方程里的次数中不是同次数的项能加减吗

& 课文片段学习:下面这个方程含有三个未知数,每个方程中含未知数
本题难度:0.45&&题型:解答题
课文片段学习:下面这个方程含有三个未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.怎样解三元一次方程组呢?我们知道,二元一次方程组可以利用代入法或加减法消去一个未知数,化成一元一次方程求解.那么,能不能用同样的思路,用代入法或加减法消去三元一次方程组的一个未知数,把它化成二元一次方程组呢?依照前面学过的代入法,我们可以把③分别代入①、②,得到两个只含y,z方程:4y+y+z=124y+2y+5z=22把它们组成方程组得到二元一次方程组之后,就不难求出y和z,进而可求出x.从上面的分析可以看出,解三元一次方程组的基本思路是:通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.这与解二元一次方程组的思路是一样的.根据以上学习,解以下三元一次方程组:(1)&&&&&&&&&&&&&&&&&(2).
来源:学年山东省德州市禹城三中八年级(上)分班数学试卷 | 【考点】解三元一次方程组.
课文片段学习:下面这个方程含有三个未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.怎样解三元一次方程组呢?我们知道,二元一次方程组可以利用代入法或加减法消去一个未知数,化成一元一次方程求解.那么,能不能用同样的思路,用代入法或加减法消去三元一次方程组的一个未知数,把它化成二元一次方程组呢?依照前面学过的代入法,我们可以把③分别代入①、②,得到两个只含y,z方程:4y+y+z=124y+2y+5z=22把它们组成方程组得到二元一次方程组之后,就不难求出y和z,进而可求出x.从上面的分析可以看出,解三元一次方程组的基本思路是:通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.这与解二元一次方程组的思路是一样的.根据以上学习,解以下三元一次方程组:(1)&&&&&&&&&&&&&&&&&(2).
解析与答案
(揭秘难题真相,上)
习题“课文片段学习:下面这个方程含有三个未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.x+y+z=12①x+2y+5z=22②x=4y③怎样解三元一次方程组呢?我们知道,二元一次方程组可以利用代入法或加减法消去一个未知数,化成一元一次方程求解.那么,能不能用同样的思路,用代入法或加减法消去三元一次方程组的一个未知”的学库宝(/)教师分析与解答如下所示:
【分析】(1)方程组利用代入消元法与加减消元法求出解即可(2)方程组利用加减消元法求出解即可.
【解答】解:(1)y=2x-7①5x+3y+2z=2②3x-4z=4③’将①代入②得:5x+6x-21+2z=2即11x+2z=23④④×2+③得:25x=50即x=2将x=2代入①得:y=-3将x=2代入③得:z=12则方程组的解为x=2y=-3z=12(2)2x+4y+3z=9①3x-2y+5z=11②5x-6y+7z=13③②×2+①得:8x+13z=31④②×3-③得:4x+8z=20⑤⑤×2-④得:3z=9即z=3把z=3代入④得:x=-1把x=-1z=3代入①得:y=12则方程组的解为x=-1y=12z=3.
【考点】解三元一次方程组.
查看答案和解析
微信扫一扫手机看答案
知识点讲解
经过分析,习题“课文片段学习:下面这个方程含有三个未知数,每个方程中含未知数”主要考察你对
等考点的理解。
因为篇幅有限,只列出部分考点,详细请访问。
解三元一次方程组
1.三元一次方程组的定义:方程组含有三个未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.2.解三元一次方程组的一般步骤:(1)首先利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组.(2)然后解这个二元一次方程组,求出这两个未知数的值.(3)再把求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个关于第三个未知数的一元一次方程.(4)解这个一元一次方程,求出第三个未知数的值.(5)最后将求得的三个未知数的值用“{”合写在一起即可.
