comments&:&\u002Fapi\u002Fposts\u002F2Fcomments&},&reviewers&:[],&topics&:[],&adminClosedComment&:false,&titleImageSize&:{&width&:1587,&height&:1080},&href&:&\u002Fapi\u002Fposts\u002F&,&excerptTitle&:&&,&column&:{&slug&:&xpenrynidea&,&name&:&没有问题的答案&},&tipjarState&:&inactivated&,&annotationAction&:[],&sourceUrl&:&&,&pageCommentsCount&:36,&hasPublishingDraft&:false,&snapshotUrl&:&&,&publishedTime&:&T17:16:19+08:00&,&url&:&\u002Fp\u002F&,&lastestLikers&:[{&bio&:null,&isFollowing&:false,&hash&:&e93736ebaf34cddda72d&,&uid&:919200,&isOrg&:false,&slug&:&white-night-94&,&isFollowed&:false,&description&:&&,&name&:&Aclink&,&profileUrl&:&https:\u002F\u002Fwww.zhihu.com\u002Fpeople\u002Fwhite-night-94&,&avatar&:{&id&:&c77b263e9c78f6fbcb1fd9&,&template&:&https:\u002F\u002Fpic2.zhimg.com\u002F{id}_{size}.jpg&},&isOrgWhiteList&:false,&isBanned&:false},{&bio&:null,&isFollowing&:false,&hash&:&cded&,&uid&:68,&isOrg&:false,&slug&:&zuo-yi-14-49&,&isFollowed&:false,&description&:&&,&name&:&左翼&,&profileUrl&:&https:\u002F\u002Fwww.zhihu.com\u002Fpeople\u002Fzuo-yi-14-49&,&avatar&:{&id&:&1f4f63346&,&template&:&https:\u002F\u002Fpic2.zhimg.com\u002F{id}_{size}.jpg&},&isOrgWhiteList&:false,&isBanned&:false},{&bio&:null,&isFollowing&:false,&hash&:&240eefae88f19de7b91e&,&uid&:143700,&isOrg&:false,&slug&:&kang-mou-yun&,&isFollowed&:false,&description&:&&,&name&:&NightGardener&,&profileUrl&:&https:\u002F\u002Fwww.zhihu.com\u002Fpeople\u002Fkang-mou-yun&,&avatar&:{&id&:&v2-8fc88d9ed95a&,&template&:&https:\u002F\u002Fpic2.zhimg.com\u002F{id}_{size}.jpg&},&isOrgWhiteList&:false,&isBanned&:false},{&bio&:&对知识的渴望,对爱情的追求,对人类苦难的同情&,&isFollowing&:false,&hash&:&81da9f72ddaab&,&uid&:60,&isOrg&:false,&slug&:&yellowwood&,&isFollowed&:false,&description&:&&,&name&:&wei yujia&,&profileUrl&:&https:\u002F\u002Fwww.zhihu.com\u002Fpeople\u002Fyellowwood&,&avatar&:{&id&:&da8e974dc&,&template&:&https:\u002F\u002Fpic4.zhimg.com\u002F{id}_{size}.jpg&},&isOrgWhiteList&:false,&isBanned&:false},{&bio&:&游戏开发,rm粉&,&isFollowing&:false,&hash&:&04fd61c3e9a7316efb0ce8&,&uid&:518600,&isOrg&:false,&slug&:&chen-xiao-xing-19&,&isFollowed&:false,&description&:&&,&name&:&辰小星&,&profileUrl&:&https:\u002F\u002Fwww.zhihu.com\u002Fpeople\u002Fchen-xiao-xing-19&,&avatar&:{&id&:&v2-765bedd12e1cb75d5fdee9f967b5c52a&,&template&:&https:\u002F\u002Fpic1.zhimg.com\u002F{id}_{size}.jpg&},&isOrgWhiteList&:false,&isBanned&:false}],&summary&:&随着智能设备的广泛普及,这几年媒体上越来越多的出现关于“架构”“ARM vs x86”“芯片研发”的相关内容。很多消费者和爱好者面对这些以往不太常见的信息时就会迷惑甚至产生误解。其中一组比较容易被混淆的概念就是CPU、架构、指令集与芯片。