java newCachedjava threadpool 使用线程池使用在什么情况下

线程池的原理以及使用
多线程不管在java还是做android开发都是非常重要的技术点,比如listview每个item都有下载的功能,这时候如果每次下载都去new一个Thread肯定是不合理的,这样对内存和性能肯定是很大的损失,如果能做到就开几个线程,当一个下载完了接着继续下载另一个,而不是单独再去开启线程的话,是不是大大的降低了对内存的使用,而且还提高了程序的性能,恭喜你java已经为我们提供了技术方案,就是使用线程池,
线程的使用在java中占有极其重要的地位,在jdk1.4极其之前的jdk版本中,关于线程池的使用是极其简陋的。在jdk1.5之后这一情况有了很大的改观。Jdk1.5之后加入了java.util.concurrent包,这个包中主要介绍java中线程以及线程池的使用。为我们在开发中处理线程的问题提供了非常大的帮助
二 线程池的作用
线程池作用就是限制中执行线程的数量。(假如有100个任务都去开启线程的话,消耗内存是很大的,而且线程之间时间片切换也需要时间,这样就等于浪费了系统的资源,从而影响了系统的性能)
根据系统的环境情况,可以自动或手动设置线程数量,达到运行的最佳效果;少了浪费了系统资源,多了造成系统拥挤效率不高。用线程池控制线程数量,其他线程排队等候。一个任务执行完毕,再从队列的中取最前面的任务开始执行。若队列中没有等待进程,线程池的这一资源处于等待。当一个新任务需要运行时,如果线程池中有等待的工作线程,就可以开始运行了;否则进入等待队列
三 为什么要用线程池
1.减少了创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务。
2.可以根据系统的承受能力,调整线程池中工作线线程的数目,防止因为消耗过多的内存,而把服务器累趴下(每个线程需要大约1MB内存,线程开的越多,消耗的内存也就越大,最后死机)。
四 线程池的原理
看下下面例子很好的解释了线程池的原理:
ThreadPool.java 是线程池类,线程管理器:创建线程,执行任务,销毁线程,获取线程基本信息
import java.util.LinkedL
import java.util.L
* 线程池类,线程管理器:创建线程,执行任务,销毁线程,获取线程基本信息
public class ThreadPool {
// 线程池中默认线程的个数为5
private static int worker_num = 5;
// 工作线程
private WorkThread[] workT
// 未处理的任务
private static volatile int finished_task = 0;
// 任务队列,作为一个缓冲,List线程不安全
private List taskQueue = new LinkedList();
private static ThreadPool threadP
// 创建具有默认线程个数的线程池
private ThreadPool() {
// 创建线程池,worker_num为线程池中工作线程的个数
private ThreadPool(int worker_num) {
ThreadPool.worker_num = worker_
workThrads = new WorkThread[worker_num];
for (int i = 0; i & worker_ i++) {
workThrads[i] = new WorkThread();
workThrads[i].start();// 开启线程池中的线程
// 单态模式,获得一个默认线程个数的线程池
public static ThreadPool getThreadPool() {
return getThreadPool(ThreadPool.worker_num);
// 单态模式,获得一个指定线程个数的线程池,worker_num(&0)为线程池中工作线程的个数
// worker_num&=0创建默认的工作线程个数
public static ThreadPool getThreadPool(int worker_num1) {
if (worker_num1 &= 0)
worker_num1 = ThreadPool.worker_
if (threadPool == null)
threadPool = new ThreadPool(worker_num1);
return threadP
// 执行任务,其实只是把任务加入任务队列,什么时候执行有线程池管理器觉定
public void execute(Runnable task) {
synchronized (taskQueue) {
taskQueue.add(task);
taskQueue.notify();
// 批量执行任务,其实只是把任务加入任务队列,什么时候执行有线程池管理器觉定
public void execute(Runnable[] task) {
synchronized (taskQueue) {
for (Runnable t : task)
taskQueue.add(t);
taskQueue.notify();
// 批量执行任务,其实只是把任务加入任务队列,什么时候执行有线程池管理器觉定
public void execute(List task) {
synchronized (taskQueue) {
for (Runnable t : task)
taskQueue.add(t);
taskQueue.notify();
// 销毁线程池,该方法保证在所有任务都完成的情况下才销毁所有线程,否则等待任务完成才销毁
public void destroy() {
while (!taskQueue.isEmpty()) {// 如果还有任务没执行完成,就先睡会吧
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
// 工作线程停止工作,且置为null
