怎么理解面向对象Condition

让天下没有难学的技术
怎么理解Condition
怎么理解Condition
版权声明:本文为本作者原创文章,转载请注明出处。感谢 的投稿。
在java.util.concurrent包中,有两个很特殊的工具类,Condition和ReentrantLock,使用过的人都知道,ReentrantLock(重入锁)是jdk的concurrent包提供的一种独占锁的实现。它继承自Dong Lea的 AbstractQueuedSynchronizer(同步器),确切的说是ReentrantLock的一个内部类继承了AbstractQueuedSynchronizer,ReentrantLock只不过是代理了该类的一些方法,可能有人会问为什么要使用内部类在包装一层? 我想是安全的关系,因为AbstractQueuedSynchronizer中有很多方法,还实现了共享锁,Condition(稍候再细说)等功能,如果直接使ReentrantLock继承它,则很容易出现AbstractQueuedSynchronizer中的API被误用的情况。
言归正传,今天,我们讨论下Condition工具类的实现。
ReentrantLock和Condition的使用方式通常是这样的:
运行后,结果如下:
可以看到,
Condition的执行方式,是当在线程1中调用await方法后,线程1将释放锁,并且将自己沉睡,等待唤醒,
线程2获取到锁后,开始做事,完毕后,调用Condition的signal方法,唤醒线程1,线程1恢复执行。
以上说明Condition是一个多线程间协调通信的工具类,使得某个,或者某些线程一起等待某个条件(Condition),只有当该条件具备( signal 或者 signalAll方法被带调用)时 ,这些等待线程才会被唤醒,从而重新争夺锁。
那,它是怎么实现的呢?
首先还是要明白,reentrantLock.newCondition() 返回的是Condition的一个实现,该类在AbstractQueuedSynchronizer中被实现,叫做newCondition()
它可以访问AbstractQueuedSynchronizer中的方法和其余内部类( AbstractQueuedSynchronizer是个抽象类,至于他怎么能访问,这里有个很奇妙的点,后面我专门用demo说明 )
现在,我们一起来看下Condition类的实现,还是从上面的demo入手,
为了方便书写,我将AbstractQueuedSynchronizer缩写为AQS
当await被调用时,代码如下:
public final void await() throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter(); //将当前线程包装下后,
//添加到Condition自己维护的一个链表中。
int savedState = fullyRelease(node);//释放当前线程占有的锁,从demo中看到,
//调用await前,当前线程是占有锁的
int interruptMode = 0;
while (!isOnSyncQueue(node)) {//释放完毕后,遍历AQS的队列,看当前节点是否在队列中,
//不在 说明它还没有竞争锁的资格,所以继续将自己沉睡。
//直到它被加入到队列中,聪明的你可能猜到了,
//没有错,在singal的时候加入不就可以了?
LockSupport.park(this);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
//被唤醒后,重新开始正式竞争锁,同样,如果竞争不到还是会将自己沉睡,等待唤醒重新开始竞争。
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null)
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
回到上面的demo,锁被释放后,线程1开始沉睡,这个时候线程因为线程1沉睡时,会唤醒AQS队列中的头结点,所所以线程2会开始竞争锁,并获取到,等待3秒后,线程2会调用signal方法,“发出”signal信号,signal方法如下:
public final void signal() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstW //firstWaiter为condition自己维护的一个链表的头结点,
//取出第一个节点后开始唤醒操作
if (first != null)
doSignal(first);
说明下,其实Condition内部维护了等待队列的头结点和尾节点,该队列的作用是存放等待signal信号的线程,该线程被封装为Node节点后存放于此。
关键的就在于此,我们知道AQS自己维护的队列是当前等待资源的队列,AQS会在资源被释放后,依次唤醒队列中从前到后的所有节点,使他们对应的线程恢复执行。直到队列为空。
而Condition自己也维护了一个队列,该队列的作用是维护一个等待signal信号的队列,两个队列的作用是不同,事实上,每个线程也仅仅会同时存在以上两个队列中的一个,流程是这样的:
1. 线程1调用reentrantLock.lock时,线程被加入到AQS的等待队列中。
2. 线程1调用await方法被调用时,该线程从AQS中移除,对应操作是锁的释放。
3. 接着马上被加入到Condition的等待队列中,以为着该线程需要signal信号。
4. 线程2,因为线程1释放锁的关系,被唤醒,并判断可以获取锁,于是线程2获取锁,并被加入到AQS的等待队列中。
