已知a b b c 3 5(0,1)b(1,0)c(3,-4)在抛物线上,求解析式

知识点梳理
1.一般式:这是最基本的方法,它是从定义出发。因为y=a{{x}^{2}}+bx+c(a≠0)是的一般式,若知道函数图像上三个,即可求出该函数的关系式。2.顶点式:若已知的顶点或对称轴,则设抛物线的关系式为顶点式y=a{{\(x-h\)}^{2}}+k。顶点的坐标为(h,k),对称轴为直线x=h。3.交点式:若已知抛物线与x轴的两交点坐标或已知抛物线与x轴的一交点坐标与对称轴,可通过设交点式y=a\(x-{{x}_{1}}\)o\(x-{{x}_{2}}\)来求解。
的性质:1.&y=a{{x}^{2}}(a≠0)的图像是一条,它的对称轴是y轴,顶点是原点(0,0)。(1)&二次函数图像怎么画?作法:①列表:一般取5个或7个点,作为顶点的原点(0,0)是必取的,然后在y轴的两侧各取2个或3个点,注意对称取点;②描点:一般先描出对称轴一侧的几个点,再根据对称性找出另一侧的几个点;③连线:按照自变量由小到大的顺序,用平滑的曲线连接所描的点,两端无限延伸。(2)&二次函数y={{x}^{2}}与y=-{{x}^{2}}的图像和性质:2.&二次函数y=a{{x}^{2}}+k(a,k是常数,a≠0)的图像是一条抛物线,它的对称轴是y轴,顶点坐标是(0,k),它与y=a{{x}^{2}}的图像形状相同,只是位置不同。函数y=a{{x}^{2}}+k的图像是由抛物线y=a{{x}^{2}}向上(或下)平移|k|个单位得到的。当a>0时,抛物线y=a{{x}^{2}}+k的开口向上,在对称轴的左边(x<0时),曲线自左向右下降,函数y随x的增大而减小;在对称轴的右边(x>0时),曲线自左向右上升,函数y随x的增大而增大。顶点是抛物线的最低点,在顶点处函数y取得最小值,即当x=0时,y最小值=k。当a<0时,抛物线y=a{{x}^{2}}+k的开口向下,在对称轴的左边(x<0时),曲线自左向右上升,函数y随x的增大而增大;在对称轴的右边(x>0时),曲线自左向右下降,函数y随x的增大而减小。顶点是抛物线的最高点,在顶点处函数y取得最大值,即当x=0时,y最大值=k。3.&二次函数y=a{{\(x-h\)}^{2}}(a≠0)的图像是一条抛物线,它的对称轴是平行于y轴或与y轴重合的直线x=h,顶点坐标是(h,0),它与y=a{{x}^{2}}的图像形状相同,位置不同,函数y=a{{x}^{2}}+bx+c(a≠0)的图像是由抛物线y=a{{x}^{2}}向右(或左)平移|h|个单位得到的。画图时,x的取值一般为h和h左右两侧的值,然后利用对称性描点画图。当a>0时,抛物线y=a{{\(x-h\)}^{2}}的开口向上,在对称轴的左边(x<h时),曲线自左向右下降,函数y随x的增大而减小;在对称轴的右边(x>h时),曲线自左向右上升,函数y随x的增大而增大。顶点是抛物线的最低点,在顶点处函数y取得最小值,即当x=h时,y最小值=0。当a<0时,抛物线y=a{{\(x-h\)}^{2}}的开口向下,在对称轴的左边(x<h时),曲线自左向右上升,函数y随x的增大而增大;在对称轴的右边(x>h时),曲线自左向右下降,函数y随x的增大而减小。顶点是抛物线的最高点,在顶点处函数y取得最大值,即当x=h时,y最大值=0。4.&二次函数y=a{{\(x-h\)}^{2}}+k(a≠0)的图像是一条抛物线,它的对称轴是直线x=h,顶点坐标是(h,k),是由抛物线y=a{{x}^{2}}向右(或左)平移|k|个单位,再向上(下)平移|k|个单位得到的。当a>0时,抛物线y=a{{\(x-h\)}^{2}}+k的开口向上,在对称轴的左边(x<h时),曲线自左向右下降,函数y随x的增大而减小;在对称轴的右边(x>h时),曲线自左向右上升,函数y随x的增大而增大。顶点是抛物线的最低点,在顶点处函数y取得最小值,即当x=h时,y最小值=k。当a<0时,抛物线y=a{{\(x-h\)}^{2}}+k的开口向下,在对称轴的左边(x<h时),曲线自左向右上升,函数y随x的增大而增大;在对称轴的右边(x>h时),曲线自左向右下降,函数y随x的增大而减小。顶点是抛物线的最高点,在顶点处函数y取得最大值,即当x=h时,y最大值=k。5.&二次函数的图像的画法:(1)&描点法,步骤如下:a.&利用配方法把二次函数y=a{{x}^{2}}+bx+c化成y=a{{\(x-h\)}^{2}}+k的形式。b.&确定抛物线的开口方向、对称轴和顶点坐标。c.&在对称轴两侧,以顶点为中心,左右对称描点画图。(2)&平移法,步骤如下:a.&利用配方法把二次函数y=a{{x}^{2}}+bx+c化成y=a{{\(x-h\)}^{2}}+k的形式,确定其顶点(h,k)。b.&作出函数y=a{{x}^{2}}的图像。c.&将函数y=a{{x}^{2}}的图像平移,使其顶点平移到(h,k)。
整理教师:&&
举一反三(巩固练习,成绩显著提升,去)
根据问他()知识点分析,
试题“已知二次函数y=ax2+bx+c的图象经过点A(-1,0),...”,相似的试题还有:
已知:一个二次函数的图象经过(-1,10),(1,4),(2,7)三点.(1)求出这个二次函数解析式;(2)利用配方法,把它化成y=a(x+h)2+k的形式,并写出顶点坐标和y随x变化情况.