for (int i = 0; i & worker_ i++) {
workThrads[i].stopWorker();
workThrads[i] =
threadPool=
taskQueue.clear();// 清空任务队列
// 返回工作线程的个数
public int getWorkThreadNumber() {
return worker_
// 返回已完成任务的个数,这里的已完成是只出了任务队列的任务个数,可能该任务并没有实际执行完成
public int getFinishedTasknumber() {
return finished_
// 返回任务队列的长度,即还没处理的任务个数
public int getWaitTasknumber() {
return taskQueue.size();
// 覆盖toString方法,返回线程池信息:工作线程个数和已完成任务个数
public String toString() {
return &WorkThread number:& + worker_num + &
finished task number:&
+ finished_task + &
wait task number:& + getWaitTasknumber();
* 内部类,工作线程
private class WorkThread extends Thread {
// 该工作线程是否有效,用于结束该工作线程
private boolean isRunning =
* 关键所在啊,如果任务队列不空,则取出任务执行,若任务队列空,则等待
public void run() {
Runnable r =
while (isRunning) {// 注意,若线程无效则自然结束run方法,该线程就没用了
synchronized (taskQueue) {
while (isRunning && taskQueue.isEmpty()) {// 队列为空
taskQueue.wait(20);
} catch (InterruptedException e) {
e.printStackTrace();
if (!taskQueue.isEmpty())
r = taskQueue.remove(0);// 取出任务
if (r != null) {
r.run();// 执行任务
finished_task++;
// 停止工作,让该线程自然执行完run方法,自然结束
public void stopWorker() {
isRunning =
Test.java 测试类
public class Test {
public static void main(String[] args) {
// 创建3个线程的线程池
ThreadPool t = ThreadPool.getThreadPool(3);
t.execute(new Runnable[] { new Task(), new Task(), new Task() });
t.execute(new Runnable[] { new Task(), new Task(), new Task() });
System.out.println(t);
t.destroy();// 所有线程都执行完成才destory
System.out.println(t);
static class Task implements Runnable {
private static volatile int i = 1;
public void run() {// 执行任务
System.out.println(&任务 & + (i++) + & 完成&);
其实线程池肯定是需要自己去实现,而java已经为我们提供好了,现在就看下java sdk自带的线程池
里面线程池的顶级接口是Executor,但是严格意义上讲Executor并不是一个线程池,而只是一个执行线程的工具。真正的线程池接口是ExecutorService
现在看下比较重要的几个类
要配置一个线程池是比较复杂的,尤其是对于线程池的原理不是很清楚的情况下,很有可能配置的线程池不是较优的,因此在Executors类里面提供了一些静态工厂,生成一些常用的线程池
1. newSingleThreadExecutor
创建一个单线程的线程池。这个线程池只有一个线程在工作,也就是相当于单线程串行执行所有任务。如果这个唯一的线程因为异常结束,那么会有一个新的线程来替代它。此线程池保证所有任务的执行顺序按照任务的提交顺序执行。
2.newFixedThreadPool
创建固定大小的线程池。每次提交一个任务就创建一个线程,直到线程达到线程池的最大大小。线程池的大小一旦达到最大值就会保持不变,如果某个线程因为执行异常而结束,那么线程池会补充一个新线程。
3. newCachedThreadPool
创建一个可缓存的线程池。如果线程池的大小超过了处理任务所需要的线程,
那么就会回收部分空闲(60秒不执行任务)的线程,当任务数增加时,此线程池又可以智能的添加新线程来处理任务。此线程池不会对线程池大小做限制,线程池大小完全依赖于操作系统(或者说JVM)能够创建的最大线程大小。
4.newScheduledThreadPool
创建一个大小无限的线程池。此线程池支持定时以及周期性执行任务的需求。
五 ThreadPoolExecutor详解
ThreadPoolExecutor的完整构造方法的签名是:ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler)
corePoolSize - 池中所保存的线程数,包括空闲线程。
maximumPoolSize-池中允许的最大线程数。
keepAliveTime - 当线程数大于核心时,此为终止前多余的空闲线程等待新任务的最长时间。
unit - keepAliveTime 参数的时间单位。
workQueue - 执行前用于保持任务的队列。此队列仅保持由 execute方法提交的 Runnable任务。
threadFactory - 执行程序创建新线程时使用的工厂。
