大肠杆菌检测方法RNA聚合酶的核心酶功能是——,α亚基负责——

RNA的合成(转录)_新浪教育_新浪网
RNA的合成(转录)
14:33& 双博士丛书
    RNA的合成(转录)
  考点:
  原核生物RNA聚合酶的各种亚基,转录起始,转录延伸过程中的化学反应,原核生物的转录终止的两种形式;
  真核生物RNA聚合酶的特点,转录起始、延伸及终止。真核与原核生物RNA合成比较。
  真核生物mRNA转录后5@端加帽;3@端加尾及mRNA链进行剪接修饰,tRNA及rRNA的转录后加工过程,内含子的剪接方式。核酶的概念、应用。
  重点:
  转录的反应
体系,原核生物和真核生物中的RNA聚合酶的特点,RNA的转录过程大体可分为起始、延长、终止三个阶段。真核RNA的转录后加工,各种RNA前体的加工过程。
  难点:
  转录模板的不对称性极其命名,原核生物及真核生物的转录起始,真核生物的转录终止,mRNA前体的剪接机制(套索的形成及剪接),内含子的剪接过程,核酶的作用机理。
  一、转录作用
  (一)转录作用及其特点
  转录作用是DNA指导的RNA合成作用。反应是以DNA为模板,在RNA聚合酶催化下,以四种三磷酸核苷(NTP)即ATP、GTP、CTP及UTP为原料,各种核苷酸之间的3′、5′磷酸二酯键相连进行的聚合反应。合成反应的方向为5′→3′。反应体系中还有Mg2+、Mn2+等参与,反应中不需要引物参与。碱基互补原则为A-U、G-C,在RNA中U替代T与A配对。
  DNA分子多为双股链的分子,在转录作用进行时,DNA双链中只有一条链作为模板,指导合成与其互补的RNA。此DNA链称为模板键,另一条链称为编码链。编码链的序列与转录本RNA的序列基本相同,只是编码链上的T在相应转录本上为U,由于转录本RNA编码基因表达的蛋白质产物,DNA的这条链也由此命名为编码链。编码链又称为有义链;模板链又称为反义链。
  在多基因的双链DNA分子中,每个基因的模板不是全在同一条链上,也就是在双链DNA分子中的一条链,对于某基因是有义链,但对另一个基因则可能是反义链。
  转录作用开始时,RNA聚合酶结合于基因的特定部位,在此附近DNA双键打开约17个碱基对,形成一转录泡,进行核苷酸的聚合反应。随着RNA聚合酶沿着DNA模板链向5′末端的方向移动,核苷酸的聚合反应继续进行。
  ( 二)RNA聚合酶
  催化转录作用的酶是RNA聚合酶。
  1原核生物RNA聚合酶
  大肠杆菌RNA聚合酶的结构是由五个亚基组成,为二条α链,一条β链,一条β′链和一条σ因子链,α2ββ′四个亚基组成核心酶,加上σ因子后成为全酶α2ββ′σ。σ因子与核心酶的结合不紧密,容易脱落。RNA聚合酶β亚基有促进聚合反应中磷酸二酯键生成的作用。β′亚基是酶与模板结合时的主要部分。σ因子没有催化活性,它可以识别DNA模板上转录的起始部位。
  RNA聚合酶具有多种功能,①它可从DNA分子中识别转录的起始部位。②促进与酶结合的DNA双链分子打开17个碱基对。③催化适当的NTP以3′、5′磷酸二酯键相连接,如此连续进行聚合反应完成一条RNA转录本的合成。④识别DNA分子中转录终止信号,促使聚合反应的停止。RNA聚合酶还参与了转录水平的调控。
  原核生物RNA聚合酶的几个特点:①聚合速度比DNA复制的聚合反应速率要慢;②缺乏3′→5′外切酶活性,无校对功能,RNA合成的错误率比DNA复制高很多;③原核生物RNA聚合酶的活性可以被利福霉素及利福平所抑制,这是由于它们可以和RNA聚合酶的β亚基相结合,而影响到酶的作用。
  2.真核生物的RNA聚合酶
  真核生物中已发现有四种RNA聚合酶,分别称RNA聚合酶Ⅰ、Ⅱ、Ⅲ、Mt。
  RNA聚合酶Ⅱ转录生成hnRNA和mRNA,是真核生物中最活跃的RNA聚合酶。
  RNA聚合酶Ⅲ转录的产物都是小分子量的RNA,tRNA的,5SrRNA的和snRNA。
  RNA聚合酶Ⅰ转录产物是45SrRNA,生成除5SrRNA外的各种rRNA。
  下面小结真核生物的RNA聚合酶,见表。
5.8S,18S,28SrRNA前体
U1、U2、U4、U5
5SrRNA前体
U6SnRNA前体
线粒体RNAS
对利福平的敏感性利福霉素
  (三)启动子及终止信号
  1启动子
  启动子或启动部位是指在转录开始进行时,RNA聚合酶与模板DNA分子结合的特定部位。这特定部位在转录作用的调节中是有作用的。每一个基因均有自己特有的启动子。
  (1)原核生物的启动子。 原核生物的启动子大约有55个碱基对长,其中包含有转录的起始点和两个区――结合部位及识别部位。
  起始点是DNA模板链上开始进行转录作用的位点,标以+1,转录是从起始点开始向模板键的5′末端方向即编码链3′末端方向进行。在DNA模板上,从起始点开始顺转录方向的区域称为下游;从起始点逆转录方向的区域称为上游。
  结合部位是指在DNA分子上与RNA聚合酶核心酶紧密结合的序列。结合部位的长度大约是7个碱基对,其中心位于起始点上游的-10bp处。因此将此部位称为-10区。多种启动子的-10区具有高度的保守性和一致性;它们有一个共有序列或共同序列,为5′TATAAT-3′。又称为Pribnow盒。由于在Pribnow盒中碱基组成全是A-T配对,缺少G-C配对;而前者的亲和力只相当于后者的十分之一,所以Tm值较低。因此此区域的DNA双链容易解开,利于RNA聚合酶的进入而促使转录作用的起始。
  在DNA分子上还有一段识别部位,是RNA聚合酶的σ因子识别DNA分子的部位。识别部位约有6个碱基对,其中心位于上游-35bp处。所以称为-35区,其共有序列5′-TTGACA-3′。其示意图见图。
