从硬件描述为什么要四字节对齐齐和四字节对齐齐

笔试基础知识(19)
&一.什么是字节对齐,为什么要对齐?
现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任
何地址开始,但实际情况是在访问特定类型变量的时候经常在特
定的内存地址访问,这就需要各种类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的
排放,这就是对齐。
对齐的作用和原因:各个硬件平台对存储空间的处理上有很大的不同。一些平台对某些特定类型
的数据只能从某些特定地址开始存取。比如有些架构的CPU在访问
一个没有进行对齐的变量的时候会发生错误,那么在这种架构下编程必须保证字节对齐.其他平台可能没
有这种情况,但是最常见的是如果不按照适合其平台要求对
数据存放进行对齐,会在存取效率上带来损失。比如有些平台每次读都是从偶地址开始,如果一个int
型(假设为32位系统)如果存放在偶地址开始的地方,那
么一个读周期就可以读出这32bit,而如果存放在奇地址开始的地方,就需要2个读周期,并对两次读出
的结果的高低字节进行拼凑才能得到该32bit数
据。显然在读取效率上下降很多。
二.字节对齐对程序的影响:
先让我们看几个例子吧(32bit,x86环境,gcc编译器):
设结构体如下定义:
现在已知32位机器上各种数据类型的长度如下:
char:1(有符号无符号同)
short:2(有符号无符号同)
int:4(有符号无符号同)
long:4(有符号无符号同)
float:4 double:8
那么上面两个结构大小如何呢?
sizeof(strcut A)值为8
sizeof(struct B)的值却是12
结构体A中包含了4字节长度的int一个,1字节长度的char一个和2字节长度的short型数据一个,B也一样
;按理说A,B大小应该都是7字节。
之所以出现上面的结果是因为编译器要对数据成员在空间上进行对齐。上面是按照编译器的默认设置进
行对齐的结果,那么我们是不是可以改变编译器的这种默认对齐设置呢,当然可以.例如:
#pragma pack (2) /*指定按2字节对齐*/
#pragma pack () /*取消指定对齐,恢复缺省对齐*/
sizeof(struct C)值是8。
修改对齐值为1:
#pragma pack (1) /*指定按1字节对齐*/
#pragma pack () /*取消指定对齐,恢复缺省对齐*/
sizeof(struct D)值为7。
后面我们再讲解#pragma pack()的作用.
三.编译器是按照什么样的原则进行对齐的?
先让我们看四个重要的基本概念:
1.数据类型自身的对齐值:
对于char型数据,其自身对齐值为1,对于short型为2,对于int,float,double类型,其自身对齐值
为4,单位字节。
2.结构体或者类的自身对齐值:其成员中自身对齐值最大的那个值。
3.指定对齐值:#pragma pack (value)时的指定对齐值value。
4.数据成员、结构体和类的有效对齐值:自身对齐值和指定对齐值中小的那个值。
有 了这些值,我们就可以很方便的来讨论具体数据结构的成员和其自身的对齐方式。有效对齐值N是最
终用来决定数据存放地址方式的值,最重要。有效对齐N,就是
表示“对齐在N上”,也就是说该数据的&存放起始地址%N=0&.而数据结构中的数据变量都是按定义的先
后顺序来排放的。第一个数据变量的起始地址就是数
据结构的起始地址。结构体的成员变量要对齐排放,结构体本身也要根据自身的有效对齐值圆整(就是
结构体成员变量占用总长度需要是对结构体有效对齐值的整数
倍,结合下面例子理解)。这样就不能理解上面的几个例子的值了。