handler - 由于超出线程范围和队列容量而使执行被阻塞时所使用的处理程序。
ThreadPoolExecutor是Executors类的底层实现
在JDK帮助文档中,有如此一段话:
&强烈建议程序员使用较为方便的Executors工厂方法Executors.newCachedThreadPool()(无界线程池,可以进行自动线程回收)、Executors.newFixedThreadPool(int)(固定大小线程池)Executors.newSingleThreadExecutor()(单个后台线程)
它们均为大多数使用场景预定义了设置。&
下面介绍一下几个类的:
ExecutorService newFixedThreadPool (int nThreads):固定大小线程池。
可以看到,corePoolSize和maximumPoolSize的大小是一样的(实际上,后面会介绍,如果使用无界queue的话maximumPoolSize参数是没有意义的),keepAliveTime和unit的设值表名什么?-就是该实现不想keep alive!最后的BlockingQueue选择了LinkedBlockingQueue,该queue有一个特点,他是无界的。
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue());
ExecutorService newSingleThreadExecutor():单线程
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue()));
ExecutorService newCachedThreadPool():无界线程池,可以进行自动线程回收
这个实现就有意思了。首先是无界的线程池,所以我们可以发现maximumPoolSize为big big。其次BlockingQueue的选择上使用SynchronousQueue。可能对于该BlockingQueue有些陌生,简单说:该QUEUE中,每个插入操作必须等待另一个线程的对应移除操作
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue());
先从BlockingQueue workQueue这个入参开始说起。在JDK中,其实已经说得很清楚了,一共有三种类型的queue。
所有BlockingQueue 都可用于传输和保持提交的任务。可以使用此队列与池大小进行交互:
如果运行的线程少于 corePoolSize,则 Executor始终首选添加新的线程,而不进行排队。(如果当前运行的线程小于corePoolSize,则任务根本不会存放,添加到queue中,而是直接抄家伙(thread)开始运行)
如果运行的线程等于或多于 corePoolSize,则 Executor始终首选将请求加入队列,而不添加新的线程。
如果无法将请求加入队列,则创建新的线程,除非创建此线程超出 maximumPoolSize,在这种情况下,任务将被拒绝。
queue上的三种类型。
排队有三种通用策略:
直接提交。工作队列的默认选项是 SynchronousQueue,它将任务直接提交给线程而不保持它们。在此,如果不存在可用于立即运行任务的线程,则试图把任务加入队列将失败,因此会构造一个新的线程。此策略可以避免在处理可能具有内部依赖性的请求集时出现锁。直接提交通常要求无界 maximumPoolSizes 以避免拒绝新提交的任务。当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。
无界队列。使用无界队列(例如,不具有预定义容量的 LinkedBlockingQueue)将导致在所有corePoolSize 线程都忙时新任务在队列中等待。这样,创建的线程就不会超过 corePoolSize。(因此,maximumPoolSize的值也就无效了。)当每个任务完全独立于其他任务,即任务执行互不影响时,适合于使用无界队列;例如,在 Web页服务器中。这种排队可用于处理瞬态突发请求,当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。
有界队列。当使用有限的 maximumPoolSizes时,有界队列(如 ArrayBlockingQueue)有助于防止资源耗尽,但是可能较难调整和控制。队列大小和最大池大小可能需要相互折衷:使用大型队列和小型池可以最大限度地降低 CPU 使用率、操作系统资源和上下文切换开销,但是可能导致人工降低吞吐量。如果任务频繁阻塞(例如,如果它们是 I/O边界),则系统可能为超过您许可的更多线程安排时间。使用小型队列通常要求较大的池大小,CPU使用率较高,但是可能遇到不可接受的调度开销,这样也会降低吞吐量。
BlockingQueue的选择。
例子一:使用直接提交策略,也即SynchronousQueue。
首先SynchronousQueue是无界的,也就是说他存数任务的能力是没有限制的,但是由于该Queue本身的特性,在某次添加元素后必须等待其他线程取走后才能继续添加。在这里不是核心线程便是新创建的线程,但是我们试想一样下,下面的场景。
我们使用一下参数构造ThreadPoolExecutor:
1. new ThreadPoolExecutor(
2. 2, 3, 30, TimeUnit.SECONDS,
3. new SynchronousQueue(),
4. new RecorderThreadFactory(&CookieRecorderPool&),
new ThreadPoolExecutor.CallerRunsPolicy());
new ThreadPoolExecutor(
2, 3, 30, TimeUnit.SECONDS,
new SynchronousQueue(),
new RecorderThreadFactory(&CookieRecorderPool&),
new ThreadPoolExecutor.CallerRunsPolicy());
当核心线程已经有2个正在运行.