知识点试题推荐
1&&&&2&&&&3&&&&4&&&&5&&&&6&&&&7&&&&8&&&&9&&&&10&&&&11&&&&12&&&&13&&&&14&&&&15&&&&
作业互助QQ群:(小学)、(初中)、(高中)& R语言中的数学计算
R语言中的数学计算
,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大。
R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。
要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。
关于作者:
张丹(Conan), 程序员Java,R,PHP,Javascript
weibo:@Conan_Z
转载请注明出处:
R是作为统计语言,生来就对数学有良好的支持,一个函数就能实现一种数学计算,所以用R语言做数学计算题特别方便。如果计算器中能嵌入R的计算函数,那么绝对是一种高科技产品。
本文总结了R语言用于初等数学中的各种计算。
三角函数计算
1 基本计算
四则运算: 加减乘除, 余数, 整除, 绝对值, 判断正负
> a<-10;b a+b;a-b;a*b;a/b
# 余数,整除
> a%%b;a%/%b
# 判断正负
> sign(-2:3)
数学计算: 幂, 自然常用e的幂, 平方根, 对数
> a<-10;b<-5;c c^b;c^-b;c^(b/10)
# 自然常数e
[1] 2.718282
# 自然常数e的幂
[1] 20.08554
# 以2为底的对数
# 以10为底的对数
> log10(b)
[1] 0.69897
# 自定义底的对数
> log(c,base = 2)
# 自然常数e的对数
> log(a,base=exp(1))
[1] 2.302585
# 指数对数操作
> log(a^b,base=a)
> log(exp(3))
比较计算: ==, >, <, !=, =, isTRUE, identical
> a<-10;b a==a;a!=b;a>b;a<b;a=c
# 判断是否为TRUE
> isTRUE(a)
> isTRUE(!a)
# 精确比较两个对象
> identical(1, as.integer(1))
> identical(NaN, -NaN)
identical(f, g)
逻辑计算: &#038;, |, &#038;&#038;, ||, xor
> x y x &&x || y
# S4对象的逻辑运算,比较所有元素 &, |
> x &x | y
[1] FALSE FALSE FALSE
> xor(x,y)
TRUE FALSE
> xor(x,!y)
TRUE FALSE FALSE
约数计算: ceiling,floor,trunc,round,signif
# 向上取整
> ceiling(5.4)
# 向下取整
> floor(5.8)
> trunc(3.9)
# 四舍五入
> round(5.8)
# 四舍五入,保留2位小数
> round(5.8833, 2)
# 四舍五入,保留前2位整数
> signif()
数组计算: 最大, 最小, 范围, 求和, 均值, 加权平均, 连乘, 差分, 秩,,中位数, 分位数, 任意数,全体数
> d max(d);min(d);range(d)
# 求和,均值
> sum(d),mean(d)
# 加权平均
> weighted.mean(d,rep(1,5))
> weighted.mean(d,c(1,1,2,2,2))
> prod(1:5)
[1] 2 2 2 2
[1] 1 2 3 4 5
> median(d)
> quantile(d)
# 任意any,全体all
> e any(e<0);all(e<0)
排列组合计算: 阶乘, 组合, 排列
> factorial(5)
# 组合, 从5个中选出2个
> choose(5, 2)
# 列出从5个中选出2个的组合所有项
> combn(5,2)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
# 计算0:10的组合个数
> for (n in 0:10) print(choose(n, k = 0:n))
[1] 1 3 3 1
[1] 1 4 6 4 1
6 15 20 15
7 21 35 35 21
8 28 56 70 56 28
84 126 126
45 120 210 252 210 120
# 排列,从5个中选出2个
> choose(5, 2)*factorial(2)
累积计算: 累加, 累乘, 最小累积, 最大累积
> cumsum(1:5)
> cumprod(1:5)
> e cummin(e)
[1] -3 -3 -3 -3 -3 -3 -3
# 最大累积cummax
> cummax(e)
[1] -3 -2 -1
两个数组计算: 交集, 并集, 差集, 数组是否相等, 取唯一, 查匹配元素的索引, 找重复元素索引