线程2调用signal方法,这个时候Condition的等待队列中只有线程1一个节点,于是它被取出来,并被加入到AQS的等待队列中。
注意,这个时候,线程1 并没有被唤醒。
6. signal方法执行完毕,线程2调用reentrantLock.unLock()方法,释放锁。这个时候因为AQS中只有线程1,于是,AQS释放锁后按从头到尾的顺序唤醒线程时,线程1被唤醒,于是线程1回复执行。
7. 直到释放所整个过程执行完毕。
可以看到,整个协作过程是靠结点在AQS的等待队列和Condition的等待队列中来回移动实现的,Condition作为一个条件类,很好的自己维护了一个等待信号的队列,并在适时的时候将结点加入到AQS的等待队列中来实现的唤醒操作。
看到这里,signal方法的代码应该不难理解了。
取出头结点,然后doSignal
private void doSignal(Node first) {
if ( (firstWaiter = first.nextWaiter) == null) //修改头结点,完成旧头结点的移出工作
lastWaiter =
first.nextWaiter =
} while (!transferForSignal(first) &&//将老的头结点,加入到AQS的等待队列中
(first = firstWaiter) != null);
final boolean transferForSignal(Node node) {
* If cannot change waitStatus, the node has been cancelled.
if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
* Splice onto queue and try to set waitStatus of predecessor to
* indicate that thread is (probably) waiting. If cancelled or
* attempt to set waitStatus fails, wake up to resync (in which
* case the waitStatus can be transiently and harmlessly wrong).
Node p = enq(node);
int ws = p.waitS
//如果该结点的状态为cancel 或者修改waitStatus失败,则直接唤醒。
if (ws & 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
LockSupport.unpark(node.thread);
可以看到,正常情况 ws & 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL) 这个判断是不会为true的,所以,不会在这个时候唤醒该线程。
只有到发送signal信号的线程调用reentrantLock.unlock()后因为它已经被加到AQS的等待队列中,所以才会被唤醒。
本文从代码的角度说明了Condition的实现方式,其中,涉及到了AQS的很多操作,比如AQS的等待队列实现独占锁功能,不过,这不是本文讨论的重点,等有机会再将AQS的实现单独分享出来。
版权声明:本文为本作者原创文章,转载请注明出处。
原创文章,转载请注明: 转载自本文链接地址:
独立博主,热爱技术,热爱分享,码梦为生
Latest posts by liuinsect ()
Related posts:
(12 votes, average: 4.75 out of 5)
Loading...怎么理解Condition
怎么理解Condition
编辑:www.fx114.net
本篇文章主要介绍了"怎么理解Condition",主要涉及到怎么理解Condition方面的内容,对于怎么理解Condition感兴趣的同学可以参考一下。
转自://%E6%80%8E%E4%B9%88%E7%90%86%E8%A7%A3condition/
在java.util.concurrent包中,有两个很特殊的工具类,Condition和ReentrantLock,使用过的人都知道,ReentrantLock(重入锁)是jdk的concurrent包提供的一种独占锁的实现。它继承自Dong Lea的&AbstractQueuedSynchronizer(同步器),确切的说是ReentrantLock的一个内部类继承了AbstractQueuedSynchronizer,ReentrantLock只不过是代理了该类的一些方法,可能有人会问为什么要使用内部类在包装一层?
我想是安全的关系,因为AbstractQueuedSynchronizer中有很多方法,还实现了共享锁,Condition(稍候再细说)等功能,如果直接使ReentrantLock继承它,则很容易出现AbstractQueuedSynchronizer中的API被无用的情况。
言归正传,今天,我们讨论下Condition工具类的实现。
ReentrantLock和Condition的使用方式通常是这样的:
运行后,结果如下:
可以看到,
Condition的执行方式,是当在线程1中调用await方法后,线程1将释放锁,并且将自己沉睡,等待唤醒,
线程2获取到锁后,开始做事,完毕后,调用Condition的signal方法,唤醒线程1,线程1恢复执行。
以上说明Condition是一个多线程间协调通信的工具类,使得某个,或者某些线程一起等待某个条件(Condition),只有当该条件具备( signal 或者 signalAll方法被带调用)时&,这些等待线程才会被唤醒,从而重新争夺锁。
那,它是怎么实现的呢?