例子分析:
分析例子B;
假 设B从地址空间0x0000开始排放。该例子中没有定义指定对齐值,在笔者环境下,该值默认为4。第
一个成员变量b的自身对齐值是1,比指定或者默认指定
对齐值4小,所以其有效对齐值为1,所以其存放地址0x0000符合0x.第二个成员变量a,其自身
对齐值为4,所以有效对齐值也为4,
所以只能存放在起始地址为0x7这四个连续的字节空间中,复核0x,且紧靠第一个
变量。第三个变量c,自身对齐值为
2,所以有效对齐值也是2,可以存放在0x9这两个字节空间中,符合0x。所以从
都是B内容。再看数据结构B的自身对齐值为其变量中最大对齐值(这里是b)所以就是4,所以结构体的
有效对齐值也是4。根据结构体圆整的要求,
0x0=10字节,(10+2)%4=0。所以0x0000A到0x000B也为结构体B所占用。故B从0x0000
共有12个字节,sizeof(struct B)=12;其实如果就这一个就来说它已将满足字节对齐了,
因为它的起始地址是0,因此肯定是对齐的,之所以在后面补充2个字节,是因为编译器为了实现结构数组
的存取效率,试想如果我们定义了一个结构B的数组,那
么第一个结构起始地址是0没有问题,但是第二个结构呢?按照数组的定义,数组中所有元素都是紧挨着的
,如果我们不把结构的大小补充为4的整数倍,那么下一
个结构的起始地址将是0x0000A,这显然不能满足结构的地址对齐了,因此我们要把结构补充成有效对齐
大小的整数倍.其实诸如:对于char型数据,其
自身对齐值为1,对于short型为2,对于int,float,double类型,其自身对齐值为4,这些已有类型的自
身对齐值也是基于数组考虑的,只
是因为这些类型的长度已知了,所以他们的自身对齐值也就已知了.
同理,分析上面例子C:
#pragma pack (2) /*指定按2字节对齐*/
#pragma pack () /*取消指定对齐,恢复缺省对齐*/
第 一个变量b的自身对齐值为1,指定对齐值为2,所以,其有效对齐值为1,假设C从0x0000开始,那么
b存放在0x0000,符合0x0000%1=
0;第二个变量,自身对齐值为4,指定对齐值为2,所以有效对齐值为2,所以顺序存放在0x0002、
0x4、0x0005四个连续
字节中,符合0x。第三个变量c的自身对齐值为2,所以有效对齐值为2,顺序存放
在0x7中,符合
0x。所以从0x07共八字节存放的是C的变量。又C的自身对齐值为4,所以C的有效
对齐值为2。又8%2=0,C
只占用0x7的八个字节。所以sizeof(struct C)=8.
四.如何修改编译器的默认对齐值?
1.在VC IDE中,可以这样修改:[Project]|[Settings],c/c++选项卡Category的Code Generation选项
Member Alignment中修改,默认是8字节。
2.在编码时,可以这样动态修改:#pragma pack .注意:是pragma而不是progma.
五.针对字节对齐,我们在编程中如何考虑?
如果在编程的时候要考虑节约空间的话,那么我们只需要假定结构的首地址是0,然后各个变量按照
上面的原则进行排列即可,基本的原则就是把结构中的变量按照
类型大小从小到大声明,尽量减少中间的填补空间.还有一种就是为了以空间换取时间的效率,我们显示
的进行填补空间进行对齐,比如:有一种使用空间换时间做
法是显式的插入reserved成员:
char reserved[3];//使用空间换时间
reserved成员对我们的程序没有什么意义,它只是起到填补空间以达到字节对齐的目的,当然即使不加这
个成员通常编译器也会给我们自动填补对齐,我们自己加上它只是起到显式的提醒作用.