# 定义两个数组向量
y intersect(x,y)
> union(x,y)
9 10 11 12 13 14 15 16 17 18 19 20
# 差集,从x中排除y
> setdiff(x,y)
[1] 11 12 13 14 15 16 17 18 19 20
# 判断是否相等
> setequal(x, y)
> unique(c(x,y))
9 10 11 12 13 14 15 16 17 18 19 20
# 找到x在y中存在的元素的索引
> which(x %in% y)
2 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28
[18] 29 30 31
> which(is.element(x,y))
2 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28
[18] 29 30 31
# 找到重复元素的索引
> which(duplicated(x))
[1] 18 19 20 24 25 26 27 28 29 30
2 三角函数计算
2.1 三角函数
在直角三角形中仅有锐角(大小在0到90度之间的角)三角函数的定义。给定一个锐角θ,可以做出一个直角三角形,使得其中的一个内角是θ。设这个三角形中,θ的对边、邻边和斜边长度分别是a、b和h。
三角函数的6种关系:正弦,余弦,正切,余切,正割,余割。
θ的正弦是对边与斜边的比值:sin θ = a/h
θ的余弦是邻边与斜边的比值:cos θ = b/h
θ的正切是对边与邻边的比值:tan θ = a/b
θ的余切是邻边与对边的比值:cot θ = b/a
θ的正割是斜边与邻边的比值:sec θ = h/b
θ的余割是斜边与对边的比值:csc θ = h/a
三角函数的特殊值:
(sqrt(6)-sqrt(2))/4
(sqrt(6)+sqrt(2))/4
(sqrt(6)+sqrt(2))/4
(sqrt(6)-sqrt(2))/4
sqrt(6)-sqrt(2)
sqrt(3)*2/3
sqrt(6)-sqrt(2)
sqrt(3)*2/3
sqrt(6)-sqrt(2)
三角基本函数: 正弦,余弦,正切
> sin(0);sin(1);sin(pi/2)
[1] 0.841471
> cos(0);cos(1);cos(pi)
[1] 0.5403023
> tan(0);tan(1);tan(pi)
[1] 1.557408
接下来,我们用ggplot2包来画出三角函数的图形。
# 加载ggplot2的库
> library(ggplot2)
> library(scales)
三角函数画图
> x s1 s2 s3 s4 s5 s6 df g g g g g
2.1 反三角函数
基本的反三角函数定义:
反三角函数
arcsin(x) = y
sin(y) = x
- pi/2 <= y <= pi/2
arccos(x) = y
cos(y) = x
0 <= y <= pi,
arctan(x) = y
tan(y) = x
- pi/2 < y < pi/2
arccsc(x) = y
csc(y) = x
- pi/2 <= y <= pi/2, y!=0
arcsec(x) = y
sec(y) = x
0 <= y <= pi, y!=pi/2
arccot(x) = y
cot(y) = x
反正弦,反余弦,反正切
# 反正弦asin
> asin(0);asin(1)
[1] 1.570796
# pi/2=1.570796
# 反余弦acos
> acos(0);acos(1)
[1] 1.570796 # pi/2=1.570796
# 反正切atan
> atan(0);atan(1)
[1] 0.7853982 # pi/4=0.7853982
反三角函数画图
> x s1 s2 s3 s4 s5 s6 df g g g g
2.3 三角函数公式
接下来,用单元测试的方式,来描述三角函数的数学公式。通过testthat包,进行单元测试,关于testthat包的安装和使用,请参考文章:
# 加载testthat包
> library(testthat)
# 定义变量
> a<-5;b<-10
平方和公式:
sin(x)^2+cos(x)^2 = 1
expect_that(sin(a)^2+cos(a)^2,equals(1))
sin(a+b) = sin(a)*cos(b)+sin(b)*cos(a)
sin(a-b) = sin(a)*cos(b)-sin(b)*cos(a)
cos(a+b) = cos(a)*cos(b)-sin(b)*sin(a)
cos(a-b) = cos(a)*cos(b)+sin(b)*sin(a)
tan(a+b) = (tan(a)+tan(b))/(1-tan(a)*tan(b))
tan(a-b) = (tan(a)-tan(b))/(1+tan(a)*tan(b))
expect_that(sin(a)*cos(b)+sin(b)*cos(a),equals(sin(a+b)))
