Frequency ratio模型 在arcgis模型构建器教程里具体怎么实现??

温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!&&|&&
出售矢量地图,全国乡镇界线
LOFTER精选
网易考拉推荐
用微信&&“扫一扫”
将文章分享到朋友圈。
用易信&&“扫一扫”
将文章分享到朋友圈。
本文转载自Fransico
&然后在程序中添加using&IronPython.Hosting和using&Microsoft.Scripting.Hosting。我们还需要把python文件添加至工程中,需要注意的是,要把Python文件的属性“复制到输出目录”设置成“始终复制”。&这样,就可以在程序中调用python脚本了。ScriptRuntime&pyRuntime&=&Python.CreateRuntime();dynamic&obj&=&pyRuntime.UseFile("Ratio_divided.py");obj.Ratio_divided();需要注意的是Python脚本中不能使用ArcPy包,否则就会出现如下的错误:没有arcpy的模型包。&这样,就可以在程序中调用python脚本了。ScriptRuntime&pyRuntime&=&Python.CreateRuntime();dynamic&obj&=&pyRuntime.UseFile("Ratio_divided.py");obj.Ratio_divided();需要注意的是Python脚本中不能使用ArcPy包,否则就会出现如下的错误:没有arcpy的模型包。&这主要是因为IronPython不支持ArcPy,因为ArcPy是基于开发的,而IronPython不支持cpython,当然国外也有人用(一个IronPython)在IronPython中使用的包,但是其对ArcPy支持不是很好。详见3 Python与ArcGIS&Engine集成的几种方式对比前面介绍了Python与ArcGIS&Engine集成的三种方法,现在对这三种方法进行一个比较,见下表。开发难宜资源应用范围推荐利用Python调用AO,编写脚本☆☆☆☆☆☆☆☆☆☆☆利用Python调用AO,创建GUI程序☆☆☆☆☆☆在AE程序中调用Python☆☆☆☆☆☆☆☆☆python脚本特别适合一些批处理操作,如果用户要处理空间数据,而又没有ArcGIS&Desktop,只有ArcGIS&Engine,利用python调用AO写个小脚本,会非常方便,效率也会很不错。当然如果装了Desktop,可以导入ArcPy站点包,那就会更方便了。利用Python调用AO,创建GUI程序,也是一种可以的方法,但是个人很不推荐,因为comtypes把AO类型库转换后,AO对象的事件很不好操作,当然如果你很爱折腾,又很闲的话,也可以试试这种方法。而在AE程序中调用Python的话,在某些情况的话也是很不错的选择,比如已经有一个写好的python文件,而里面有个功能正是我们想要的,我们当然要发挥“拿来主义”了。但是我们可以这样想一下,无论是采用.NET还是JAVA或是C++都能很方便的调用AO,那我们为什么还要舍近求远,在Python中使用AO,然后再调用Python呢?所以个人觉得在ArcGIS中利用python的最好方式就是编写python脚本,这样便能充分python的优势:简洁、高效。
阅读(845)|
用微信&&“扫一扫”
将文章分享到朋友圈。
用易信&&“扫一扫”
将文章分享到朋友圈。
历史上的今天
在LOFTER的更多文章
loftPermalink:'',
id:'fks_',
blogTitle:'【转载】Python与ArcGIS Engine的集成',
blogAbstract:'
{elseif x.moveFrom=='iphone'}
{elseif x.moveFrom=='android'}
{elseif x.moveFrom=='mobile'}
${a.selfIntro|escape}{if great260}${suplement}{/if}
{list a as x}
推荐过这篇日志的人:
{list a as x}
{if !!b&&b.length>0}
他们还推荐了:
{list b as y}