如图,已知二次函数y=ax2+bx+c的图象经过A(-1,-1)、B(0,2)、C(1,3);(1)求二次函数的解析式;(2)画出二次函数的图象.
如图,已知二次函数y=ax2+bx+c的图象经过A(-1,-1)、B(0,2)、C(1,3);(1)求二次函数的解析式;(2)画出二次函数的图象.扫二维码下载作业帮
2亿+学生的选择
下载作业帮安装包
扫二维码下载作业帮
2亿+学生的选择
(2014o德州)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.
扫二维码下载作业帮
2亿+学生的选择
(1)由A(4,0),可知OA=4,∵OA=OC=4OB,∴OA=OC=4,OB=1,∴C(0,4),B(-1,0).设抛物线的解析式是y=ax2+bx+c,则,解得:,则抛物线的解析式是:y=-x2+3x+4;(2)存在.第一种情况,当以C为直角顶点时,过点C作CP1⊥AC,交抛物线于点P1.过点P1作y轴的垂线,垂足是M.∵∠ACP1=90°,∴∠MCP1+∠ACO=90°.∵∠ACO+∠OAC=90°,∴∠MCP1=∠OAC.∵OA=OC,∴∠MCP1=∠OAC=45°,∴∠MCP1=∠MP1C,∴MC=MP1,设P(m,-m2+3m+4),则m=-m2+3m+4-4,解得:m1=0(舍去),m2=2.∴-m2+3m+4=6,即P(2,6).第二种情况,当点A为直角顶点时,过A作AP2,AC交抛物线于点P2,过点P2作y轴的垂线,垂足是N,AP交y轴于点F.∴P2N∥x轴,由∠CAO=45°,∴∠OAP=45°,∴∠FP2N=45°,AO=OF.∴P2N=NF,设P2(n,-n2+3n+4),则n=(-n2+3n+4)+4,解得:n1=-2,n2=4(舍去),∴-n2+3n+4=-6,则P2的坐标是(-2,-6).综上所述,P的坐标是(2,6)或(-2,-6);(3)连接OD,由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.由(1)可知,在直角△AOC中,OC=OA=4,则AC=2+OA2=4,根据等腰三角形的性质,D是AC的中点.又∵DF∥OC,∴DF=OC=2,∴点P的纵坐标是2.则-
为您推荐:
(1)根据A的坐标,即可求得OA的长,则B、C的坐标即可求得,然后利用待定系数法即可求得函数的解析式;(2)分点A为直角顶点时,和C的直角顶点两种情况讨论,根据OA=OC,即可列方程求解;(3)据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短,根据等腰三角形的性质,D是AC的中点,则DF=OC,即可求得P的纵坐标,代入二次函数的解析式,即可求得横坐标,得到P的坐标.
本题考点:
二次函数综合题;等腰三角形的判定与性质.
考点点评:
本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求抛物线的解析式,以及等腰三角形的性质.在求有关动点问题时要注意分析题意分情况讨论结果.
扫描下载二维码当前位置:
>>>如图,已知抛物线y=ax2+bx+c经过A(-2,0)、B(4,0)、C(0,4)三点..
如图,已知抛物线y=ax2+bx+c经过A(-2,0)、B(4,0)、C(0,4)三点.(1)求此抛物线的解析式;(2)此抛物线有最大值还是最小值?请求出其最大或最小值;(3)若点D(2,m)在此抛物线上,在y轴的正半轴上是否存在点P,使得△BDP是等腰三角形?若存在,请求出所有符合条件的P点的坐标;若不存在,请说明理由.