expect_that(sin(a)*cos(b)-sin(b)*cos(a),equals(sin(a-b)))
expect_that(cos(a)*cos(b)-sin(b)*sin(a),equals(cos(a+b)))
expect_that(cos(a)*cos(b)+sin(b)*sin(a),equals(cos(a-b)))
expect_that((tan(a)+tan(b))/(1-tan(a)*tan(b)),equals(tan(a+b)))
expect_that((tan(a)-tan(b))/(1+tan(a)*tan(b)),equals(tan(a-b)))
sin(2*a) = 2*sin(a)*cos(a)
cos(2*a) = cos(a)^2-sin(a)^2=2*cos(a)^2-1=1-2*sin2(a)
expect_that(cos(a)^2-sin(a)^2,equals(cos(2*a)))
expect_that(2*cos(a)^2-1,equals(cos(2*a)))
expect_that(1-2*sin(a)^2,equals(cos(2*a)))
cos(3*a) = 4*cos(a)^3-3*cos(a)
sin(3*a) = -4*sin(a)^3+3*sin(a)
expect_that(4*cos(a)^3-3*cos(a),equals(cos(3*a)))
expect_that(-4*sin(a)^3+3*sin(a),equals(sin(3*a)))
sin(a/2) = sqrt((1-cos(a))/2)
cos(a/2) = sqrt((1+cos(a))/2)
tan(a/2) = sqrt((1-cos(a))/(1+cos(a))) = sin(a)/(1+cos(a)) = (1-cos(a))/sin(a)
expect_that(sqrt((1-cos(a))/2),equals(abs(sin(a/2))))
expect_that(sqrt((1+cos(a))/2),equals(abs(cos(a/2))))
expect_that(sqrt((1-cos(a))/(1+cos(a))),equals(abs(tan(a/2))))
expect_that(abs(sin(a)/(1+cos(a))),equals(abs(tan(a/2))))
expect_that(abs((1-cos(a))/sin(a)),equals(abs(tan(a/2))))
sin(a)*cos(b) = (sin(a+b)+sin(a-b))/2
cos(a)*sin(b) = (sin(a+b)-sin(a-b))/2
cos(a)*cos(b) = (cos(a+b)+cos(a-b))/2
sin(a)*sin(b) = (cos(a-b)-cos(a+b))/2
expect_that((sin(a+b)+sin(a-b))/2,equals(sin(a)*cos(b)))
expect_that((sin(a+b)-sin(a-b))/2,equals(cos(a)*sin(b)))
expect_that((cos(a+b)+cos(a-b))/2,equals(cos(a)*cos(b)))
expect_that((cos(a-b)-cos(a+b))/2,equals(sin(a)*sin(b)))
sin(a)+sin(b) = 2*sin((a+b)/2)*cos((a+b)/2)
sin(a)-sin(b) = 2*cos((a+b)/2)*cos((a-b)/2)
cos(a)+cos(b) = 2*cos((a+b)/2)*cos((a-b)/2)
cos(a)-cos(b) = -2*sin((a+b)/2)*sin((a-b)/2)
expect_that(sin(a)+sin(b),equals(2*sin((a+b)/2)*cos((a-b)/2)))
expect_that(sin(a)-sin(b),equals(2*cos((a+b)/2)*sin((a-b)/2)))
expect_that(2*cos((a+b)/2)*cos((a-b)/2),equals(cos(a)+cos(b)))
expect_that(-2*sin((a+b)/2)*sin((a-b)/2),equals(cos(a)-cos(b)))
sin(2*a)=2*tan(a)/(1+tan(a)^2)
cos(2*a)=(1-tan(a)^2)/(1+tan(a)^2)
tan(2*a)=2*tan(a)/(1-tan(a)^2)
expect_that(sin(2*a),equals(2*tan(a)/(1+tan(a)^2)))
expect_that((1-tan(a)^2)/(1+tan(a)^2),equals(cos(2*a)))
expect_that(2*tan(a)/(1-tan(a)^2),equals(tan(2*a)))
平方差公式
sin(a+b)*sin(a-b)=sin(a)^2+sin(b)^2