转载记录:
{list d as x}
{list a as x}
{list a as x}
{list a as x}
{list a as x}
{if x_index>4}{break}{/if}
${fn2(x.publishTime,'yyyy-MM-dd HH:mm:ss')}
{list a as x}
{if !!(blogDetail.preBlogPermalink)}
{if !!(blogDetail.nextBlogPermalink)}
{list a as x}
{if defined('newslist')&&newslist.length>0}
{list newslist as x}
{if x_index>7}{break}{/if}
{list a as x}
{var first_option =}
{list x.voteDetailList as voteToOption}
{if voteToOption==1}
{if first_option==false},{/if}&&“${b[voteToOption_index]}”&&
{if (x.role!="-1") },“我是${c[x.role]}”&&{/if}
&&&&&&&&${fn1(x.voteTime)}
{if x.userName==''}{/if}
网易公司版权所有&&
{list x.l as y}
{if defined('wl')}
{list wl as x}{/list}ArcGIS Help 10.2 - 信息模型数据字典本主题仅适用于 ArcGIS for Desktop Standard 和 ArcGIS for Desktop Advanced。
本主题仅适用于 ArcGIS for Desktop Standard 和 ArcGIS for Desktop Advanced。
在宗地结构上启用地方政府信息模型时,将反映地方政府宗地维护的编辑要求的宗地类型、属性和域添加至宗地结构表中。除了宗地结构要素类和表的预定义系统属性之外,还需要添加这些属性和域。已对一些预定义系统属性进行重命名。例如,宗地表上的名称系统属性具有别名,对于征税宗地子图层,别名为宗地标识号;对于地块和单元子图层,别名为地块或单元编号。
宗地表上的属性和域
在一系列图层中按宗地类型显示宗地结构图层中的宗地。所有宗地图层都引用宗地结构宗地表。在启用宗地结构的“地方政府信息模型”并根据图层的宗地类型打开和关闭宗地结构之后,属性和域会添加到宗地表中。启用了“地方政府信息模型”的宗地结构宗地表属性字段别名系统字段说明属性域可见性
如果宗地连接到宗地结构,则为真
宗地的关联测量图的 ID
宗地标识号、PLSS 名称、共管公寓子类名称、地块或单元编号、产权负担名称是
宗地名称字段
为所有宗地图层类型打开
宗地类型是
用于添加子类型
lrParcelType,按模型添加为所有宗地图层类型打开
StatedArea
根据记录编译是
宗地面的计划区
为所有宗地图层类型打开
如果通过几何生成宗地尺寸,则为真
为“历史宗地”和“征税宗地”图层打开
Historical
如果宗地为历史宗地,则为真
为“历史宗地”图层打开
SystemStartDate
创建面的数据库事务日期
为“历史宗地”打开
SystemEndDate
停用面的数据库事务日期
为“历史宗地”打开
LegalStartDate
合法开始日期是
创建宗地的有效事务的日期
为历史宗地、子类和共管公寓、征税宗地、地块和单位以及产权负担图层打开
LegalEndDate
合法结束日期是
停用宗地的有效事务的日期
为历史宗地、子类和共管公寓、征税宗地、地块和单位以及产权负担图层打开
当宗地是未连接的宗地组的一部分时显示的分组 ID
宗地的精度类别
为所有宗地图层类型打开
在连接过程中自动计算
为所有宗地图层类型打开
在连接过程中自动计算
为所有宗地图层类型打开
如果宗地为未闭合的面,则为真
MiscloseRatio
宗地未闭合距离与宗地周长之比
为所有宗地图层类型打开
Misclose Bearing
闭合宗地所需的方位角
为所有宗地图层类型打开
Construction
如果宗地为构造宗地,则为真
ShapeStdErrorE
结构校正后宗地形状中向东的偏移/变形