首先还是要明白,reentrantLock.newCondition() 返回的是Condition的一个实现,该类在AbstractQueuedSynchronizer中被实现,叫做newCondition()
它可以访问AbstractQueuedSynchronizer中的方法和其余内部类(&AbstractQueuedSynchronizer是个抽象类,至于他怎么能访问,这里有个很奇妙的点,后面我专门用demo说明&)
现在,我们一起来看下Condition类的实现,还是从上面的demo入手,
为了方便书写,我将AbstractQueuedSynchronizer缩写为AQS
当await被调用时,代码如下:
final void await()
throws InterruptedException {
(Thread.interrupted())
new InterruptedException();
&Node node = addConditionWaiter();&//将当前线程包装下后,
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&//添加到Condition自己维护的一个链表中。
savedState = fullyRelease(node);//释放当前线程占有的锁,从demo中看到,
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&//调用await前,当前线程是占有锁的
interruptMode = 0;
(!isOnSyncQueue(node)) {//释放完毕后,遍历AQS的队列,看当前节点是否在队列中,
&&&&&&&&&&&&&&&&&&&&&&&&&&&//不在 说明它还没有竞争锁的资格,所以继续将自己沉睡。
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&//直到它被加入到队列中,聪明的你可能猜到了,
&&&&&&&&&&&&&&&&&&&&&&&&&&&&//没有错,在singal的时候加入不就可以了?
&LockSupport.park(this);
((interruptMode = checkInterruptWhileWaiting(node)) !=
//被唤醒后,重新开始正式竞争锁,同样,如果竞争不到还是会将自己沉睡,等待唤醒重新开始竞争。
(acquireQueued(node, savedState) && interruptMode != THROW_IE)
&interruptMode = REINTERRUPT;
(node.nextWaiter != null)
&unlinkCancelledWaiters();
(interruptMode != 0)
&reportInterruptAfterWait(interruptMode);
回到上面的demo,锁被释放后,线程1开始沉睡,这个时候线程因为线程1沉睡时,会唤醒AQS队列中的头结点,所所以线程2会开始竞争锁,并获取到,等待3秒后,线程2会调用signal方法,“发出”signal信号,signal方法如下:
final void signal() {
(!isHeldExclusively())
new IllegalMonitorStateException();
&Node first = firstW
//firstWaiter为condition自己维护的一个链表的头结点,
&&&&&&&&&&&&&&&&&&&&&&&&&&//取出第一个节点后开始唤醒操作
(first != null)
&doSignal(first);
说明下,其实Condition内部维护了等待队列的头结点和尾节点,该队列的作用是存放等待signal信号的线程,该线程被封装为Node节点后存放于此。
关键的就在于此,我们知道AQS自己维护的队列是当前等待资源的队列,AQS会在资源被释放后,依次唤醒队列中从前到后的所有节点,使他们对应的线程恢复执行。直到队列为空。
而Condition自己也维护了一个队列,该队列的作用是维护一个等待signal信号的队列,两个队列的作用是不同,事实上,每个线程也仅仅会同时存在以上两个队列中的一个,流程是这样的:
1. 线程1调用reentrantLock.lock时,线程被加入到AQS的等待队列中。
2. 线程1调用await方法被调用时,该线程从AQS中移除,对应操作是锁的释放。
3. 接着马上被加入到Condition的等待队列中,以为着该线程需要signal信号。
4. 线程2,因为线程1释放锁的关系,被唤醒,并判断可以获取锁,于是线程2获取锁,并被加入到AQS的等待队列中。
5. &线程2调用signal方法,这个时候Condition的等待队列中只有线程1一个节点,于是它被取出来,并被加入到AQS的等待队列中。&&注意,这个时候,线程1
并没有被唤醒。
6. signal方法执行完毕,线程2调用reentrantLock.unLock()方法,释放锁。这个时候因为AQS中只有线程1,于是,AQS释放锁后按从头到尾的顺序唤醒线程时,线程1被唤醒,于是线程1回复执行。
7.&直到释放所整个过程执行完毕。
可以看到,整个协作过程是靠结点在AQS的等待队列和Condition的等待队列中来回移动实现的,Condition作为一个条件类,很好的自己维护了一个等待信号的队列,并在适时的时候将结点加入到AQS的等待队列中来实现的唤醒操作。
看到这里,signal方法的代码应该不难理解了。
取出头结点,然后doSignal
void doSignal(Node first) {
( (firstWaiter = first.nextWaiter) == null)
//修改头结点,完成旧头结点的移出工作
&lastWaiter =
&first.nextWaiter =
while (!transferForSignal(first) &&//将老的头结点,加入到AQS的等待队列中
&(first = firstWaiter) !=
boolean transferForSignal(Node node) {
&* If cannot change waitStatus, the node has been cancelled.