  (2)真核生物的启动子。
  一个真核基因按功能可分为两部分,即调节区和结构基因。结构基因的DNA序列指导RNA转录;如果该DNA序列转录产物为mRNA,则最终翻译为蛋白质。调节区由两类元件组成,一类元件决定基因的基础表达,又称为启动子;另一类元件决定组织特异性表达或对外环境及刺激应答;两者共同调节表达。
  RNA聚合酶Ⅱ识别的启动子与原核生物的启动子相似,也具有两个高度保守的共有序列。其一是在-25附近的一段AT富集序列,其共有序列是TATAA,称为TATA盒。TATA盒与原核的Pribonow盒相似,是转录因子与DNA分子结合的部位。其二是在多数启动子中,-70附近共有序列CAAT区,称为CAAT盒。除以上两个区域外,有些启动子上游中含有GC盒,此GC盒与CAAT盒多位于-40~110之间,它们可影响转录起始的频率。另外,有少量基因缺乏TATA盒,而由起始序列(Inr)与RNA聚合酶Ⅱ直接作用启动基础转录的开始。启动子决定了被转录基因的启动频率与精确性,同时启动子在DNA序列中的位置和方向是严格固定的,是由5′到3′方向。其示意图见图。
  增强子:增强子是长约100~200bp的序列,它们与启动子不同,可以位于转录起始位点的上游,也可位于其下游。有些增强子和静息子在DNA序列中的方向是严格由5′到3′方向排列,而另外一些则是自3′向5′方向排列。增强子和静息于与其他调节元件的DNA序列是互相重叠的。
  增强子具有增加启动子的作用,与启动子都可视为基因表达调控中的顺式作用元件,可与转录因子和RNA聚合酶结合,启动并调节基因转录。
  RNA聚合酶Ⅰ催化转录作用生成的18S、5.8S及 28SrRNA前体,它所识别的启动子与RNA聚合酶Ⅱ所识的启动子相比,有较大的差异。
  RNA聚合酶Ⅲ催化高度保守的 tRNA、5S rRNA及一些小核RNA。它识别的启动子比较特殊,启动子不位于编码基因的上游,而在编码基因的转录区内。
  2终止信号
  DNA分子中停止转录作用的部位,称为终止信号。终止部位在结构上有些特点,终止部位中有一段GC富集区,随之又有一段AT富集区。在GC区内有一段是反向重复序列,以致转录作用生成的mRNA在其相应序列中有互补形成的发卡式结构。对于DNA分子的AT富集区,转录生成的mRNA的3′末端中相应的有一连串U序列。
  还有一种蛋白质ρ因子,它对于RNA聚合酶识别终止信号有辅助作用,又称为终止蛋白。
  (四)转录过程
  转录作用过程可以分为三个阶段:起始、延长及终止。
  RNA聚合酶的σ因子识别DNA启动子的识别部位,RNA聚合酶核心酶则结合在启动子的结合部位。在与RNA聚合核心酶结合的Pribonow盒附近,双链暂时打开约17个碱基对长度,展示出DNA模板链,有利于RNA聚合酶进入转录泡,催化RNA聚合作用。
  转录作用开始时,根据DNA模板链上的核苷酸的序列,NTP根据碱基互补原则依次进入反应体系。在RNA聚合酶的催化下,起始点处相邻的前两个NTP以3′、5′一磷酸二酯键相连接。
  随后,σ因子从模板及RNA聚合酶上脱落下来,于是RNA聚合酶的核心酶沿着模板向下游移动,转录作用进入延长阶段。脱落下的σ因子可以再次与核心酶结合而循环使用。
  在RNA聚合酶的催化下,核苷酸之间以3′、5′一磷酸二酯键相连接进行着RNA的合成反应,合成方向为5′→3′。在延长过程中,局部打开的DNA双链、RNA聚合酶及新生成转录本RNA局部形成转录泡。随RNA聚合酶的移动,转录泡也行进,贯穿于延长始终。
  在RNA延长进程中,当RNA聚合酶行进到DNA模板的――终止信号时,RNA聚合酶就不再继续前进,聚合作用也因此停止。由于终止信号中有由GC富集区组成的反向重复序列,在转录生成的mRNA中有相应的发卡结构。此发卡结构可阻碍RNA聚合酶的行进,由此而停止了RNA聚合作用。在终止信号中还有AT富集区,其转录生成的mRNA3′末端有多个U残基。
  二、转录后的加工过程
  转录作用产生出的mRNA、tRNA及rRNA的初级转录本全是前体RNA,而不是成熟的RNA,它们没有生物学活性,还要在酶的作用下,进行加工才能变为成熟的,有活性的RNA。
  RNA的加工过程主要是在细胞核内进行,也有少数反应是在胞质中进行。
  RNA加工的类型有:
  剪切及剪接:剪切就是剪去部分序列;剪接是指剪切后又将某些片段连接起来。
  末端添加核苷酸:例如tRNA的3′-末端添加-CCA。
  修饰:在碱基及核糖分子进行化学修饰。
  RNA编辑:某些RNA,特别是mRNA自DNA模板上所获得的遗传信息,在转录作用后又发生了变化。
  (一)mRNA前体的加工
  1.mRNA生成的特点
  (1)原核生物mRNA的生成。原核生物转录作用生成的mRNA属于多顺反子。即几个结构基因,利用共同的启动子及共同的终止信号,经转录作用生成mRNA分子,所以此mRNA分子可编码几种不同的蛋白质。
  原核生物中,细胞内没有核膜,染色质存在于胞质中,所以转录与翻译进行的场所没有明显的屏障。在转录尚未完成时,翻译就已开始了。而且,mRNA的寿命十分短暂。
  (2)真核生物mRNA生成。真核生物转录作用生成的mRNA为单顺反子,即一个mRNA分子只编码一种蛋白质。
  真核生物的结构基因中包含有具有表达活性的编码蛋白质序列,称为外显子;还含有无表达活性的序列,称为内含子。由于内含于是插在外显子之间,所以又称为插入序列。转录生成的mRNA前体中有来自外显子部分的,也有来自内含子部分的。在加工时,前体要进行剪接作用。