此时继续来了一个任务(A),根据前面介绍的&如果运行的线程等于或多于 corePoolSize,则Executor始终首选将请求加入队列,而不添加新的线程。&,所以A被添加到queue中。又来了一个任务(B),且核心2个线程还没有忙完,OK,接下来首先尝试1中描述,但是由于使用的SynchronousQueue,所以一定无法加入进去。此时便满足了上面提到的&如果无法将请求加入队列,则创建新的线程,除非创建此线程超出maximumPoolSize,在这种情况下,任务将被拒绝。&,所以必然会新建一个线程来运行这个任务。暂时还可以,但是如果这三个任务都还没完成,连续来了两个任务,第一个添加入queue中,后一个呢?queue中无法插入,而线程数达到了maximumPoolSize,所以只好执行异常策略了。
所以在使用SynchronousQueue通常要求maximumPoolSize是无界的,这样就可以避免上述情况发生(如果希望限制就直接使用有界队列)。对于使用SynchronousQueue的作用jdk中写的很清楚:此策略可以避免在处理可能具有内部依赖性的请求集时出现锁。
什么意思?如果你的任务A1,A2有内部关联,A1需要先运行,那么先提交A1,再提交A2,当使用SynchronousQueue我们可以保证,A1必定先被执行,在A1么有被执行前,A2不可能添加入queue中。
例子二:使用无界队列策略,即LinkedBlockingQueue
这个就拿newFixedThreadPool来说,根据前文提到的规则:
如果运行的线程少于 corePoolSize,则 Executor 始终首选添加新的线程,而不进行排队。那么当任务继续增加,会发生什么呢?
如果运行的线程等于或多于 corePoolSize,则 Executor 始终首选将请求加入队列,而不添加新的线程。OK,此时任务变加入队列之中了,那什么时候才会添加新线程呢?
如果无法将请求加入队列,则创建新的线程,除非创建此线程超出 maximumPoolSize,在这种情况下,任务将被拒绝。这里就很有意思了,可能会出现无法加入队列吗?不像SynchronousQueue那样有其自身的特点,对于无界队列来说,总是可以加入的(资源耗尽,当然另当别论)。换句说,永远也不会触发产生新的线程!corePoolSize大小的线程数会一直运行,忙完当前的,就从队列中拿任务开始运行。所以要防止任务疯长,比如任务运行的实行比较长,而添加任务的速度远远超过处理任务的时间,而且还不断增加,不一会儿就爆了。
例子三:有界队列,使用ArrayBlockingQueue。
这个是最为复杂的使用,所以JDK不推荐使用也有些道理。与上面的相比,最大的特点便是可以防止资源耗尽的情况发生。
举例来说,请看如下构造方法:
1. new ThreadPoolExecutor(
2. 2, 4, 30, TimeUnit.SECONDS,
3. new ArrayBlockingQueue(2),
4. new RecorderThreadFactory(&CookieRecorderPool&),
5. new ThreadPoolExecutor.CallerRunsPolicy());
new ThreadPoolExecutor(
2, 4, 30, TimeUnit.SECONDS,
new ArrayBlockingQueue(2),
new RecorderThreadFactory(&CookieRecorderPool&),
new ThreadPoolExecutor.CallerRunsPolicy());
假设,所有的任务都永远无法执行完。
对于首先来的A,B来说直接运行,接下来,如果来了C,D,他们会被放到queue中,如果接下来再来E,F,则增加线程运行E,F。但是如果再来任务,队列无法再接受了,线程数也到达最大的限制了,所以就会使用拒绝策略来处理。
keepAliveTime
jdk中的解释是:当线程数大于核心时,此为终止前多余的空闲线程等待新任务的最长时间。
有点拗口,其实这个不难理解,在使用了&池&的应用中,大多都有类似的参数需要配置。比如连接池,DBCP中的maxIdle,minIdle参数。
什么意思?接着上面的解释,后来向老板派来的工人始终是&借来的&,俗话说&有借就有还&,但这里的问题就是什么时候还了,如果借来的工人刚完成一个任务就还回去,后来发现任务还有,那岂不是又要去借?这一来一往,老板肯定头也大死了。
合理的策略:既然借了,那就多借一会儿。直到&某一段&时间后,发现再也用不到这些工人时,便可以还回去了。这里的某一段时间便是keepAliveTime的含义,TimeUnit为keepAliveTime值的度量。
RejectedExecutionHandler
另一种情况便是,即使向老板借了工人,但是任务还是继续过来,还是忙不过来,这时整个队伍只好拒绝接受了。
RejectedExecutionHandler接口提供了对于拒绝任务的处理的自定方法的机会。在ThreadPoolExecutor中已经默认包含了4中策略,因为源码非常简单,这里直接贴出来。
CallerRunsPolicy:线程调用运行该任务的 execute 本身。此策略提供简单的反馈控制机制,能够减缓新任务的提交速度。
1. public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2. if (!e.isShutdown()) {
3. r.run();
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
这个策略显然不想放弃执行任务。但是由于池中已经没有任何资源了,那么就直接使用调用该execute的线程本身来执行。
AbortPolicy:处理程序遭到拒绝将抛出运行时RejectedExecutionException