&if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
&* Splice onto queue and try to set waitStatus of predecessor to
&* indicate that thread is (probably) waiting. If cancelled or
&* attempt to set waitStatus fails, wake up to resync (in which
&* case the waitStatus can be transiently and harmlessly wrong).
&Node p = enq(node);
ws = p.waitS
//如果该结点的状态为cancel&或者修改waitStatus失败,则直接唤醒。
|| !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
&LockSupport.unpark(node.thread);
可以看到,正常情况&ws & 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL) 这个判断是不会为true的,所以,不会在这个时候唤醒该线程。
只有到发送signal信号的线程调用reentrantLock.unlock()后因为它已经被加到AQS的等待队列中,所以才会被唤醒。
& & &本文从代码的角度说明了Condition的实现方式,其中,涉及到了AQS的很多操作,比如AQS的等待队列实现独占锁功能,不过,这不是本文讨论的重点,等有机会再将AQS的实现单独分享出来。
一、不得利用本站危害国家安全、泄露国家秘密,不得侵犯国家社会集体的和公民的合法权益,不得利用本站制作、复制和传播不法有害信息!
二、互相尊重,对自己的言论和行为负责。
本文标题:
本页链接:线程、锁、并发(44)
在java.util.concurrent包中,有两个很特殊的工具类,Condition和ReentrantLock,使用过的人都知道,ReentrantLock(重入锁)是jdk的concurrent包提供的一种独占锁的实现。它继承自Dong Lea的&AbstractQueuedSynchronizer(同步器),确切的说是ReentrantLock的一个内部类继承了AbstractQueuedSynchronizer,ReentrantLock只不过是代理了该类的一些方法,可能有人会问为什么要使用内部类在包装一层?
我想是安全的关系,因为AbstractQueuedSynchronizer中有很多方法,还实现了共享锁,Condition(稍候再细说)等功能,如果直接使ReentrantLock继承它,则很容易出现AbstractQueuedSynchronizer中的API被误用的情况。
言归正传,今天,我们讨论下Condition工具类的实现。
ReentrantLock和Condition的使用方式通常是这样的:
运行后,结果如下:
可以看到,
Condition的执行方式,是当在线程1中调用await方法后,线程1将释放锁,并且将自己沉睡,等待唤醒,
线程2获取到锁后,开始做事,完毕后,调用Condition的signal方法,唤醒线程1,线程1恢复执行。
以上说明Condition是一个多线程间协调通信的工具类,使得某个,或者某些线程一起等待某个条件(Condition),只有当该条件具备( signal 或者 signalAll方法被带调用)时&,这些等待线程才会被唤醒,从而重新争夺锁。
那,它是怎么实现的呢?