本文试图用较…&,&reviewingCommentsCount&:0,&meta&:{&previous&:null,&next&:null},&annotationDetail&:null,&commentsCount&:36,&likesCount&:328,&FULLINFO&:true}},&User&:{&xpenryn&:{&isFollowed&:false,&name&:&王强&,&headline&:&仰望天空发呆的宅男&,&avatarUrl&:&https:\u002F\u002Fpic1.zhimg.com\u002F234f570b39bb_s.jpg&,&isFollowing&:false,&type&:&people&,&slug&:&xpenryn&,&bio&:&&,&hash&:&789e2e68e5baf02a859da78a&,&uid&:48,&isOrg&:false,&description&:&仰望天空发呆的宅男&,&badge&:{&identity&:null,&bestAnswerer&:null},&profileUrl&:&https:\u002F\u002Fwww.zhihu.com\u002Fpeople\u002Fxpenryn&,&avatar&:{&id&:&234f570b39bb&,&template&:&https:\u002F\u002Fpic1.zhimg.com\u002F{id}_{size}.jpg&},&isOrgWhiteList&:false,&isBanned&:false}},&Comment&:{},&favlists&:{}},&me&:{},&global&:{&experimentFeatures&:{&ge3&:&ge3_9&,&ge2&:&ge2_1&,&growthSearch&:&s2&,&sEI&:&c&,&nwebQAGrowth&:&experiment&,&qawebRelatedReadingsContentControl&:&close&,&liveStore&:&ls_a2_b2_c1_f2&,&nwebSearch&:&nweb_search_heifetz&,&rt&:&y&,&isOffice&:&false&,&enableTtsPlay&:&post&,&newLiveFeedMediacard&:&new&,&newMobileAppHeader&:&true&,&androidPassThroughPush&:&all&,&hybridZhmoreVideo&:&yes&,&nwebGrowthPeople&:&default&,&nwebSearchSuggest&:&default&,&qrcodeLogin&:&qrcode&,&enableVoteDownReasonMenu&:&enable&,&isShowUnicomFreeEntry&:&unicom_free_entry_off&,&newMobileColumnAppheader&:&new_header&,&androidDbRecommendAction&:&open&,&biu&:&1&,&androidDbFeedHashTagStyle&:&button&,&appStoreRateDialog&:&close&,&default&:&None&,&isNewNotiPanel&:&no&,&biua&:&1&,&zcmLighting&:&zcm&,&adR&:&b&,&wechatShareModal&:&wechat_share_modal_show&,&growthBanner&:&default&,&androidProfilePanel&:&panel_b&}},&columns&:{&next&:{},&xpenrynidea&:{&following&:false,&canManage&:false,&href&:&\u002Fapi\u002Fcolumns\u002Fxpenrynidea&,&name&:&没有问题的答案&,&creator&:{&slug&:&xpenryn&},&url&:&\u002Fxpenrynidea&,&slug&:&xpenrynidea&,&avatar&:{&id&:&4b70deef7&,&template&:&https:\u002F\u002Fpic3.zhimg.com\u002F{id}_{size}.jpg&}}},&columnPosts&:{},&columnSettings&:{&colomnAuthor&:[],&uploadAvatarDetails&:&&,&contributeRequests&:[],&contributeRequestsTotalCount&:0,&inviteAuthor&:&&},&postComments&:{},&postReviewComments&:{&comments&:[],&newComments&:[],&hasMore&:true},&favlistsByUser&:{},&favlistRelations&:{},&promotions&:{},&switches&:{&couldSetPoster&:false},&draft&:{&titleImage&:&&,&titleImageSize&:{},&isTitleImageFullScreen&:false,&canTitleImageFullScreen&:false,&title&:&&,&titleImageUploading&:false,&error&:&&,&content&:&&,&draftLoading&:false,&globalLoading&:false,&pendingVideo&:{&resource&:null,&error&:null}},&drafts&:{&draftsList&:[],&next&:{}},&config&:{&userNotBindPhoneTipString&:{}},&recommendPosts&:{&articleRecommendations&:[],&columnRecommendations&:[]},&env&:{&edition&:{&baidu&:false,&yidianzixun&:false,&qqnews&:false},&isAppView&:false,&appViewConfig&:{&content_padding_top&:128,&content_padding_bottom&:56,&content_padding_left&:16,&content_padding_right&:16,&title_font_size&:22,&body_font_size&:16,&is_dark_theme&:false,&can_auto_load_image&:true,&app_info&:&OS=iOS&},&isApp&:false,&userAgent&:{&ua&:&Mozilla\u002F5.0 (compatible, MSIE 11, Windows NT 6.3; Trident\u002F7.0; rv:11.0) like Gecko&,&browser&:{&name&:&IE&,&version&:&11&,&major&:&11&},&engine&:{&version&:&7.0&,&name&:&Trident&},&os&:{&name&:&Windows&,&version&:&8.1&},&device&:{},&cpu&:{}}},&message&:{&newCount&:0},&pushNotification&:{&newCount&:0}}什么是CPU?它有那些重要的性能指标呢?