  2.mRNA前体的加工
  原核生物转录生成的初级转录本mRNA不需经过复杂的加工就表现有活性。唯一的加工作用是多顺反子mRNA在RNaseⅢ的催化下,裂解为单独的顺反子。
  真核生物转录生成的mRNA要经过较复杂的加工过程。包括①5′末端加帽②3′端加尾③剪接去除内含子并连接外显子④核苷酸编辑⑤甲基化修饰。
  (1)5′末端帽子的生成。步骤
  ①mRNA5′末端pppNp在磷酸酶作用下脱Pi,形成ppNp-。②在鸟苷酸转移酶作用下,与Gppp反应形成GpppNp-。③在甲基转移酶作用下,由腺苷蛋氨酸(SAM)提供甲基,在鸟嘌呤的N-7上甲基化,然后在连接于鸟苷酸的第一个(或第二个)核苷酸2-OH上又进行甲基化,最后成为m7GpppNmp,这就是帽子生成。
  (2)3′末端多聚A尾的生成。多聚A尾的生成是多聚A聚合酶的催化下,由ATP聚合而成。但多聚A尾形成并不是简单地加入A,而是先要在mRNA前体的3′末端11~30核苷酸处有一段AAUAA保守序列,在U7-snRNP的协助下识别,由一种特异的核酸内切酶催化切除多余的核苷酸。随后,在多聚A聚合酶催化下,发生聚合反应形成了3′末端多聚A尾。
  (3)剪接作用。
  在转录时,外显子及内含子均转录到hnRNA中。在细胞核中,hnRNA进行剪接作用,首先在核酸内切酶作用下剪切掉内含子;然后在连接酶作用下,将外显子各部分连接起来,成为成熟的mRNA,这就是剪接作用。
  一个相同的初级转录本,在不同的组织中由于剪接作用的差异可以产生具有不同编码的mRNA,导致翻译生成不同的蛋白质产物。
  在剪接作用过程中有如下一些共同的特点:
  1)mRNA前体的剪切部位是在内含子末端的特定序列。内含子的序列中起始为GU;而终止于AG。
  在内含子3′末端剪接点的上游20~50核苷酸范围内,还有一个在剪接中有重要作用的位点,其序列中含有A,称为分支部位。
  内含子如果其中发生部分丢失,不一定会对剪接产生影响。3′末端或分支部位发生变异,则会导致错误的剪接。
  2)套索的形成及剪除。
  mRNA前体剪接过程中,先剪切下内含子,然后连接外显子。剪接的过程分两步反应进行:①内含子序列中分支部位中腺苷酸残基(A)的2′-OH攻击内含子5′末端与外显子1连接的磷酸二酯键,剪下了外显子1,而腺苷酸原来已有以3′、5′-磷酸二酯键相连的两个相邻的核苷酸残基,加上此2′、5′-磷酸二酯键的连接后,形成了“套索”中间产物。②已被剪切下的外显子1的3′末端-OH攻击内含子3,末端与外显子2之间的3′、5′磷酸二酯键,链断裂,内含子以套索形式被剪切下来,同时外显子1与外显子2连接起来。 ③剪接体的生成。 在mRNA前体剪接过程去除内含子时,还有多种成分的RNA-蛋白质复合体的参与,其大小为60S,是由几种非特异的小核核糖核蛋白(UsnRNP)与mRNA前体结合而成,称为剪接体。(UsnRNA)是一族snRNA,参与剪接作用的有多种UsnRNPs。
  U1snRNP识别外显子的5′末端剪接序列,并与其互补而结合。 U5snRNP,识别并结合于内含于3′末端剪接点。U2snRNP识别并结合于A序列的分支点。还有U4及U6snRNP也参加到剪接体中,起配合作用。
  (4)RNA编辑
  在转录产物中插入、删除或取代一些核苷酸残基,生成具有正确翻译功能的模板,此即所谓RNA的编辑作用。 编辑过程由一个或多个小分子的“指导RNA”提供mRNA的编辑信息,并作为模板指导其进行编辑,在编辑体的帮助下进行编辑。
  (5)甲基化修饰
  原核生物mRNA分子中不含有稀有碱基,但真核生物的mRNA中则含有甲基化核苷酸,除了在hnRNA的5′端帽子结构中含有2-3个甲基化核苷外;在分子内部还会有l-2个m6A存在于非编码区。在序列中,m6A总是位于胞苷之后,形成了…NCm6AN序列。m6A的生成是在hnRNA的剪接作用之前发生的。
  (二)tRNA前体的加工
  ①在核酸内切酶RNaseP作用下,从5′末端切除多余的核苷酸。
  ②在核酸外切酶RNaseD作用下,从3′末端切除多余的核苷酸。
  ③核苷酸转移酶催化,3′末端加CCA-OH,为tRNA加I特有反应。
  ④核酸内切酶催化进行剪切反应,剪掉内含子,由连接酶连接外显子部分。
  ⑤ 化学修饰作用,如甲基化、脱氨基、还原反应。
  (三)rRNA前体的加工
  原核生物有 16S、23S及 5S三种 rRNA,这三种rRNA均存在于30S的rRNA前体中。转录作用完成后,在RNaseⅢ催化下,将rRNA前体切开产生16S、25S及 5S rRNA的中间前体。进一步在核酸酶的作用下,切去部分间隔序列,产生成熟的 16S、23S及5S rRNA,还有成熟的 tRNA。并对16S rRNA进行甲基化修饰,生成稀有碱基。与4S rRNA加I变化不大。
  真核生物的核蛋白体中有18S、5.8S及5S rRNA。 5SrRNA自己独立成体系,在成熟过程中加工甚少,不进行修饰和剪切。 45S rRNA前体中包含有 18S、5.8S及 28SrRNA。在加工过程中,分子广泛地进行甲基化修饰,主要是在28S及18S中。甲基化作用多发生于核糖上,较少在碱基上。随后45 S rRNA前体经核酸酶顺序剪切下生成18S、5.8S、28S rRNA。
  三、核酶
  对于具有催化活性的RNA现称为“核酶”。