六.字节对齐可能带来的隐患:
代码中关于对齐的隐患,很多是隐式的。比如在强制类型转换的时候。例如:
unsigned int i = 0x;
unsigned char *p=NULL;
unsigned short *p1=NULL;
p1=(unsigned short *)(p+1);
*p1=0x0000;
最后两句代码,从奇数边界去访问unsignedshort型变量,显然不符合对齐的规定。
在x86上,类似的操作只会影响效率,但是在MIPS或者sparc上,可能就是一个error,因为它们要求必须
七.如何查找与字节对齐方面的问题:
如果出现对齐或者赋值问题首先查看
1. 编译器的big little端设置
2. 看这种体系本身是否支持非对齐访问
3. 如果支持看设置了对齐与否,如果没有则看访问时需要加某些特殊的修饰来标志其特殊访问操作。
八.相关文章:转自
ARM下的对齐处理
from DUI0067D_ADS1_2_CompLib
3.13 type qulifiers
有部分摘自ARM编译器文档对齐部分
对齐的使用:
1.__align(num)
这个用于修改最高级别对象的字节边界。在汇编中使用LDRD或者STRD时
就要用到此命令__align(8)进行修饰限制。来保证数据对象是相应对齐。
这个修饰对象的命令最大是8个字节限制,可以让2字节的对象进行4字节
对齐,但是不能让4字节的对象2字节对齐。
__align是存储类修改,他只修饰最高级类型对象不能用于结构或者函数对象。
2.__packed
__packed是进行一字节对齐
1.不能对packed的对象进行对齐
2.所有对象的读写访问都进行非对齐访问
3.float及包含float的结构联合及未用__packed的对象将不能字节对齐
4.__packed对局部整形变量无影响
5.强制由unpacked对象向packed对象转化是未定义,整形指针可以合法定
义为packed。
__packed int* //__packed int 则没有意义
6.对齐或非对齐读写访问带来问题
__packed struct STRUCT_TEST
} ; //定义如下结构此时b的起始地址一定是不对齐的
//在栈中访问b可能有问题,因为栈上数据肯定是对齐访问[from CL]
//将下面变量定义成全局静态不在栈上
static char*
static struct STRUCT_TEST
void Main()
__packed int* //此时定义成__packed来修饰当前q指向为非对齐的数据地址下面的访问则可以
p = (char*)&a;
q = (int*)(p+1);
得到赋值的汇编指令很清楚
ldr r5,0x ; = #0x
[0xe1a00005] mov r0,r5
[0xeb0000b0] bl __rt_uwrite4 //在此处调用一个写4byte的操作函数
[0xe5c10000] strb r0,[r1,#0] //函数进行4次strb操作然后返回保证了数据正确的访问
[0xe1a02420] mov r2,r0,lsr #8
[0xe5c12001] strb r2,[r1,#1]
[0xe1a02820] mov r2,r0,lsr #16
[0xe5c12002] strb r2,[r1,#2]
[0xe1a02c20] mov r2,r0,lsr #24
[0xe5c12003] strb r2,[r1,#3]
[0xe1a0f00e] mov pc,r14
如果q没有加__packed修饰则汇编出来指令是这样直接会导致奇地址处访问失败
[0xe59f2018] ldr r2,0x ; = #0x
[0xe5812000] str r2,[r1,#0]
//这样可以很清楚的看到非对齐访问是如何产生错误的
//以及如何消除非对齐访问带来问题
//也可以看到非对齐访问和对齐访问的指令差异导致效率问题
参考知识库
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
访问:73505次
排名:千里之外
原创:22篇
转载:35篇
评论:32条