什么是CPU?它有那些重要的性能指标呢?
CPU的英文全称是Central Processing Unit,我们翻译成中文也就是中央处理器。CPU(微型机系统)从雏形出现到发壮大的今天(下文会有交代),由于制造技术的越来越现今,在其中所集成的电子元件也越来越多,上万个,甚至是上百万个微型的晶体管构成了CPU的内部结构。那么这上百万个晶体管是如何工作的呢?看上去似乎很深奥,其实只要归纳起来稍加分析就会一目了然的,CPU的内部结构可分为控制单
CPU的英文全称是Central Processing Unit,我们翻译成中文也就是中央处理器。CPU(微型机系统)从雏形出现到发壮大的今天(下文会有交代),由于制造技术的越来越现今,在其中所集成的电子元件也越来越多,上万个,甚至是上百万个微型的晶体管构成了CPU的内部结构。那么这上百万个晶体管是如何工作的呢?看上去似乎很深奥,其实只要归纳起来稍加分析就会一目了然的,CPU的内部结构可分为控制单元,逻辑单元和存储单元三大部分。而CPU的工作原理就象一个工厂对产品的加工过程:进入工厂的原料(指令),经过物资分配部门(控制单元)的调度分配,被送往生产线(逻辑运算单元),生产出成品(处理后的数据)后,再存储在仓库(存储器)中,最后等着拿到市场上去卖(交由应用程序使用)。 CPU作为是整个微机系统的核心,它往往是各种档次微机的代名词,如往日的286、386、486,到今日的奔腾、奔腾二、K6等等,CPU的性能大致上也就反映出了它所配置的那部微机的性能,因此它的性能指标十分重要。在这里我们向大家简单介绍一些CPU主要的性能指标:
第一、主频,倍频,外频。经常听别人说:“这个CPU的频率是多少多少。。。。”其实这个泛指的频率是指CPU的主频,主频也就是CPU的时钟频率,英文全称:CPU Clock Speed,简单地说也就是CPU运算时的工作频率。一般说来,主频越高,一个时钟周期里面完成的指令数也越多,当然CPU的速度也就越快了。不过由于各种各样的CPU它们的内部结构也不尽相同,所以并非所有的时钟频率相同的CPU的性能都一样。至于外频就是系统总线的工作频率;而倍频则是指CPU外频与主频相差的倍数。三者是有十分密切的关系的:主频=外频x倍频。
第二:内存总线速度,英文全称是Memory-Bus Speed。CPU处理的数据是从哪里来的呢?学过一点计算机基本原理的朋友们都会清楚,是从主存储器那里来的,而主存储器指的就是我们平常所说的内存了。一般我们放在外存(磁盘或者各种存储介质)上面的资料都要通过内存,再进入CPU进行处理的。所以与内存之间的通道棗内存总线的速度对整个系统性能就显得很重要了,由于内存和CPU之间的运行速度或多或少会有差异,因此便出现了二级缓存,来协调两者之间的差异,而内存总线速度就是指CPU与二级(L2)高速缓存和内存之间的通信速度。
第三、扩展总线速度,英文全称是Expansion-Bus Speed。扩展总线指的就是指安装在微机系统上的局部总线如VESA或PCI总线,我们打开电脑的时候会看见一些插槽般的东西,这些就是扩展槽,而扩展总线就是CPU联系这些外部设备的桥梁。
第四:工作电压,英文全称是:Supply Voltage。任何电器在工作的时候都需要电,自然也会有额定的电压,CPU当然也不例外了,工作电压指的也就是CPU正常工作所需的电压。早期CPU(286棗486时代)的工作电压一般为5V,那是因为当时的制造工艺相对落后,以致于CPU的发热量太大,弄得寿命减短。随着CPU的制造工艺与主频的提高,近年来各种CPU的工作电压有逐步下降的趋势,以解决发热过高的问题。