  核酶作用方式较简单,归纳起来主要有以下几种类型:①剪切型,这类核酸能催化自身RNA或异体RNA分子剪掉一段核苷酸片段,其催化功能相当于内切核酸酶的作用。②剪接型,这类核酶催化自身RNA进行化学反应,首先切去自身RNA内一个核苷酸片段,再将剩余的两个片断连接起来;相当于内切核酸酶及连接酶的联合作用。③其他类型,如核苷酸转移,脱磷酸作用。
  核酶的酶活性种类:①核苷酸转移作用。②磷酸二酯键水解作用。③磷酸转移反应催化作用。④脱磷酸作用。⑤限制性内切酶作用。
  核酶的意义:①RNA可作为生物催化剂。②打破了只有蛋白质才能有酶催化作用。③为进化先有核酸、先有RNA提供证据。④可用于制药和临床治疗。
  四、RNA的复制
  病毒RNA进入宿主细胞后,还可进行复制,即在RNA指导的RNA聚合酶催化进行RNA合成反应。
  RNA复制酶催化的合成反应是以RNA为模板,由5′向3′方向进行RNA链的合成。RNA复制酶缺乏校对功能的内切酶活性,因此RNA复制的错误率较高,RNA复制酶只是特异地对病毒的RNA起作用,而宿主细胞的RNA一般并不进行复制。
  病毒RNA复制的几种方式
  (1)含正链RNA(+)的病毒(例如,噬菌体Q):(+)RNA充当mRNA,合成蛋白
  (+)RNA为模板,复制,合成(-)RNA,再以(-)RNA为模板合成(+)RNA组装成病毒颗粒。
  (2)含负链RNA(-)的病毒(例如狂犬病):由(-)RNA合成(+)RNA,再由(+)RNA合成蛋白质、(-)RNA,组装成病毒。
  (3)含双链RNA的病毒(例如呼肠孤病毒):以(-)RNA为模板合成(+)RNA,以(+)RNA为模板合成(-)RNA和蛋白,组装病毒颗粒。
  (4)逆转录病毒(例如白血病毒):由RNA反转录为DNA,以DNA为模板合成RNA,翻译蛋白质。
  特别说明:由于各方面情况的不断调整与变化,新浪网所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。
】 【】 【】 【】
新 闻 查 询
新闻标题新闻全文图片
热 点 专 题
(/ 14:33)(/ 11:01)(/ 11:01)(/ 11:01)(/ 11:01)
电话:010-8 欢迎批评指正
Copyright & 1996 - 2004 SINA Inc. All Rights Reserved 新浪网北京市通信公司提供网络带宽现代分子生物学(第3版)_1-3课后答案
第一章 绪论
1, 简述孟德尔、摩尔根和沃森等人对分子生物学发展的主要贡献。
答:孟德尔的对分子生物学的发展的主要贡献在于他通过豌豆实验,发现了遗传规律、分离规律及自由组合规律;摩尔根的主要贡献在于发现染色体的遗传机制,创立染色体遗传理论,成为现代实验生物学奠基人;沃森和克里克在1953年提出DAN反向双平行双螺旋模型。 2
写出DNA和RNA的英文全称。
答:脱氧核糖核酸(DNA, Deoxyribonucleic acid), 核糖核酸(RNA, Ribonucleic acid) 3
试述“有其父必有其子”的生物学本质。
答:其生物学本质是基因遗传。子代的性质由遗传所得的基因决定,而基因由于遗传的作用,其基因的一半来自于父方,一般来自于母方。 4
早期主要有哪些实验证实DNA是遗传物质?写出这些实验的主要步骤。
答:一,肺炎双球菌感染实验,1,R型菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。2,S型菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。3,用加热的方法杀死S型细菌后注入到小鼠体内,小鼠不死亡; 二,噬菌体侵染细菌的实验:1,噬菌体侵染细菌的实验过程:吸附→侵入→复制→组装→释放。 2,DNA中P的含量多,蛋白质中P的含量少;蛋白质中有S而DNA中没有S,所以用放射性同位素35S标记一部分噬菌体的蛋白质,用放射性同位素32P标记另一部分噬菌体的DNA。用35P标记蛋白质的噬菌体侵染后,细菌体内无放射性,即表明噬菌体的蛋白质没有进入细菌内部;而用32P标记DNA的噬菌体侵染细菌后,细菌体内有放射性,即表明噬菌体的DNA进入了细菌体内。
三,烟草TMV的重建实验:1957年,Fraenkel-Conrat等人,将两个不同的TMV株系(S株系和HR株系)的蛋白质和RNA分别提取出来,然后相互对换,将S株系的蛋白质和HR株系的RNA,或反过来将HR株系的蛋白质和S株系的RNA放在一起,重建形成两种杂种病毒,去感染烟草叶片。 5
请定义DNA重组技术和基因工程技术。
答:DNA重组技术:目的是将不同的DNA片段(如某个基因或基因的一部分)按照人们的设计定向连接起来,然后在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。
基因工程技术:是除了包含DNA重组技术外还包括其他可能是生物细胞基因结构得到改造的体系,基因工程是指技术重组DNA技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。上游技术指的是基因重组、克隆和表达的设计与构建(即重组DNA技术);而下游技术则涉及到基因工程菌或细胞的大规模培养以及基因产物的分离纯化过程。 6
写出分子生物学的主要研究内容。
答:1,DNA重组技术;2,基因表达调控研究;3,生物大分子的结构功能研究----结构分子生物学;4,基因组、功能基因组与生物信息学研究。
现代分子生物学(第3版)朱玉坚 第二章 染色体与DNA课后思考题答案 1 染色体具有哪些作为遗传物质的特征?