cos(a+b)*cos(a-b)=cos(a)^2+sin(b)^2
expect_that(sin(a)^2-sin(b)^2,equals(sin(a+b)*sin(a-b)))
expect_that(cos(a)^2-sin(b)^2,equals(cos(a+b)*cos(a-b)))
降次升角公式
cos(a)^2=(1+cos(2*a))/2
sin(a)^2=(1-cos(2*a))/2
expect_that((1+cos(2*a))/2,equals(cos(a)^2))
expect_that((1-cos(2*a))/2,equals(sin(a)^2))
辅助角公式
a*sin(a)+b*cos(a) = sqrt(a^2+b^2)*sin(a+atan(b/a))
expect_that(sqrt(a^2+b^2)*sin(a+atan(b/a)),equals(a*sin(a)+b*cos(a)))
3 复数计算
复数,为实数的延伸,它使任一多项式都有根。复数中的虚数单位i,是-1的一个平方根,即i^2 = -1。任一复数都可表达为x + yi,其中x及y皆为实数,分别称为复数之“实部”和“虚部”。
3.1 创建一个复数
# 直接创建复数
> ai class(ai)
[1] "complex"
# 通过complex()函数创建复数
> bi is.complex(bi)
# 实数部分
# 虚数部分
[1] 5.385165 # sqrt(5^2+2^2) = 5.385165
[1] 0.3805064
> Conj(ai)
3.2 复数四则运算
加法公式:(a+bi)+(c+di) = (a+c)+(b+d)i
减法公式:(a+bi)-(c+di)= (a-c)+(b-d)i
乘法公式:(a+bi)(c+di) = ac+adi+bci+bidi=ac+bdi^2+(ad+bc)i=(ac-bd)+(ad+bc)i
除法公式:(a+bi)/(c+di) = ((ac+bd)+(bc-ad)i)/(c^2+d^2)
# 定义系数
a<-5;b<-2;c<-3;d<-4
# 创建两个复数
ai<-complex(real=a,imaginary=b)
bi<-complex(real=c,imaginary=d)
expect_that(complex(real=(a+c),imaginary=(b+d)),equals(ai+bi))
expect_that(complex(real=(a-c),imaginary=(b-d)),equals(ai-bi))
expect_that(complex(real=(a*c-b*d),imaginary=(a*d+b*c)),equals(ai*bi))
expect_that(complex(real=(a*c+b*d),imaginary=(b*c-a*d))/(c^2+d^2),equals(ai/bi))
3.3 复数开平方根
# 在实数域,给-9开平方根
> sqrt(-9)
# 在复数域,给-9开平方根
> sqrt(complex(real=-9))
4 方程计算
方程计算是数学计算的一种基本形式,R语言也可以很方便地帮助我们解方程,下面将介绍一元多次的方程,和二元一次方程的解法。
解一元多次方程,可以用uniroot()函数!
4.1 一元一次方程
一元一次方程:a*x+b=0,设a=5,b=10,求x?
# 定义方程函数
a<-5;b result
result$root
一元一次方程非常容易解得,方程的根是-2!
以图形展示方程:y = 5*x + 10
# 创建数据点
> x y df g g g g g g
4.2 一元二次方程
一元二次方程:a*x^2+b*x+c=0,设a=1,b=5,c=6,求x?
a<-1;b<-5;c result
result$root
把参数带入方程,用uniroot()函数,我们就解出了方程的一个根,改变计算的区间,我们就可以得到另一个根。
result$root
方程的两个根,一个是-2,一个是-3。
由于uniroot()函数,每次只能计算一个根,而且要求输入的区间端值,必须是正负号相反的。如果我们直接输入一个(-10,0)这个区间,那么uniroot()函数会出现错误。
> result <- uniroot(f2,c(-10,0),a=a,b=b,c=c,tol=0.0001)
Error in uniroot(f2, c(-10, 0), a = a, b = b, c = c, tol = 1e-04) :
位于极点边的f()值之正负号不相反
这应该是uniroot()为了统计计算对一元多次方程而设计的,所以为了使用uniroot()函数,我们需要取不同的区别来获得方程的根。
以图形展示方程:y = x^2 + 5*x + 6
# 创建数据点
> x y df g g g g g
我们从图,并直接的看到了x的两个根取值范围。
4.3 一元三次方程
一元二次方程:a*x^3+b*x^2+c*x+d=0,设a=1,b=5,c=6,d=-11,求x?