题型:解答题难度:中档来源:不详
(1)将A(-2,0)、B(4,0)、C(0,4)代入y=ax2+bx+c,得4a-2b+c=016a+4b+c=0c=4,解得a=-12b=1c=4.所以此抛物线的解析式为y=-12x2+x+4;(2)∵y=-12x2+x+4,a=-12<0,∴抛物线有最大值,最大值为4×(-12)×4-124×(-12)=92;(3)∵点D(2,m)在抛物线y=-12x2+x+4上,∴m=-12×22+2+4=4,∴D(2,4),∵B(4,0),∴BD=(4-2)2+(0-4)2=25.假设在y轴的正半轴上存在点P(0,y)(y>0),使得△BDP是等腰三角形,分三种情况:①如果PB=PD,那么42+y2=22+(y-4)2,解得y=12,所以P1(0,12);②如果BP=BD,那么42+y2=20,解得y=±2(负值舍去),所以P2(0,2);③如果DP=DB,那么22+(y-4)2=20,解得y=0或8,y=0不合题意舍去,y=8时,(0,8)与D,B三点共线,不合题意舍去,所以P3(0,8);综上可知,所有符合条件的P点的坐标为P1(0,12),P2(0,2).
马上分享给同学
据魔方格专家权威分析,试题“如图,已知抛物线y=ax2+bx+c经过A(-2,0)、B(4,0)、C(0,4)三点..”主要考查你对&&求二次函数的解析式及二次函数的应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
求二次函数的解析式及二次函数的应用
求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式; (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式。 二次函数的应用:(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h&0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
③交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a&0时,开口方向向上;a&0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题。二次函数的其他表达形式:①牛顿插值公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 二次函数表达式的右边通常为二次三项式。双根式y=a(x-x1)*(x-x2)若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。③三点式已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)与X轴交点的情况当△=b2-4ac&0时,函数图像与x轴有两个交点。(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。Δ=b2-4ac&0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。
1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。点拨:解∵顶点坐标为(-1,-2),故设二次函数解析式为y=a(x+1)2-2 (a≠0)。把点(1,10)代入上式,得10=a·(1+1)2-2。∴a=3。∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。②典型例题二:如果a&0,那么当 时,y有最小值且y最小=;如果a&0,那么,当时,y有最大值,且y最大=。告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。∴抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x-4)2-3。将(1,0)代入得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73。③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。
发现相似题
与“如图,已知抛物线y=ax2+bx+c经过A(-2,0)、B(4,0)、C(0,4)三点..”考查相似的试题有:
503295422129130410140623490069499584扫二维码下载作业帮
2亿+学生的选择
下载作业帮安装包
扫二维码下载作业帮
2亿+学生的选择
抛物线y=ax2+bx+c经过A(4,0)、B(1,0)、C(0,-2)三点(求详解)抛物线y=ax2+bx+c经过A(4,0)、B(1,0)、C(0,-2)三点.(1)求出抛物性的解析式(2)p是抛物线上一动点,过P作pm垂直于x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与三角形OAC相似?若存在,请求出符合条件的点P的坐标,若不存在,请说明理由:(3)在直线AC上方的抛物线上有一点D,使得三角形DCA面积最大,求出点D的坐标.
扫二维码下载作业帮
2亿+学生的选择
1)这里就不多说了,简单的代入三点坐标,求解方程组,很简单得到抛物线解析式为y=-x²/2+5/2x-22) 假设存在设P点坐标为(m,n)(1) 假设△MPA∽△OAC则 |PM|/|OA|=|MA|/|OC||n|/4=|m-4|/2解之得 m=-3或者m=5 //m=4的情况被舍弃,因为m=4时,P和A重合,无法构成三角形m=-3时,n=-14m=5时,n=-2此时,适合题意的P点坐标为(-3,-14)或者(5,-2)(2) 假设△MAP∽△OAC //注意顶点的对应,最好画图理解一下两种相似的情况|MA|/|OA|=|MP|/|OC||m-4|/4|=|n|/2m=0或者2 //同样m=4被舍弃m=0,n=-2m=2,n=1此时适合题意的P点为(0,-2)//*与C点重合*//或者(2,1)3) 直线AC的方程为y=2x-2斜率k=2当△DAC的面积最大时,过D点的切线与直线AC平行.令y'=-x+5/2=2得到x=1/2,此时y=-7/8从而D点坐标为(1/2,-7/8)
为您推荐:
其他类似问题
将A、B、C三点的坐标带入解析式,得到一个三元一次方程组。16a+4b+c=0;a+b+c=0;c=-2。解得a;b=2.5;c。所以,求得抛物线方程为:y=-0.5x2+2.5x-2。
第一问会的,关键是2、3问
扫描下载二维码}

我要回帖

更多关于 已知a b b c 3 5 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信