(1)(2)(2)(4)(1)(9)(5)(22)(8)(3)(1)注:转载于网络现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定类型变量的时候经常在特定的内存地址访问,这就需要各种类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐。&& & 对齐的作用和原因:各个硬件平台对存储空间的处理上有很大的不同。一些平台对某些特定类型的数据只能从某些特定地址开始存取。比如有些架构的CPU在访问一个没有进行对齐的变量的时候会发生错误,那么在这种架构下编程必须保证字节对齐.其他平台可能没有这种情况,但是最常见的是如果不按照适合其平台要求对数据存放进行对齐,会在存取效率上带来损失。比如有些平台每次读都是从偶地址开始,如果一个int型(假设为32位系统)如果存放在偶地址开始的地方,那么一个读周期就可以读出这32bit,而如果存放在奇地址开始的地方,就需要2个读周期,并对两次读出的结果的高低字节进行拼凑才能得到该32bit数据。显然在读取效率上下降很多。二.字节对齐对程序的影响:先让我们看几个例子吧(32bit,x86环境,gcc编译器):设结构体如下定义:struct A{&& & int & &a;&& &&& &};&& & & & & 4Byte&& & & & |---------|&& & & & | & & a & & |&& & & & |----|----|&& & & & | b -| c -|&& & & & |---------|struct B{&& &&& & int & &a;&& &};&& & & & |--------|&& & & & |b & & & &|&& & & & |--------|&& & & & | & & a & &|&& & & & |--------|&& & & & | c & & & |&& & & & |--------|&现在已知32位机器上各种数据类型的长度如下:char:1 & & (有符号无符号同) & &short:2 & & (有符号无符号同) & &int:4 & & & & (有符号无符号同) & &long:4 & & (有符号无符号同) & &float:4 & & double:8那么上面两个结构大小如何呢?结果是:sizeof(strcut A)值为8sizeof(struct B)的值却是12结构体A中包含了4字节长度的int一个,1字节长度的char一个和2字节长度的short型数据一个,B也一样;按理说A,B大小应该都是7字节。之所以出现上面的结果是因为编译器要对数据成员在空间上进行对齐。上面是按照编译器的默认设置进行对齐的结果,那么我们是不是可以改变编译器的这种默认对齐设置呢,当然可以.例如:#pragma pack (2) /*指定按2字节对齐*/struct B{&& &&& & int & &a;&& &};#pragma pack () /*取消指定对齐,恢复缺省对齐*/sizeof(struct B)值是8。修改对齐值为1:#pragma pack (1) /*指定按1字节对齐*/struct B{&& &&& & int & &a;&& &};#pragma pack () /*取消指定对齐,恢复缺省对齐*/sizeof(struct B)值为7。后面我们再讲解#pragma pack()的作用.三.编译器是按照什么样的原则进行对齐的?先让我们看四个重要的基本概念:1.数据类型自身的对齐值:对于char型数据,其自身对齐值为1,对于short型为2,对于int,float,double类型,其自身对齐值为4,单位字节。2.结构体的自身对齐值:其成员中自身对齐值最大的那个值。3.指定对齐值:#pragma pack (value)时的指定对齐值value。4.数据成员和结构体的有效对齐值:数据成员(数据类型)和数据结构的自身对齐值和指定对齐值中小的那个值。(数据成员对齐了数据结构自然也就对齐了)有了这些值,我们就可以很方便的来讨论具体数据结构的成员和其自身的对齐方式。有效对齐值N是最终用来决定数据存放地址方式的值,最重要。有效对齐N,就是表示“对齐在N上”,也就是说该数据的"存放起始地址%N=0".而数据结构中的数据变量都是按定义的先后顺序来排放的。第一个数据变量的起始地址就是数据结构的起始地址。结构体的成员变量要对齐排放,结构体本身也要根据自身的有效对齐值圆整(就是结构体成员变量占用总长度需要是对结构体有效对齐值的整数倍,结合下面例子理解)。这样就不难理解上面的几个例子的值了。例子分析:分析例子B;struct B{&& &&& & int & &a;&& &};假设B从地址空间0x0000开始排放。该例子中没有定义指定对齐值,在笔者环境下,该值默认为4。