1. public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2. throw new RejectedExecutionException();
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
throw new RejectedExecutionException();
这种策略直接抛出异常,丢弃任务。
DiscardPolicy:不能执行的任务将被删除
1. public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
这种策略和AbortPolicy几乎一样,也是丢弃任务,只不过他不抛出异常。
DiscardOldestPolicy:如果执行程序尚未关闭,则位于工作队列头部的任务将被删除,然后重试执行程序(如果再次失败,则重复此过程)
1. public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2. if (!e.isShutdown()) {
3. e.getQueue().poll();
4. e.execute(r);
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
e.getQueue().poll();
e.execute(r);
该策略就稍微复杂一些,在pool没有关闭的前提下首先丢掉缓存在队列中的最早的任务,然后重新尝试运行该任务。这个策略需要适当小心。
设想:如果其他线程都还在运行,那么新来任务踢掉旧任务,缓存在queue中,再来一个任务又会踢掉queue中最老任务。
keepAliveTime和maximumPoolSize及BlockingQueue的类型均有关系。如果BlockingQueue是无界的,那么永远不会触发maximumPoolSize,自然keepAliveTime也就没有了意义。
反之,如果核心数较小,有界BlockingQueue数值又较小,同时keepAliveTime又设的很小,如果任务频繁,那么系统就会频繁的申请回收线程。
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue());
(window.slotbydup=window.slotbydup || []).push({
id: '2467140',
container: s,
size: '1000,90',
display: 'inlay-fix'
(window.slotbydup=window.slotbydup || []).push({
id: '2467141',
container: s,
size: '1000,90',
display: 'inlay-fix'
(window.slotbydup=window.slotbydup || []).push({
id: '2467142',
container: s,
size: '1000,90',
display: 'inlay-fix'
(window.slotbydup=window.slotbydup || []).push({
id: '2467143',
container: s,
size: '1000,90',
display: 'inlay-fix'
(window.slotbydup=window.slotbydup || []).push({
id: '2467148',
container: s,
size: '1000,90',
display: 'inlay-fix'Java 线程池详解及创建简单实例
字体:[ ] 类型:转载 时间:
这篇文章主要介绍了Java 线程池详解及创建简单实例的相关资料,需要的朋友可以参考下
Java 线程池
最近在改进项目的并发功能,但开发起来磕磕碰碰的。看了好多资料,总算加深了认识。于是打算配合查看源代码,总结并发编程的原理。
准备从用得最多的线程池开始,围绕创建、执行、关闭认识线程池整个生命周期的实现原理。后续再研究原子变量、并发容器、阻塞队列、同步工具、锁等等主题。java.util.concurrent里的并发工具用起来不难,但不能仅仅会用,我们要read the fucking source code,哈哈。顺便说声,我用的JDK是1.8。
Executor框架
Executor是一套线程池管理框架,接口里只有一个方法execute,执行Runnable任务。ExecutorService接口扩展了Executor,添加了线程生命周期的管理,提供任务终止、返回任务结果等方法。AbstractExecutorService实现了ExecutorService,提供例如submit方法的默认实现逻辑。
然后到今天的主题ThreadPoolExecutor,继承了AbstractExecutorService,提供线程池的具体实现。
下面是ThreadPoolExecutor最普通的构造函数,最多有七个参数。具体代码不贴了,只是一些参数校验和设置的语句。
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue&Runnable& workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
corePoolSize是线程池的目标大小,即是线程池刚刚创建起来,还没有任务要执行时的大小。maximumPoolSize是线程池的最大上限。keepAliveTime是线程的存活时间,当线程池内的线程数量大于corePoolSize,超出存活时间的空闲线程就会被回收。unit就不用说了,剩下的三个参数看后文的分析。
预设的定制线程池