为所有宗地图层类型打开
ShapeStdErrorN
结构校正后宗地形状中向东的偏移/变形
为所有宗地图层类型打开
BacksightBearing
使用内角而非方位角来定义宗地时显示
关闭ConstructionData是宗地构造关闭ConveyanceType子类或共管公寓类型否,按模型添加同时转让的类型lrSimConType为“子类和共管公寓”图层打开转让指示符子类或共管公寓编号否,按模型添加子类或共管公寓编号为“子类和共管公寓”图层打开SimConDivType地块或单元类型否,按模型添加地块类型lrSimConDivType为“地块和单元”图层打开块指示符块编号否,按模型添加块编号为“地块和单元”图层打开EncumbranceType产权负担类型否,按模型添加产权负担的类型lrEncumbranceType为“产权负担”图层打开SeparatedRightType否,按模型添加分离权的类型关闭HistoryType宗地停用原因否,按模型添加历史宗地的类型lrHistoryType为“历史宗地”图层打开FloorDesignator楼层编号否,按模型添加建筑物楼层编号lrFloorDesignator为“地块和单元”图层打开PrincipalMeridian主经线否,按模型添加PLSS 主经线lrPLSSPrincipalMeridian为“地籍框架”图层打开TownshipNumber镇区编号否,按模型添加PLSS 镇区编号为“地籍框架”图层打开TownshipFraction镇区部分否,按模型添加PLSS 镇区部分为“地籍框架”图层打开TownshipDirection镇区方向否,按模型添加PLSS 镇区方向lrPLSSDirection为“地籍框架”图层打开RangeNumber变程编号否,按模型添加PLSS 变程编号为“地籍框架”图层打开RangeFraction变程分数否,按模型添加PLSS 变程分数为“地籍框架”图层打开RangeDirection变程方向否,按模型添加PLSS 变程方向lrPLSSDirection为“地籍框架”图层打开TownshipDupCode重复的镇区否,按模型添加PLSS 重复的镇区为“地籍框架”图层打开PLSSIDPLSS 标识号否,按模型添加PLSS 标识号为“地籍框架”图层打开FirstDivisionDupCode重复的平方英里土地否,按模型添加PLSS 重复的平方英里土地为“地籍框架”图层打开FirstDivisionType1 平方英里土地类型否,按模型添加PLSS 1 平方英里土地类型lrPLSSFirstDivisionType为“地籍框架”图层打开SecondDivisionNumberer1/4 平方英里土地编号否,按模型添加PLSS 1/4 平方英里土地编号为“地籍框架”图层打开SecondDivisionSuffix1/4 平方英里土地后缀否,按模型添加PLSS 1/4 平方英里土地后缀为“地籍框架”图层打开SecondDivisionType1/4 平方英里土地类型否,按模型添加PLSS 1/4 平方英里土地类型lrPLSSSecondDivisionType为“地籍框架”图层打开SpecialSurveyNumber特殊测量编号否,按模型添加PLSS 特殊测量编号关闭SpecialSurveySuffix特殊测量后缀否,按模型添加PLSS 特殊测量后缀关闭SpecialSurveyType特殊测量类型否,按模型添加PLSS 特殊测量类型lrPLSSSpecialSurveyType关闭SpecialSurveyNotes特殊测量注释否,按模型添加PLSS 特殊测量注释关闭创建者否,按模型添加编辑器追踪创建者为所有宗地图层类型打开修改者否,按模型添加编辑器追踪修改者为所有宗地图层类型打开修改日期否,按模型添加编辑器追踪修改日期为所有宗地图层类型打开提示:想要打开和关闭宗地图层的属性,先右键单击您想要管理属性的宗地图层,然后单击属性。在图层属性 对话框的字段选项卡下管理属性可见性。
线表的属性不会向线表添加属性和域。但是,却关闭了某些系统属性。在宗地结构图层中,通过显示线。启用了“地方政府信息模型”的宗地结构线表
Calculated
如果通过形状几何生成尺寸,则为真
包含此线的宗地的 ID
宗地导线中的线的顺序号
FromPointID
线起点的 ID