1 分子结构相对稳定
2 能够自我复制,使亲子代之间保持连续性
3 能够指导蛋白质的合成,从而控制整个生命过程
4 能够产生可遗传的变异 2.什么是核小体?简述其形成过程。
由DNA和组蛋白组成的染色质纤维细丝是许多核小体连成的念珠状结构。核小体是由H2A,H2B,H3,H4各两个分子生成的八聚体和由大约200bp的DNA组成的。八聚体在中间,DNA分子盘绕在外,而H1则在核小体外面。每个核小体只有一个H1。所以,核小体中组蛋白和DNA的比例是每200bpDNA有H2A,H2B,H3,H4各两个,H1一个。用核酸酶水解核小体后产生只含146bp核心颗粒,包括组蛋白八聚体及与其结合的146bpDNA,该序列绕在核心外面形成1.75圈,每圈约80bp。由许多核小体构成了连续的染色质DNA细丝。
核小体的形成是染色体中DNA压缩的第一阶段。在核小体中DNA盘绕组蛋白八聚体核心,从而使分子收缩至原尺寸的1/7。200bpDNA完全舒展时长约68nm,却被压缩在10nm的核小体中。核小体只是DNA压缩的第一步。
核小体长链200bp→核酸酶初步处理→核小体单体200bp→核酸酶继续处理→核心颗粒146bp 3简述真核生物染色体的组成及组装过程
除了性细胞外全是二倍体
是有DNA以及大量蛋白质及核膜构成核小体是染色体结构的最基本单位。核小体的核心是由4种组蛋白(H2A、H2B、H3和H4)各两个分子构成的扁球状8聚体。
蛋白质包括组蛋白与非组蛋白。组蛋白是染色体的结构蛋白,它与DNA组成核小体,含有大量赖氨酸核精氨酸。非组蛋白包括酶类与细胞分裂有关的蛋白等,他们也有可能是染色体的结构成分
由DNA和组蛋白组成的染色体纤维细丝是许多核小体连成的念珠状结构---- 1.由DNA与组蛋白包装成核小体,在组蛋白H1的介导下核小体彼此连接形成直径约10nm的核小体串珠结构,这是染色质包装的一级结构。
2.在有组蛋白H1存在的情况下,由直径10nm的核小体串珠结构螺旋盘绕,每圈6个核小体,形成外径为30nm,内径10nm,螺距11nm的螺线管,这是染色质包装的二级结构。
3.由螺线管进一步螺旋化形成直径为0.4μm的圆筒状结构,称为超螺线管,这是染色质包装的三级结构。
4.这种超螺线管进一步螺旋折叠,形成长2-10μm的染色单体,即染色质包装的四级结构。 4. 简述DNA的一,二,三级结构的特征
DNA一级结构:4种核苷酸的的连接及排列顺序,表示了该DNA分子的化学结构
DNA二级结构:指两条多核苷酸链反向平行盘绕所生成的双螺旋结构
DNA三级结构:指DNA双螺旋进一步扭曲盘绕所形成的特定空间结构 5.原核生物DNA具有哪些不同于真核生物DNA的特征?
原核DNA分子的绝大部分是用来编码蛋白质,只有非常小的一部分不转录,这与真核DNA的冗余现象不同。
存在转录单元
原核生物DNA序列中功能相关的RNA和蛋白质基因,往往丛集在基因组的一个或几个特定部位,形成功能单元或转录单元,它们可被一起转录为含多个mRNA的分子,称为多顺反子mRNA。
有重叠基因
重叠基因,即同一段DNA能携带两种不同蛋白质信息。主要有以下几种情况① 一个基因完全在另一个基因里面 ② 部分重叠 ③ 两个基因只有一个碱基对是重叠的 6简述DNA双螺旋结构及其在现代分子生物学发展中的意义
DNA的双螺旋结构分为右手螺旋A-DNA
B-DNA 左手螺旋Z-DNA
DNA的二级结构是指两条都核苷酸链反向平行盘绕所生成的双螺旋结构
右手螺旋----是由两条反向平行的多核苷酸链围绕同一中心轴构成的。多核苷酸的方向是由核苷酸间的磷酸二酯键的走向决定的
一条由5’到3’另一条由3’到5’。两链上的碱基以氢键相连,嘌呤和嘧啶碱基对层叠与双螺旋内侧,顺着螺旋轴心从上向下看,可见碱基平面与纵轴平面垂直且螺旋的轴心方向穿过氢键的中点。核苷酸的磷酸集团与脱氧核糖在外侧,通过磷酸二酯键相连接而构成DNA分子的骨架。DNA转录时其链板间与有它转录所得的RNA链间形成A-DNA这对基因表达有重要意义
左手螺旋----是右手螺旋的一个补充。Z-DNA调控基因转录模型中,在邻近调控系统中,与调节区相邻的转录区被Z-DNA抑制,只有Z-DNA转变为B-DNA后,转录才得以活化,而在远距离调控系统中,Z-DNA可以通过改变负超螺旋水平,决定聚合酶能否与模板链相结合而调节转录起始活性 7 DNA复制通常采取哪些方式
1 线性DNA双链的复制
将线性复制子转变为环状或多聚分子
在DNA末端形成发夹式结构 使分子没有游离末端
在某种蛋白质的介入下,在真正的末端启动复制
2 环状DNA双链的复制
D―环型 8.简述原核生物DNA的复制特点。
(1)复制的起始
1, DNA双螺旋的解旋
DNA在复制时,其双链首先解开,形成复制叉,这是一个有多种蛋白质和酶参与的复杂过程。(2)
DNA复制的引发 RNA引物的合成
前导链:DNA双链解开为单链后,由引发酶(RNA聚合酶, Primase)在5’ →3’DNA模板上合成一段RNA引物,再由DNA 聚合酶从RNA引物3’端开始合成新的DNA链。然后以此为起点,进入DNA复制的延伸。后随链:后随链的引发过程由引发体(Primosome)来完成。引发体由6种蛋白组成的引发前体(Preprimosome)和引发酶(Primase)组成。引发体催化生成滞后链的RNA引物短链, 再由DNA聚合酶III 作用合成后续DNA,直至遇到下一个引物或冈崎片段为止。在滞后链上所合成的RNA引物非常短,一般只有3-5个核苷酸。而且,在同一种生物体细胞中这些引物都具有相似的序列。
(3) 复制的延伸
冈崎片段与半不连续复制
在原核生物中,DNA 新生链的合成主要由DNA 聚合酶III所催化。当冈崎片段形成后,DNA聚合酶I 通过其5'→3'外切酶活性切除冈崎片段上的RNA引物,同时,利用后一个冈 崎片段作为引物由5'→3'合成DNA。最后两个冈崎片段由DNA连接酶将其接起来,形成完整的DNA滞后链。
(4) 复制的终止
DNA复制的终止依赖与Tus蛋白(Terminus utilization substance,36kD)和DNA链上特殊的重复序列Ter(约22bp)。Tus-ter复合体将阻止DNA解链,等反方向的复制叉到达后停止复制,然后两条链解开。最后,释放子链DNA,依靠拓扑酶将超螺旋结构引入DNA分子。 9真核生物DNA的复制在哪些水平上受到调控
1细胞生活周期水平调控(限制点调控)即决定细胞停留在G1期还是进入S期
2染色体水平调控即决定不同染色体或同一染色体不同部位的复制子按一定顺序在S期起始复制
3复制子水平调控即决定复制的起始与否 10 细胞通过哪几种修复系统对DNA损伤进行修复
重组修复‘
DNA直接修复
11.什么是转座子?可分为哪些种类?