首先还是要明白,reentrantLock.newCondition() 返回的是Condition的一个实现,该类在AbstractQueuedSynchronizer中被实现,叫做newCondition()
它可以访问AbstractQueuedSynchronizer中的方法和其余内部类(&AbstractQueuedSynchronizer是个抽象类,至于他怎么能访问,这里有个很奇妙的点,后面我专门用demo说明&)
现在,我们一起来看下Condition类的实现,还是从上面的demo入手,
为了方便书写,我将AbstractQueuedSynchronizer缩写为AQS
当await被调用时,代码如下:
public&final&void&await()&throws&InterruptedException
if&(Thread.interrupted())
&throw&new&InterruptedException();
node = addConditionWaiter();&
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
int&savedState
= fullyRelease(node);
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
int&interruptMode
&while&(!isOnSyncQueue(node))
&&&&&&&&&&&&&&&&&&&&&&&&&&&
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
&&&&&&&&&&&&&&&&&&&&&&&&&&&&
&LockSupport.park(this);
&if&((interruptMode
= checkInterruptWhileWaiting(node)) !=&0)
if&(acquireQueued(node,
savedState) && interruptMode != THROW_IE)
&interruptMode
= REINTERRUPT;
&if&(node.nextWaiter
&unlinkCancelledWaiters();
&if&(interruptMode
&reportInterruptAfterWait(interruptMode);
回到上面的demo,锁被释放后,线程1开始沉睡,这个时候线程因为线程1沉睡时,会唤醒AQS队列中的头结点,所所以线程2会开始竞争锁,并获取到,等待3秒后,线程2会调用signal方法,“发出”signal信号,signal方法如下:
public&final&void&signal()
&if&(!isHeldExclusively())
&throw&new&IllegalMonitorStateException();
first = firstW&
&&&&&&&&&&&&&&&&&&&&&&&&&&
&if&(first
&doSignal(first);
说明下,其实Condition内部维护了等待队列的头结点和尾节点,该队列的作用是存放等待signal信号的线程,该线程被封装为Node节点后存放于此。
关键的就在于此,我们知道AQS自己维护的队列是当前等待资源的队列,AQS会在资源被释放后,依次唤醒队列中从前到后的所有节点,使他们对应的线程恢复执行。直到队列为空。
而Condition自己也维护了一个队列,该队列的作用是维护一个等待signal信号的队列,两个队列的作用是不同,事实上,每个线程也仅仅会同时存在以上两个队列中的一个,流程是这样的:
1. 线程1调用reentrantLock.lock时,线程被加入到AQS的等待队列中。
2. 线程1调用await方法被调用时,该线程从AQS中移除,对应操作是锁的释放。
3. 接着马上被加入到Condition的等待队列中,以为着该线程需要signal信号。
4. 线程2,因为线程1释放锁的关系,被唤醒,并判断可以获取锁,于是线程2获取锁,并被加入到AQS的等待队列中。
5. &线程2调用signal方法,这个时候Condition的等待队列中只有线程1一个节点,于是它被取出来,并被加入到AQS的等待队列中。&&注意,这个时候,线程1&并没有被唤醒。
6. signal方法执行完毕,线程2调用reentrantLock.unLock()方法,释放锁。这个时候因为AQS中只有线程1,于是,AQS释放锁后按从头到尾的顺序唤醒线程时,线程1被唤醒,于是线程1回复执行。
7.&直到释放所整个过程执行完毕。
可以看到,整个协作过程是靠结点在AQS的等待队列和Condition的等待队列中来回移动实现的,Condition作为一个条件类,很好的自己维护了一个等待信号的队列,并在适时的时候将结点加入到AQS的等待队列中来实现的唤醒操作。
看到这里,signal方法的代码应该不难理解了。
取出头结点,然后doSignal
private&void&doSignal(Node
(firstWaiter = first.nextWaiter) ==&null)&
&lastWaiter
&first.nextWaiter
&}&while&(!transferForSignal(first)
= firstWaiter) !=&null);
final&boolean&transferForSignal(Node
p = enq(node);
!compareAndSetWaitStatus(p, ws, Node.SIGNAL))
&LockSupport.unpark(node.thread);
&return&true;
可以看到,正常情况&ws & 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL) 这个判断是不会为true的,所以,不会在这个时候唤醒该线程。
只有到发送signal信号的线程调用reentrantLock.unlock()后因为它已经被加到AQS的等待队列中,所以才会被唤醒。
& & &本文从代码的角度说明了Condition的实现方式,其中,涉及到了AQS的很多操作,比如AQS的等待队列实现独占锁功能,不过,这不是本文讨论的重点,等有机会再将AQS的实现单独分享出来。
版权声明:本文为本作者原创文章,转载请注明出处。
原创文章,转载请注明:&转载自本文链接地址:&
&&相关文章推荐
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
访问:150906次
积分:1987
积分:1987
排名:千里之外
原创:12篇
转载:278篇
评论:11条
(7)(12)(9)(4)(1)(4)(2)(1)(1)(37)(36)(65)(67)(7)(1)(3)(31)(1)(1)(1)(1)(1)
(window.slotbydup = window.slotbydup || []).push({
id: '4740881',
container: s,
size: '200,200',
display: 'inlay-fix'}

我要回帖

更多关于 负负得正 怎么理解 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信