第五:地址总线宽度。地址总线宽度决定了CPU可以访问的物理地址空间,简单地说就是CPU到底能够使用多大容量的内存。16位的微机我们就不用说了,但是对于386以上的微机系统,地址线的宽度为32位,最多可以直接访问4096 MB(4GB)的物理空间。而今天能够用上1GB内存的人还没有多少个呢(服务器除外)。
第六:数据总线宽度。数据总线负责整个系统的数据流量的大小,而数据总线宽度则决定了CPU与二级高速缓存、内存以及输入/输出设备之间一次数据传输的信息量。
第七:协处理器。在486以前的CPU里面,是没有内置协处理器的。由于协处理器主要的功能就是负责浮点运算,因此386、286、8088等等微机CPU的浮点运算性能都相当落后,相信接触过386的朋友都知道主板上可以另外加一个外置协处理器,其目的就是为了增强浮点运算的功能。自从486以后,CPU一般都内置了协处理器,协处理器的功能也不再局限于增强浮点运算,含有内置协处理器的CPU,可以加快特定类型的数值计算,某些需要进行复杂计算的软件系统,如高版本的AUTO CAD就需要协处理器支持。
第八:超标量。超标量是指在一个时钟周期内CPU可以执行一条以上的指令。这在486或者以前的CPU上是很难想象的,只有Pentium级以上CPU才具有这种超标量结构;486以下的CPU属于低标量结构,即在这类CPU内执行一条指令至少需要一个或一个以上的时钟周期。
第九:L1高速缓存,也就是我们经常说的一级高速缓存。在CPU里面内置了高速缓存可以提高CPU的运行效率,这也正是486DLC比386DX-40快的原因。内置的L1高速缓存的容量和结构对CPU的性能影响较大,容量越大,性能也相对会提高不少,所以这也正是一些公司力争加大L1级高速缓冲存储器容量的原因。不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。
第十:采用回写(Write Back)结构的高速缓存。它对读和写操作均有效,速度较快。而采用写通(Write-through)结构的高速缓存,仅对读操作有效.
第十一:动态处理。动态处理是应用在高能奔腾处理器中的新技术,创造性地把三项专为提高处理器对数据的操作效率而设计的技术融合在一起。这三项技术是多路分流预测、数据流量分析和猜测执行。动态处理并不是简单执行一串指令,而是通过操作数据来提高处理器的工作效率。
动态处理包括了棗1、多路分流预测:通过几个分支对程序流向进行预测,采用多路分流预测算法后,处理器便可参与指令流向的跳转。它预测下一条指令在内存中位置的精确度可以达到惊人的90%以上。这是因为处理器在取指令时,还会在程序中寻找未来要执行的指令。这个技术可加速向处理器传送任务。2、数据流量分析:抛开原程序的顺序,分析并重排指令,优化执行顺序:处理器读取经过解码的软件指令,判断该指令能否处理或是否需与其它指令一道处理。然后,处理器再决定如何优化执行顺序以便高效地处理和执行指令。3、猜测执行:通过提前判读并执行有可能需要的程序指令的方式提高执行速度:当处理器执行指令时(每次五条),采用的是“猜测执行”的方法。这样可使奔腾II处理器超级处理能力得到充分的发挥,从而提升软件性能。被处理的软件指令是建立在猜测分支基础之上,因此结果也就作为“预测结果”保留起来。一旦其最终状态能被确定,指令便可返回到其正常顺序并保持永久的机器状态。
型号/产品名}

我要回帖

更多关于 一线架构师实践指南 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信