DNA的转座,或称移位,是由可移位因子介导的遗传物质重排现象。转座子(transposon,
Tn)是存在于染色体DNA上可自主复制和移位的基本单位。转座子分为两大类:插入序列(IS)和复合型转座子。
1, 插入序列
插入序列是最简单的转座子,它不含有任何宿主基因。它们是细菌染色体或质粒DNA的正常组成部分。一个细菌细胞常带有少于10个序列。转座子常常被定为到特定的基因中,造成该基因突变。
2, 复合型转座子
复合型转座子是一类带有某些抗药性基因(或其他宿主基因)的转座子,其两翼往往是两个相同或高度同源的IS序列,表明IS序列插入到某个功能基因两端时就可能产生复合转座子。一旦形成复合转座子,IS序列就不能再单独移动,因为它们的功能被修饰了,只能作为复合体移动。大部分情况下,这些转座子的转座能力是由IS序列决定和调节的。
除了末端带有IS序列的复合转座子外,还存在一些没有IS序列的,体积庞大的转座子(5000bp以上)――TnA家族。 12请说说插入序列与复合型转座子之间异同
转座子是存在于染色体DNA上的可自主复制和位移的基本单位。最简单的转座子不含有任何宿主基因而被称为插入序列(IS),他们是细菌染色体或质粒DNA的正常组成部分。她常常被定位到特定的基团中,造成基因突变。、
复合式转座子是一类带有某些抗药性基因的转座子,其两翼是相同的或高度同源的IS序列,且IS序列是不能单独移动的只能作为复合体移动而且IS序列也决定和调节转座子的转座能力。也是有没有IS序列的转座子Tna家族,其两翼带有38bp的倒置重复序列
第三章 生物信息的传递(上)---从DNA到RNA 1,什么是编码链?什么是模版链?
答:与mRNA序列相同的那条DNA链称为编码链(或有意义链);另一条根据碱基互补原则指导mRNA合成DNA链称为模版链(或反义链)。 2,简述RNA转录的概念及其基本过程。
答:RNA转录:以DNA中的一条单链为模板,游离碱基为原料,在DNA依赖的RNA聚合酶催化下合成RNA链的过程。基本过程:模版识别―转录开始―转录延伸―转录终止。 3,大肠杆菌的RNA聚合酶有哪些组成成分?各个亚基的作用如何?
答:大肠杆菌的RNA聚合酶由2个α亚基、一个β亚基、一个β’亚基和一个ω亚基组成的核心酶,加上一个σ亚基后则成为聚合酶全酶。α亚基肯能与核心酶的组装及启动子的识别有关,并参与RNA聚合酶和部分调节因子的相互作用;
β亚基和β’亚基组成了聚合酶的催化中心,β亚基能与模版DNA、新生RNA链及核苷酸底物相结合。 4,什么是封闭复合物、开放复合物以及三元复合物?
答:模版的识别阶段,聚合酶与启动子可逆性结合形成封闭性复合物;封闭性复合物形成后,此时,DNA链仍然处于双链状态,伴随着DNA构象的重大变化,封闭性复合物转化为开放复合物;开放复合物与最初的两个NTP相结合并在这两个核苷酸之间形成磷酸二脂键后即转变成包括RNA聚合酶、DNA和新生RNA的三元复合物。 5,简述σ因子的作用。
答:1,σ因子的作用是负责模版链的选择和转录的起始,它是酶的别构效应物,使酶专一性识别模版上的启动子;2,σ因子可以极大的提高RNA聚合酶对启动子区DNA序列的亲和力;3,σ因子还能使RNA聚合酶与模版DNA上非特异性位点结合常数降低。 6,什么是Pribnow box?它的保守序列是什么?
答:pribnow box是原核生物中中央大约位于转录起始位点上游10bp处的TATA区,所以又称作-10区。它的保守序列是TATAAT。 7,什么是上升突变?什么是下降突变?
答:上升突变:细菌中常见的启动自突变之一,突变导致Pribnow区共同序列的同一性增加;下降突变:细菌中常见的启动子突变之一,突变导致结构基因的转录水平大大降低,如Pribnow区从TATAAT变成AATAAT。 8,简述原核生物和真核生物mRNA的区别。
答:1,原核生物mRNA常以多顺反子的形式存在。真核生物mRNA一般以单顺反子的形式存在;2,原核生物mRNA的转录与翻译一般是偶联的,真核生物转录的mRNA前体则需经转录后加工,加工为成熟的mRNA与蛋白质结合生成信息体后才开始工作;3,原核生物mRNA半寿期很短,一般为几分钟 ,最长只有数小时。真核生物mRNA的半寿期较长, 如胚胎中的mRNA可达数日;4,原核与真核生物mRNA的结构特点也不同,原核生物的mRNA的5’端无帽子结构,3’端没有或只有较短的poly A结构。 9,大肠杆菌的终止子有哪两大类?请分别介绍一下它们的结构特点。
答:大肠杆菌的终止子可以分为不依赖于p因子和依赖于p因子两大类。不依赖于p因子的终止子结构特点:1,位于位点上游一般存在一个富含GC碱基的二重对称区,由这段DNA转录产生的RNA容易形成发卡式结构。2,在终止位点前面有一端由4―8个A组成的序列,所以转录产物的3’端为寡聚U。依赖于p因子的终止子的结构特点: 10,真核生物的原始转录产物必须经过哪些加工才能成为成熟的mRNA,以用作蛋白质合成的模版。
答:1,装上5′端帽子;2,装上3′端多聚A尾巴;3,剪接:将mRNA前体上的居间顺序切除,再将被隔开的蛋白质编码区连接起来。剪接过程是由细胞核小分子RNA参与完成的,被切除的居间顺序形成套索形;4,修饰:mRNA分子内的某些部位常存在N6-甲基腺苷,它是由甲基化酶催化产生的,也是在转录后加工时修饰的。 11,简述Ⅰ、Ⅱ类内含子的剪接特点。
答:Ⅰ类内含子的剪接主要是转酯反应,即剪接反应实际上是发生了两次磷酸二脂键的转移。在I类内含子的切除体系中,第一个转酯反应由一个游离的鸟苷或者鸟苷酸介导,鸟苷或鸟苷酸的3’―OH作为亲核基团攻击内含子5’端的磷酸二脂键,从上游切开RNA链。在第二个转酯反应中,上游外显子的自由3’―OH作为亲核基团攻击内含子3’位核苷酸上的磷酸二脂键,使内含子被完全切开,上下游两个外显子通过新的磷酸二脂键相连。
Ⅱ类内含子主要存在于真核生物的线粒体和叶绿体rRNA基因中,在Ⅱ类内含子切除体系中,转酯反应无需游离鸟苷或鸟苷酸,而是由内含子本身的靠近3’端的腺苷酸2’―OH作为亲核基团攻击内含子5’端的磷酸二脂键,从上游切开RNA链后形成套索结构。再由上游外显子的自由3’―OH作为亲核基团攻击内含子3’位核苷酸上的磷酸二脂键,使得内含子被完全切开,上下游两个内含子通过新的磷酸二脂键相连。 12,什么是RNA编辑?其生物学意义是什么?