第一个成员变量b的自身对齐值是1,比指定或者默认指定对齐值4小,所以其有效对齐值为1,所以其存放地址0x0000符合0x.第二个成员变量a,其自身对齐值为4,所以有效对齐值也为4,所以只能存放在起始地址为0x7这四个连续的字节空间中,复核0x,且紧靠第一个变量。第三个变量c,自身对齐值为 2,所以有效对齐值也是2,可以存放在0x9这两个字节空间中,符合0x。所以从0x9存放的都是B内容。再看数据结构B的自身对齐值为其变量中最大对齐值(这里是b)所以就是4,所以结构体的有效对齐值也是4。根据结构体圆整的要求, 0x0=10字节,(10+2)%4=0。所以0x0000A到0x000B也为结构体B所占用。故B从0xB 共有12个字节,sizeof(struct B)=12;其实如果就这一个就来说它已将满足字节对齐了, 因为它的起始地址是0,因此肯定是对齐的,之所以在后面补充2个字节,是因为编译器为了实现结构数组的存取效率,试想如果我们定义了一个结构B的数组,那么第一个结构起始地址是0没有问题,但是第二个结构呢?按照数组的定义,数组中所有元素都是紧挨着的,如果我们不把结构的大小补充为4的整数倍,那么下一个结构的起始地址将是0x0000A,这显然不能满足结构的地址对齐了,因此我们要把结构补充成有效对齐大小的整数倍.其实诸如:对于char型数据,其自身对齐值为1,对于short型为2,对于int,float,double类型,其自身对齐值为4,这些已有类型的自身对齐值也是基于数组考虑的,只是因为这些类型的长度已知了,所以他们的自身对齐值也就已知了.同理,分析上面例子C:#pragma pack (2) /*指定按2字节对齐*/struct C{&& &&& & int & &a;&& &};#pragma pack () /*取消指定对齐,恢复缺省对齐*/第一个变量b的自身对齐值为1,指定对齐值为2,所以,其有效对齐值为1,假设C从0x0000开始,那么b存放在0x0000,符合0x;第二个变量,自身对齐值为4,指定对齐值为2,所以有效对齐值为2,所以顺序存放在0x3、0x5四个连续字节中,符合0x。第三个变量c的自身对齐值为2,所以有效对齐值为2,顺序存放在0x7中,符合 0x。所以从0x07共八字节存放的是C的变量。又C的自身对齐值为4,所以C的有效对齐值为2。又8%2=0,C 只占用0x7的八个字节。所以sizeof(struct C)=8.四.如何修改编译器的默认对齐值?1.在VC IDE中,可以这样修改:[Project]|[Settings],c/c 选项卡Category的Code Generation选项的Struct Member Alignment中修改,默认是8字节。2.在编码时,可以这样动态修改:#pragma pack .注意:是pragma而不是progma.---------------------------------------------------------· 使用伪指令#pragma pack (n),C编译器将按照n个字节对齐。· 使用伪指令#pragma pack (),取消自定义字节对齐方式。---------------------------------------------------------· __attribute((aligned (n))),让所作用的结构成员对齐在n字节自然边界上。如果结构中有成员的长度大于n,则按照最大成员的长度来对齐。· __attribute__ ((packed)),取消结构在编译过程中的优化对齐,按照实际占用字节数进行对齐。五.针对字节对齐,我们在编程中如何考虑?&& & 如果在编程的时候要考虑节约空间的话,那么我们只需要假定结构的首地址是0,然后各个变量按照上面的原则进行排列即可,基本的原则就是把结构中的变量按照类型大小从小到大声明,尽量减少中间的填补空间.还有一种就是为了以空间换取时间的效率,我们显示的进行填补空间进行对齐,比如:有一种使用空间换时间做法是显式的插入reserved成员:&& & & & &struct A{&& & & & & &&& & & & & &char reserved[3];//使用空间换时间&& & & & & &&& & & & &}reserved成员对我们的程序没有什么意义,它只是起到填补空间以达到字节对齐的目的,当然即使不加这个成员通常编译器也会给我们自动填补对齐,我们自己加上它只是起到显式的提醒作用.六.字节对齐可能带来的隐患:&& & 代码中关于对齐的隐患,很多是隐式的。比如在强制类型转换的时候。