a<-1;b<-5;c<-6;d result
result$root
[1] 0.9461458
如果我们设置对了取值区间,那么一下就得到了方程的根。
以图形展示方程:y = x^2 + 5*x + 6
# 创建数据点
> x y df g g g g g
4.4 二元一次方程组
R语言还可以解二次的方程组,当然计算方法,其实是利用于矩阵计算。
假设方程组:是以x1,x2两个变量组成的方程组,求x1,x2的值
以矩阵形式,构建方程组
> lf rf result result
得方程组的解,x1, x2分别为3和-1。
接下来,我们画出这两个线性方程的图。设y=X2, x=X1,把原方程组变成两个函数形式。
# 定义2个函数
> fy1 fy2 x y1 y2 dy1 dy2 df
我们看到两条直线交点的坐标,就是方程组的两个根。多元一次方程,同样可以用这种方法来解得。
通过R语言,我们实现了对于初等数学的各种计算,真的是非常方便!下一篇文章将介绍,用R语言来解决高级数学中的计算问题。
转载请注明出处:
This entry was posted in
Designed by为何从一元五次方程开始就没有由有限次加、减、乘、除、开方运算构成的求根公式了? - 知乎2494被浏览276069分享邀请回答0添加评论分享收藏感谢收起4.将求出的未知数的值代入原方程组中的任意一个方程中.求出另一个未知数的值.从而求得方程组的解. [学会探究] 问题1 用加减法解方程组: 问题2 用加减法解方程组: 本问题可用加法求出的值.——精英家教网——
暑假天气热?在家里学北京名师课程,
4.将求出的未知数的值代入原方程组中的任意一个方程中.求出另一个未知数的值.从而求得方程组的解. [学会探究] 问题1 用加减法解方程组: 问题2 用加减法解方程组: 本问题可用加法求出的值.用减法用求的值 有相同系数的未知数该“倒霉 了 问题3 用加减法解方程组: 问题4 用加减法解方程组: 问题5 用加减法解方程组: 要想消去某个未知数.就请主它们的系数的绝对值相等吧 还是先考虑代简吧 [学会实践] 【】
题目列表(包括答案和解析)
检验方程组的解时,必须将求得的未知数的值代入方程组中的每一个方程.例1:解方程组思路分析:本例这两个方程中①较简单,且x、y的系数均为1,故可把①变形,把x用y表示,或把y用x来表示皆可,然后将其代入②,消去一个未知数,化成一元一次方程,进而再求出方程组的解.解:把①变形为y=4-x ③把③代入②得:-=1即-=1,=-1,=∴x=把x=代入③得y=4-=3所以原方程的解是.若想知道解的是否正确,可作如下检验:检验:把x=,y=3代入①得,左边=x+y=+3=4,右边=4.所以左边=右边.再把x=,y=3代入②得左边-=-=-=1,右边=1.所以左边=右边.所以是原方程组的解.
检验方程组的解时,必须将求得的未知数的值代入方程组中的每一个方程.例1:解方程组x+y=4x+y3-x2=1思路分析:本例这两个方程中①较简单,且x、y的系数均为1,故可把①变形,把x用y表示,或把y用x来表示皆可,然后将其代入②,消去一个未知数,化成一元一次方程,进而再求出方程组的解.把①变形为y=4-x&&③把③代入②得:x+4-x3-x2=1即43-x2=1,x2=43-1,x2=13∴x=23把x=23代入③得y=4-23=313所以原方程的解是x=23y=313.若想知道解的是否正确,可作如下检验:检验:把x=23,y=313代入①得,左边=x+y=23+313=4,右边=4.所以左边=右边.再把x=23,y=313代入②得左边x+y3-x2=23+3133-232=43-13=1,右边=1.所以左边=右边.所以x=23y=313是原方程组的解.
精英家教网新版app上线啦!用app只需扫描书本条形码就能找到作业,家长给孩子检查作业更省心,同学们作业对答案更方便,扫描上方二维码立刻安装!
请输入姓名
请输入手机号当前位置:
>>>用加减法解二元一次方程组时,两个方程中同一个未知数的系数必须..
用加减法解二元一次方程组时,两个方程中同一个未知数的系数必须______或______,即它们的绝对值______.当未知数的系数的符号相同时,用______;当未知数的系数的符号相反时,用______.当方程组里两个方程的同一个未知数的系数成整数倍时,可以利用______性质,将方程经过简单变形,使这个未知数的系数的绝对值______,再用加减法消元,进一步求得方程组的解.