答:RNA 编辑是指某些RNA特别是mRNA前体经过插入、删除或取代一些核苷酸残疾等操作,导致DNA所编码的遗传信息的改变,使得经过RNA编辑的mRNA序列发生了不同于模版的DAN的变化。生物学意义:1,校正作用,有些基因在突变的途中丢失的遗传信息可能通过RNA的编辑得以恢复;2,调控翻译,通过编辑可以构建或去除其实密码子和终止密码子,是基因表达调控的一种方式;3,扩充遗传信息,能使基因产物获得心得结构核功能,有利于生物的进化。 13,核酶具有哪些结构特点?其生物学意义是什么?
答:核酶的结构特点:核酶的锤头结构特点是:三个茎区形成局部的双链结构;其中含13个保守的核苷酸,N代表任何核苷酸; 生物学意义:1,核酶是继反转录现象之后对中心法则的有一个重要的修正,说明RNA既是遗传物质又是酶;2,核酶的发现为生命起源的研究提供了新思路―--也许曾经存在以RNA为基础的原始生命。
1,遗传密码具有哪些特性?
答:(1)遗传密码子的连续性
(2).密码子有简并性;级一种以上密码子编码同意种氨基酸。 (3).共有64个密码子,其中有1个起始密码子和3个终止密码子; (4).密码子有通用性与特殊性,即不管是病毒、原核生物还是真核生物密码子的含义都是相同的,但在各位生物中也有例外 (5)密码子与反密码子存在相互作用。 2有几种终止密码子?他们的序列别名是设么?
答:终止密码子有三种终止密码子(UAG、UGA、UAA),他们并不代表氨基酸,不能与tRNA反密码子配对,但能被终止因子和释放因子识别,终止肽链合成。
其中终止密码子UAG叫注石(ochre)密码
UGA叫琥珀(amber)密码
UAA叫蛋白石(opal)密码 3,简述摆动学说?
答:1996年,由Crick根据立体化学原理提出,解释了反向密码子中某些稀有成的配对,以及许多氨基酸有两个以上密码子的问题。假说中提出:在密码子与反密码子配对中,前两对严格遵守碱基配对原则,第三对碱基有一定的自由度,可以摆动因而使某些tRNA可以识别1个以上的密码子一个tRNA能识别的密码子是由反密码子第一个碱基决定的。反密码子第一位为A或C则只能识别一个密码子,若为G或者U则可识别两个密码子。为I可识别
三个密码子。如果几个密码子同时编码一个氨基酸凡是第一,第二位碱基不同的密码子都对应于各自独立的Trna. 4,tRNA在组成及结构上有哪些特点?
答:1、tRNA的三叶草型二级结构
受体臂(acceptor arm)主要由链两端序列碱基配对形成的杆状结构和3’端末配对的3-4个碱基所组成,其3’端的最后3个碱基序列永远是CCA,最后一个碱基的3’或2’自由羟基(―OH)可以被氨酰化。TφC臂是根据3个核苷酸命名的,其中φ表示拟尿嘧啶,是tRNA分子所拥有的不常见核苷酸。反密码子臂是根据位于套索中央的三联反密码子命名的。D臂是根据它含有二氢尿嘧啶(dihydrouracil)命名的。
最常见的tRNA分子有76个碱基,相对分子质量约为2.5×104。不同的tRNA分子可有74-95个核苷酸不等,tRNA分子长度的不同主要是由其中的两条手臂引起的。tRNA的稀有碱基含量非常丰富,约有70余种。每个tRNA分子至少含有2个稀有碱基,最多有19个,多数分布在非配对区,特别是在反密码子3'端邻近部位出现的频率最高,且大多为嘌呤核苷酸。这对于维持反密码子环的稳定性及密码子、反密码子之间的配对是很重要的。
2.tRNA的L形三级结构
酵母和大肠杆菌tRNA的三级结构都呈L形折叠式。这种结构是靠氢键来维持的,tRNA的三级结构与AA- tRNA合成酶的识别有关。受体臂和TφC臂的杆状区域构成了第一个双螺旋,D臂和反密码子臂的杆状区域形成了第二个双螺旋。
tRNA的L形高级结构反映了其生物学功能,因为它上所运载的氨基酸必须靠近位于核糖体大亚基上的多肽合成位点,而它的反密码子必须与小亚基上的mRNA相配对,所以两个不同的功能基团最大限度分离。 5,比较原核与真核的核糖体组成?
答:(1)原核生物核糖体由约2/3的RNA及1/3的蛋白质组成。核糖体是一个致密的核糖核蛋白颗粒,可以解离为两个亚基,每个亚基都含有一个相对分子质量较大的rRNA和许多不同的蛋白质分子。小亚基由21种蛋白质组成,分别用S1??S21表示,大亚基由33种蛋白质组成,分别用L1??L33表示。真核生物细胞核糖体大亚基含有49种蛋白质,小亚基有33种蛋白质。
(2)而真核生物核糖体中RNA占3/5,蛋白质占2/5。同样可以解离为两个亚基,每个亚基都含有一个相对分子质量较大的rRNA和许多不同的蛋白质分子。 6,什么是SD序列?其功能是什么?