ThreadPoolExecutor预设了一些已经定制好的线程池,由Executors里的工厂方法创建。下面分析newSingleThreadExecutor、newFixedThreadPool、newCachedThreadPool的创建参数。
newFixedThreadPool
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue&Runnable&());
newFixedThreadPool的corePoolSize和maximumPoolSize都设置为传入的固定数量,keepAliveTim设置为0。线程池创建后,线程数量将会固定不变,适合需要线程很稳定的场合。
newSingleThreadExecutor
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue&Runnable&()));
newSingleThreadExecutor是线程数量固定为1的newFixedThreadPool版本,保证池内的任务串行。注意到返回的是FinalizableDelegatedExecutorService,来看看源码:
static class FinalizableDelegatedExecutorService
extends DelegatedExecutorService {
FinalizableDelegatedExecutorService(ExecutorService executor) {
super(executor);
protected void finalize() {
super.shutdown();
FinalizableDelegatedExecutorService继承了DelegatedExecutorService,仅仅在gc时增加关闭线程池的操作,再来看看DelegatedExecutorService的源码:
static class DelegatedExecutorService extends AbstractExecutorService {
private final ExecutorS
DelegatedExecutorService(ExecutorService executor) { e = }
public void execute(Runnable command) { e.execute(command); }
public void shutdown() { e.shutdown(); }
public List&Runnable& shutdownNow() { return e.shutdownNow(); }
public boolean isShutdown() { return e.isShutdown(); }
public boolean isTerminated() { return e.isTerminated(); }
代码很简单,DelegatedExecutorService包装了ExecutorService,使其只暴露出ExecutorService的方法,因此不能再配置线程池的参数。本来,线程池创建的参数是可以调整的,ThreadPoolExecutor提供了set方法。使用newSingleThreadExecutor目的是生成单线程串行的线程池,如果还能配置线程池大小,那就没意思了。
Executors还提供了unconfigurableExecutorService方法,将普通线程池包装成不可配置的线程池。如果不想线程池被不明所以的后人修改,可以调用这个方法。
newCachedThreadPool
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue&Runnable&());
newCachedThreadPool生成一个会缓存的线程池,线程数量可以从0到Integer.MAX_VALUE,超时时间为1分钟。线程池用起来的效果是:如果有空闲线程,会复用线程;如果没有空闲线程,会新建线程;如果线程空闲超过1分钟,将会被回收。
newScheduledThreadPool
newScheduledThreadPool将会创建一个可定时执行任务的线程池。这个不打算在本文展开,后续会另开文章细讲。
newCachedThreadPool的线程上限几乎等同于无限,但系统资源是有限的,任务的处理速度总有可能比不上任务的提交速度。因此,可以为ThreadPoolExecutor提供一个阻塞队列来保存因线程不足而等待的Runnable任务,这就是BlockingQueue。
JDK为BlockingQueue提供了几种实现方式,常用的有:
ArrayBlockingQueue:数组结构的阻塞队列
LinkedBlockingQueue:链表结构的阻塞队列
PriorityBlockingQueue:有优先级的阻塞队列
SynchronousQueue:不会存储元素的阻塞队列
newFixedThreadPool和newSingleThreadExecutor在默认情况下使用一个无界的LinkedBlockingQueue。要注意的是,如果任务一直提交,但线程池又不能及时处理,等待队列将会无限制地加长,系统资源总会有消耗殆尽的一刻。所以,推荐使用有界的等待队列,避免资源耗尽。但解决一个问题,又会带来新问题:队列填满之后,再来新任务,这个时候怎么办?后文会介绍如何处理队列饱和。
newCachedThreadPool使用的SynchronousQueue十分有趣,看名称是个队列,但它却不能存储元素。要将一个任务放进队列,必须有另一个线程去接收这个任务,一个进就有一个出,队列不会存储任何东西。因此,SynchronousQueue是一种移交机制,不能算是队列。newCachedThreadPool生成的是一个没有上限的线程池,理论上提交多少任务都可以,使用SynchronousQueue作为等待队列正合适。