线终点的 ID
包含此线的宗地的类型
线的类别,例如连接线或径向线
CenterPointID
曲线中心点的 ID
Historical
如果线的关联宗地为历史宗地,则为真
Radial Bearing
由曲线生成的径向线的方位角
Tangent Bearing
曲线切线的方位角
Line Parameters
用于判定线为曲线还是直线
线的精度类别
ComputedMinusObserved
通过最小二乘平差重新计算的线形状的距离与记录距离之间的差值
Internal Angle
使用内角而非方位角来定义宗地导线时显示
Reference Object
使用内角而非方位角来定义宗地导线时显示
系统管理的保留字段,用于存储大于 180 度的曲线
如果线尺寸注记是重复的重叠线,则为真(将隐藏重复的标注。)
SystemStartDate
创建线的数据库事务日期
SystemEndDate
停用线的数据库事务日期
LegalStartDate
创建线的有效事务日期
LegalEndDate
停用线的有效事务日期
DensifyType
用于存储自然边界的系统管理的字段
提示:想要打开和关闭线图层的属性,先右键单击线图层,然后单击属性。在图层属性 对话框的字段选项卡下管理属性可见性。点表的属性不会向点表添加属性和域。但是,却关闭了某些系统属性。在宗地结构图层中,通过点类别显示点。启用了“地方政府信息模型”的宗地结构点表
X 坐标;已在结构校正中进行校正
Y 坐标;已在结构校正中进行校正
用于添加点子类型
系统管理的点类型;例如中心点
相关联的控制点名称
相应控制点(如果存在)的名称
Historical
如果共享同一点的所有线为历史线,则为真
SystemStartDate
创建点的数据库事务日期
SystemEndDate
停用点的数据库事务日期
LegalStartDate
创建点的有效事务日期
LegalEndDate
停用点的有效事务的日期
CenterPoint
如果此点为中心点,则为真
结构校正产生的最大北移值
结构校正产生的最大东移值
提示:想要打开和关闭点图层的属性,先右键单击点图层,然后单击属性。在图层属性 对话框的字段选项卡下管理属性可见性。控制表的属性将向控制表添加属性和域。在宗地结构图层中,通过控制类型显示控制点。启用了“地方政府信息模型”的宗地结构控制表
别名系统字段
属性域可见性
X 坐标;保持固定
Y 坐标;保持固定
Z 坐标;保持固定
控制点名称;如果未指定名称,将自动填充
相关联的网络“点 ID”是
对应的宗地结构点(需要将控制点连接到宗地结构点方可在结构校正中使用。)
AccuracyXY
水平位置精度;仅限元数据
垂直精度;仅限元数据
SurveyDate
测量日期是
测量/创建控制点的日期
如果控制点处于活动状态并且可以在结构校正中使用,则为真
控制类型是
用于添加控制子类型
lrControlType打开
PointType拐角点类型否,按模型添加拐角点的类型lrCornerType打开PointLabel拐角点标注否,按模型添加点标注打开Local1本地标注否,按模型添加本地点标注打开MonumentType界标类型否,按模型添加界标类型lrMonumentType打开Status否,按模型添加点的状态打开RelyPLSS 点可靠性否,按模型添加点的可靠性打开AccuracyComments精度注释否,按模型添加注释打开CoordinateProcedure坐标计算程序否,按模型添加坐标计算程序lrCoordinateProcedure打开CoordinateMethod坐标采集方法否,按模型添加采集方法lrCoordinateMehod打开CreatedBy创建者否,按模型添加编辑器追踪创建者打开ModifiedBy修改者否,按模型添加编辑器追踪修改者打开ModificationDate修改日期否,按模型添加编辑器追踪修改日期打开CreationDate创建日期否,按模型添加编辑器追踪创建日期打开提示:想要打开和关闭控制图层的属性,先右键单击控制图层,然后单击属性。在图层属性 对话框的字段选项卡下管理属性可见性。线点表的属性线点是位于相邻宗地边界上但未对宗地边界进行分割的宗地点。将线点限制在相邻宗地边界之上,并且尽可能减少宗地结构中空隙和狭长面的出现。不会向线点表添加属性和域。启用了“地方政府信息模型”的宗地结构线点表