答:在mRNA起始密码子上游8-13个核苷酸的地方往往有一段富含嘌呤的序列,称为Shine-Dalgarno序列,简称SD序列。它和16S rRNA 3’端有一个互补的序列,它们互相识别,以保证起始的正确性。 7,核糖体有哪些活性中心?
答:核糖体包括至少5个活性中心,即mRNA结合部位、结合或接受AA- tRNA部位(A位)、结合或接受肽基tRNA的部位、肽基转移部位(P位)及形成肽键的部位(转肽酶中心),此外还有负责肽链延伸的各种延伸因子的结合位点。小亚基上拥有mRNA结合位点,负责对序列特异的识别过程,如起始位点的识别和密码子与反密码子的相互作用。大亚基负责氨基酸及tRNA携带的功能,如肽键的形成、AA- tRNA、肽基- tRNA的结合等。A位、P位、转肽酶中心等主要在大亚基上。 8,真核生物与原核生物在翻译起始过程中有什么区别?
答:(1)原核生物蛋白质合成的起始
蛋白质合成的起始复合物:
30S 核糖体小亚基
fMet-tRNAfMet
50S 核糖体大亚基
合成的起始可分为三步:
1、30S 核糖体小亚基与起始因子IF C1和IF-3相结合,诱发模板mRNA与小亚基结合。
2、由30S 小亚基、起始因子IF C1和IF-3及模板mRNA所组成的复合物立即与GTP-IF-2及fMet-tRNAfMet相结合。反密码子与密码子配对。
3、上述六组分复合物再与50S大亚基结合,水解GTP生成并释放GDP和Pi。释放三个起始因子。
(2)真核因子 功能
eIF2 促进Met-tRNAMet与核糖体40S小亚基结合。 eIF2B
是最早与核糖体40S小亚基结合的促进因子,蛋白质合成反应的正常进行。
eIF4A 具有RNA解旋酶活性,解除mRNA模板的次级结构并使之与40S小亚基结合,形成eIF4F复合物。
eIF4B 与mRNA模板相结合,协助核糖体扫描模板序列,定位AUG。
eIF4E 与mRNA 5'的帽子结构相结合,形成eIF4F复合物。
eIF4G 与eIF4E和poly(A)结合蛋白(PAB)相结合,形成eIF4F复合物。
eIF5 促使多个蛋白因子与40S小亚基解体,以此帮助大小亚基结合形成80核糖体,形成翻译起始复合物。
9,链霉素为什么能预制蛋白质合成?
答:链霉素是一种碱性三糖,干扰fMet-tRNA与核糖体的结合,从而阻止蛋白质合成的正确起始,并导致mRNA的错读。若以poly(U)作模板,则除苯丙氨酸(UUU)外,异亮氨酸(AUU)也会掺入。对链霉素敏感位点在30S亚基上。
10,什么是信号肽?它在序列组成上有哪些特点?有什么功能?
答:(1)信号肽(signal peptide):绝大多数越膜蛋白的N端都具有长度大约在13-36个残基之间的以疏水氨基酸为主的N端信号序列或称信号肽。(2)信号肽的结构特点:1.一般带有10-15个疏水氨基酸2.常常在靠近该序列N-端疏水氨基酸区上游带有1个或数个带正电荷的氨基酸3.在其C-末端靠近蛋白酶切割位点处常常带有数个极性氨基酸,离切割位点最近的那个氨基酸往往带有很短的侧链(Ala或Gly)。(3)信号序列的基本作用:1.通过与SRP的识别和结合,引导核糖体与内质网结合; 2.通过信号序列的疏水性,引导新生肽跨膜转运SRP & DP信号识别颗粒(signal recognition partical,SRP):是一种核糖核酸蛋白复合体,它的作用是识别信号序列,并将核糖体引导到内质网上。停靠蛋白(docking protein,DP,又称SRP受体蛋白):即SRP在内质网膜上的受体蛋白,它能够与结合有信号序列的SRP牢牢地结合,使它在合成蛋白质的核糖体停靠到内质网上来。个极性氨基酸,离切割位点最近的那个氨基酸往往带有很短的侧链(Ala或Gly) 11,简述叶绿体蛋白质的跨膜运输机制?答:叶绿体蛋白质的跨膜运转,叶绿体定位信号肽一般有两个部分,第一部分决定该蛋白质能否进入叶绿体基质,第二部分决定该蛋白能否进入类囊体。在这一模型中,蛋白质运转是在翻译后进行的,在运转过程中没有蛋白质的合成。叶绿体蛋白质运转过程有如下特点:①活性蛋白水解酶位于叶绿体基质内,这是鉴别翻译后运转的指标之一。②叶绿体膜能够特异地与叶绿体蛋白的前体结合。③叶绿体蛋白质前体内可降解序列因植物和蛋白质种类不同而表现出明显的差异。 12,蛋白质有哪些翻译后的加工修饰?
答:肽链刚刚被合成时,大多数是没有功能的。必须经过加工修饰后才能转变为有活性的蛋白。
1. N端的fMet(原核)或Met(真核)的切除
切除信号肽。许多蛋白质都带有15-30个残基的signal peptides,负责指导蛋白质在细胞中的精确定位。
2.二硫键的合成。
3. 3,特定氨基酸的修饰。包括磷酸化。甲基化,酰基化,乙基化,糖基化,羟基化和羧基化等。
4切除新生肽链中的非功能片段。二硫键的形成对稳定蛋白质有重要作用 13,什么是核定位序列?其主要功能是什么?
答:核定位序列(NLS―Nuclear Localization Sequence) NLS可以位于核蛋白的任何部位。蛋白质向核内运输过程需要一系列循环于核内和细胞质的蛋白因子包括核运转因子(Importin)α、β和一个低分子量GTP酶(Ran)参与。由上述三个蛋白组成的复合物停靠在核孔处,依靠Ran GTP酶水解GTP提供的能量进入细胞核,α和β亚基解离,核蛋白与α亚基解离,α和β分别通过核孔复合体回到细胞质中,起始新一轮蛋白质运转。细菌同样能通过定位于蛋白质N-端的信号肽将新合成的多肽运转到其内膜、外膜、双层膜之间或细胞外等不同部位。
联系客服:cand57</}

我要回帖

更多关于 鸡大肠杆菌用什么药 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信