当有界的等待队列满了之后,就需要用到饱和策略去处理,ThreadPoolExecutor的饱和策略通过传入RejectedExecutionHandler来实现。如果没有为构造函数传入,将会使用默认的defaultHandler。
private static final RejectedExecutionHandler defaultHandler = new AbortPolicy();
public static class AbortPolicy implements RejectedExecutionHandler {
public AbortPolicy() { }
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
throw new RejectedExecutionException("Task " + r.toString() + " rejected from " + e.toString());
AbortPolicy是默认的实现,直接抛出一个RejectedExecutionException异常,让调用者自己处理。除此之外,还有几种饱和策略,来看一下:
public static class DiscardPolicy implements RejectedExecutionHandler {
public DiscardPolicy() { }
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
DiscardPolicy的rejectedExecution直接是空方法,什么也不干。如果队列满了,后续的任务都抛弃掉。
public static class DiscardOldestPolicy implements RejectedExecutionHandler {
public DiscardOldestPolicy() { }
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
e.getQueue().poll();
e.execute(r);
DiscardOldestPolicy会将等待队列里最旧的任务踢走,让新任务得以执行。
public static class CallerRunsPolicy implements RejectedExecutionHandler {
public CallerRunsPolicy() { }
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
最后一种饱和策略是CallerRunsPolicy,它既不抛弃新任务,也不抛弃旧任务,而是直接在当前线程运行这个任务。当前线程一般就是主线程啊,让主线程运行任务,说不定就阻塞了。如果不是想清楚了整套方案,还是少用这种策略为妙。
ThreadFactory
每当线程池需要创建一个新线程,都是通过线程工厂获取。如果不为ThreadPoolExecutor设定一个线程工厂,就会使用默认的defaultThreadFactory:
public static ThreadFactory defaultThreadFactory() {
return new DefaultThreadFactory();
static class DefaultThreadFactory implements ThreadFactory {
private static final AtomicInteger poolNumber = new AtomicInteger(1);
private final ThreadG
private final AtomicInteger threadNumber = new AtomicInteger(1);
private final String nameP
DefaultThreadFactory() {
SecurityManager s = System.getSecurityManager();
group = (s != null) ? s.getThreadGroup() :
Thread.currentThread().getThreadGroup();
namePrefix = "pool-" +
poolNumber.getAndIncrement() +
"-thread-";
public Thread newThread(Runnable r) {
Thread t = new Thread(group, r,
namePrefix + threadNumber.getAndIncrement(),
if (t.isDaemon())
t.setDaemon(false);
if (t.getPriority() != Thread.NORM_PRIORITY)
t.setPriority(Thread.NORM_PRIORITY);
平时打印线程池里线程的name时,会输出形如pool-1-thread-1之类的名称,就是在这里设置的。这个默认的线程工厂,创建的线程是普通的非守护线程,如果需要定制,实现ThreadFactory后传给ThreadPoolExecutor即可。
不看代码不总结不会知道,光是线程池的创建就可以引出很多学问。别看平时创建线程池是一句代码的事,其实ThreadPoolExecutor提供了很灵活的定制方法。
感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!
您可能感兴趣的文章:
大家感兴趣的内容
12345678910
最近更新的内容
常用在线小工具}

我要回帖

更多关于 cachedthreadpool 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信