例如:unsigned int i = 0x;unsigned char *p=NULL;unsigned short *p1=NULL;p=&i;*p=0x00;p1=(unsigned short *)(p 1);*p1=0x0000;最后两句代码,从奇数边界去访问unsigned short型变量,显然不符合对齐的规定。在x86上,类似的操作只会影响效率,但是在MIPS或者sparc上,可能就是一个error,因为它们要求必须字节对齐.七.如何查找与字节对齐方面的问题:如果出现对齐或者赋值问题首先查看1. 编译器的big little端设置2. 看这种体系本身是否支持非对齐访问3. 如果支持看设置了对齐与否,如果没有则看访问时需要加某些特殊的修饰来标志其特殊访问操作。补充:汇编和ADS的对齐三.在ADS编译器中的实例.&&#pragma pack(push)
//保存对齐状态&&//设定为4字节对齐&&__align(4)
struct test {&& char m1;&&
double m4;
int m3;&&};   &以上结构的大小为16,下面分析其存储情况,首先为m1分配空间,其偏移量为0,满足我们自己设定的对齐方式(4字节对&齐),m1占用1个字节。接着开始为m4分配空间,这时其偏移量为1,需要补足3个字节,这样使偏移量满足为n=4的倍数&(因为sizeof(double)大于n),m4占用8个字节。接着为m3分配空间,这时其偏移量为12,满足为4的倍数,m3占用4个字&节。这时已经为所有成员变量分配了空间,共分配了16个字节,满足为n的倍数。如果把上面的 __align(4) struct test 改为&&__align(16) struct test ,那么我们可以得到结构的大小为24。&&========= 编译器不同在存放结构体方式可能不同,因此对齐也会有不同汇编对齐方式.align n 它的含义就是使得下面的代码按一定规则对齐,.align n 指令的对齐值有两种方案,n 或 2^n ,各种平台最初的汇编器一般都不是gas,采取方案1或2的都很多,gas的目标是取代原来的汇编器,必然要保持和原来汇编器的兼容,因此在gas中如何解释 .align指令会显得有些混乱,原因在于保持兼容。arm-linu是按照2^n的方案对齐的,需要说明的是这个对齐和ld-script里的对齐不同,不是一会事。.align n
它的含义就是使得下面的代码按一定规则对齐,.align n 指令的对齐值有两种方案,n 或 2^n ,各种平台最初的汇编器一般都不是gas,采取方案1或2的都很多,gas的目标是取代原来的汇编器,必然要保持和原来汇编器的兼容,因此在gas中如何解释 .align指令会显得有些混乱,原因在于保持兼容。arm-linu是按照2^n的方案对齐的,需要说明的是这个对齐和ld-script里的对齐不同,不是一会事。ARM嵌入式软件编程经验谈-嵌入式系统技术
&&&&&|&&|&&&|&&|&&|&&|&&|&&|&&|&
作者: 发布时间: 来源:中电网 
ARM系列处理器是 RISC (Reducded InSTructiON Set Computing)处理器。很多基于ARM的高效代码的程序设计策略都源于RISC 处理器。和很多 RISC 处理器一样,ARM 系列处理器的内存访问,也要求数据对齐,即存取“字(Word)”数
ARM系列处理器是 RISC (Reducded InSTructiON Set Computing)处理器。很多基于ARM的高效代码的程序设计策略都源于RISC 处理器。和很多 RISC 处理器一样,ARM 系列处理器的内存访问,也要求数据对齐,即存取“字(Word)”数据时要求四字节对齐,地址的bits[1:0]==0b00;存取“半字(Halfwords)”时要求两字节对齐,地址的bit[0]==0b0;存取“字节(Byte)”数据时要求该数据按其自然尺寸边界(Natural Size Boundary)定位。ARM 编译程序通常将全局变量对齐到自然尺寸边界上,以便通过使用 LDR和 STR 指令有效地存取这些变量。这种内存访问方式与多数 CISC (Complex Instruction Set Computing)体系结构不同,在CISC体系结构下,指令直接存取未对齐的数据。因而,当需要将代码从CISC 体系结构向 ARM 处理器移植时,内存访问的地址对齐问题必须予以注意。在RISC体系结构下,存取未对齐数据无论在代码尺寸或是程序执行效率上,都将付出非常大的代价。