题型:填空题难度:中档来源:不详
用加减消元法解二元一次方程组时,二元一次方程组中同一未知数的系数必须相等或互为相反数,即它们的绝对值相等,当未知数的系数的符号相同时,用减法;当未知数的系数的符号相反时,用加法;如果同一未知数的系数成整数倍,利用等式性质,把一个方程变形,使两个方程同一未知数的系数的绝对值相等,再用加减法消元,进一步求得方程组的解.
马上分享给同学
据魔方格专家权威分析,试题“用加减法解二元一次方程组时,两个方程中同一个未知数的系数必须..”主要考查你对&&二元一次方程组的解法&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
二元一次方程组的解法
二元一次方程组的解:使二元一次方程组的两个方程都成立的一对未知数的值,叫做方程组的解,即其解是一对数。二元一次方程组解的情况:一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。求方程组的解的过程,叫做解方程组。一般来说,一个二元一次方程有无数个解,而二元一次方程组的解有以下三种情况:1、有一组解。如方程组:x+y=5①6x+13y=89②x=-24/7y=59/7 为方程组的解2、有无数组解。如方程组:x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。3、无解。如方程组:x+y=4①2x+2y=10②,因为方程②化简后为x+y=5这与方程①相矛盾,所以此类方程组无解。可以通过系数之比来判断二元一次方程组的解的情况,如下列关于x,y的二元一次方程组:ax+by=cdx+ey=f当a/d≠b/e 时,该方程组有一组解。当a/d=b/e=c/f 时,该方程组有无数组解。当a/d=b/e≠c/f 时,该方程组无解。二元一次方程组的解法:解方程的依据—等式性质1.a=b←→a+c=b+c2.a=b←→ac=bc (c&0)一、消元法1)代入消元法用代入消元法的一般步骤是:①选一个系数比较简单的方程进行变形,变成 y = ax +b 或 x = ay + b的形式;②将y = ax + b 或 x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;③解这个一元一次方程,求出 x 或 y 值;④将已求出的 x 或 y 值代入方程组中的任意一个方程(y = ax +b 或 x = ay + b),求出另一个未知数;⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。例:解方程组 :&&&& x+y=5①{&&&& 6x+13y=89②解:由①得x=5-y③把③代入②,得6(5-y)+13y=89即 y=59/7把y=59/7代入③,得x=5-59/7即 x=-24/7∴ x=-24/7y=59/7 为方程组的解我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法,简称代入法。2)加减消元法用加减法消元的一般步骤为:①在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数;②在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程;③解这个一元一次方程;④将求出的一元一次方程的解代入原方程组系数比较简单的方程,求另一个未知数的值;⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。例:解方程组:&&&& x+y=9①{&&&& x-y=5②解:①+②2x=14即 x=7把x=7代入①,得7+y=9解,得:y=2∴ x=7y=2 为方程组的解利用等式的性质使方程组中两个方程中的某一个未知数前的系数的绝对值相等,然后把两个方程相加(或相减),以消去这个未知数,使方程只含有一个未知数而得以求解。像这种解二元一次方程组的方法叫做加减消元法,简称加减法。3)加减-代入混合使用的方法例:解方程组:&&& &13x+14y=41①{&&&& 14x+13y=40 ②解:②-①得x-y=-1x=y-1 ③把③ 代入①得13(y-1)+14y=4113y-13+14y=4127y=54y=2把y=2代入③得x=1所以:x=1,y=2特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元。二、换元法例:解方程组:&& (x+5)+(y-4)=8{&& (x+5)-(y-4)=4令x+5=m,y-4=n原方程可写为m+n=8m-n=4解得m=6,n=2所以x+5=6,y-4=2所以x=1,y=6特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。三、设参数法例:解方程组:&&&&& x:y=1:4{&&&& 5x+6y=29令x=t,y=4t方程2可写为:5t+6×4t=2929t=29t=1所以x=1,y=4四、图像法二元一次方程组还可以用做图像的方法,即将相应二元一次方程改写成一次函数的表达式在同坐标系内画出图像,两条直线的交点坐标即二元一次方程组的解。
发现相似题
与“用加减法解二元一次方程组时,两个方程中同一个未知数的系数必须..”考查相似的试题有:
205457194132177555164908546646296896}

我要回帖

更多关于 桥本氏加减能练瑜伽吗 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信