本文将从以下几个方面讨论在ARM体系结构下的程序设计问题。未对齐的数据指针C和C++编程标准规定,指向某一数据类型的指针,必须和该类型的数据地址对齐方式一致,所以ARM 编译器期望程序中的 C 指针指向存储器中字对齐地址,因为这可使编译器生成更高效的代码。比如,如果定义一个指向 int 数据类型的指针,用该指针读取一个字,ARM 编译器将使用LDR 指令来完成此操作。如果读取的地址为四的倍数(即在一个字的边界)即能正确读取。但是,如果该地址不是四的倍数,那么,一条 LDR 指令返回一个循环移位结果,而不是执行真正的未对齐字载入。循环移位结果取决于该地址向对于字的边界的偏移量和系统所使用的端序(Endianness)。例如,如果代码要求从指针指向的地址 0x8006 载入数据,即要载入 0x7、0x8008 和 0x8009 四字节的内容。但是,在 ARM 处理器上,这个存取操作载入了0x5、0x8006 和 0x8007 字节的内容。这就是在未对齐的地址上使用指针存取所得到的循环移位结果。因而,如果想将指针定义到一个指定地址(即该地址为非自然边界对齐),那么在定义该指针时,必须使用 __packed 限定符来定义指针: 例如,__packed int * // 指针指向一个非字对其内存地址使用了_packed限定符限定之后,ARM 编译器将产生字节存取命令(LDRB或STRB指令)来存取内存,这样就不必考虑指针对齐问题。所生成的代码是字节存取的一个序列,或者取决于编译选项、跟变量对齐相关的移位和屏蔽。但这会导致系统性能和代码密度的损失。值得注意的是,不能使用 __packed 限定的指针来存取存储器映射的外围寄存器,因为 ARM 编译程序可使用多个存储器存取来获取数据。因而,可能对实际存取地址附近的位置进行存取,而这些附近的位置可能对应于其它外部寄存器。当使用了位字段(Bitfield)时, ARM 程序将访问整个结构体,而非指定字段。编译器的缺省行为多数嵌入式应用程序最初都是在原型环境下开发的。无论什么样的原型环境的资源与最终产品环境都是有差异的。因此,考虑如何将嵌入式应用程序从其所依赖的开发工具或调试环境中移植到在目标硬件上独立运行是非常重要的。开始编写嵌入式应用程序时,开发者可能并不清楚目标硬件的具体规格。如,目标系统使用了什么样的外围设备、存储器映射情况甚至不能确定处理器的型号。 为在了解这些详细信息前能够继续软件的开发,RVCT 工具提供了很多默认的操作,使用户能编译和调试与目标系统无关的应用程序代码。下面详细介绍介绍这些编译选项,只有深入了解这些编译选项设置,才能使开发更顺利的进行。调整 C 库使其适应目标硬件默认情况下,C 库利用semihostig机制来提供设备驱动级的功能,使得主机主机能够用作输入和输出设备。这种机制对于嵌入式开发十分有用,因为用于开发的硬件系统通常没有最终系统的输入和输出设备。最简单的函数重定向的例子就是用户希望fputc()函数能够将字符从目标系统的串口输出而不是在调试时,将字符从调试器的控制台输出。这时就需要重新实现该函数。下面的例子将fputc() 的输入字符参数重新指向一连续输出函数 sendchar(),将定该例在一个独立的源文件中实现的。这样,fputc() 在依目标而定的输出和 C 库标准输出函数之间充当一个抽象层。图1 C库函数重定向例子程序的代码如下所示。extern void sendchar(char *ch);int fputc(int ch, FILE *f){?? /* e.g. write a character to an UART */char tempch =sendchar(&tempch);}映象文件存储器映射调整映像由域(Regions)和输出段(Output Sections)组成。每个域可以有不同的加载地址和执行地址。分散加载可以更加方便准确的指定映像存储器映射,为映像组件分组和布局提供了全面控制。它能够描述由载入时和执行时分散在存储器映射中的多个区组成的复杂映像映射。虽然,分散加载可以用于简单映像,但它通常仅用于具有复杂存储器映射的映像。要构建映像的存储器映射,必须向armlink 提供以下信息:?? 分组信息? 决定如何将各输入段组织成相应的输出段和域;
【】【】【
※ 相关信息
无相关信息
※ 其他信息
访问数:&|&
数据加载中..}

我要回帖

更多关于 字节对齐规则 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信