别名系统字段
包含线点所处边界线的宗地的 ID
FromPointID
线点所处边界线的起点
线点所处边界线的终点
LinePointID
作为线点的宗地点 ID
打开FlexPoint是如果将相邻宗地线移至或弯至线点而不是将线点移至相邻宗地线,则线点就是拐点打开提示:想要打开和关闭线点图层的属性,先右键单击线点图层,然后单击属性。在图层属性 对话框的字段选项卡下管理属性可见性。TaxParcelCondo 表将添加 TaxParcelCondo 表,并且 TaxParcelCondo 表与宗地表相关。TaxParcelCondo 表用于维护公寓。 通过“地方政府信息模型”添加了 TaxParcelCondo 表
适用版本LOWPARCELID最小宗地标识号 在宗地结构中,最小的征税宗地标识号用于唯一标识公寓面打开PARCELID宗地标识号 征税宗地标识号用于唯一标识征税宗地打开SRCREF文档索引编号在记录转让时,分配到转让的索引编号打开 BLDNGDSGNTR建筑物编号 分配到征税宗地标识号的建筑物编号打开 UNITDSGNTR单元编号 分配到征税宗地标识号的单元编号打开 LASTUPDATE上次更新日期 维护数据库中上次更新的日期打开 LASTEDITOR上一个编辑者 上次更新数据的用户打开 FLOORDSGNTR楼层编号分配到征税宗地标识号的楼层编号打开 属性域添加以下属性域: 通过“地方政府信息模型”添加了属性域域名称说明 所使用的表所使用的字段lrControlType 宗地结构控制点源类型控制表控制类型lrCoordinateMethod 用于量化坐标值的方法控制表坐标采集方法lrCoordinateProcedure 用于收集并分配给坐标值的程序控制表坐标计算程序lrCornerType 控制拐角的类型控制表拐角点类型lrEncumbranceType 产权负担或地役权的类型宗地表,产权负担图层产权负担类型lrHistoryType 停用征税宗地的原因宗地表,历史宗地图层宗地停用原因lrMonumentType 在字段中找到的界标类型控制表界标类型lrParcelType 在结构中管理的宗地类型宗地表,所有宗地图层宗地类型lrPLSSDirection PLSS 的方向编码宗地表,地籍框架图层镇区方向,变程方向lrPLSSFirstDivisionType PLSS 第一个分区类型,通常称为 1 平方英里土地宗地表,地籍框架图层1 平方英里土地类型lrPLSSPrincipalMeridian PLSS 主经线的代码和名称宗地表,地籍框架图层主经线lrPLSSSecondDivisionType PLSS 第二个分区类型,通常称为 1/4 平方英里土地宗地表,地籍框架图层1/4 平方英里土地类型lrPLSSSpecialSurvey 联邦特殊测量的类型宗地表,地籍框架图层特殊测量类型lrSimConDivType 同时转让分割的类型宗地表,地块和单元图层地块或单元类型lrSimConType 同时转让的类型宗地表,子类和共管公寓图层子类或共管公寓类型lrYesNoYES 或 NO未使用未使用 提示:要了解有关每个域代码值的详细信息,先右键单击包含宗地结构的地理数据库,然后单击属性。在数据库属性 对话框的域选项卡下,显示通过“地方政府信息模型”添加的域。lrParceltype 域lrParceltype 域存储“地方政府信息模型”所使用的宗地类型。使用的宗地类型如下:“地方政府信息模型”中的宗地类型类型说明1PLSS 镇2PLSS 1 平方英里的土地3PLSS 1/4 平方英里的土地4特殊测量5同时转让6转让分割7征税8所有权9产权负担10分离权11其他地统计分析在ArcGIS和IDRISI中实现特点的讨论_图文_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
地统计分析在ArcGIS和IDRISI中实现特点的讨论
上传于||文档简介
&&c​G​I​S​和​I​D​R​I​S​I​两​个​软​件​实​现​了​将​地​统​计​分​析​功​能​整​合​到​G​I​S​中​。​但​是​它​们​的​功​能​和​操​作​性​如​何​,​还​没​有​做​过​较​详​尽​的​比​较​讨​论​。
阅读已结束,如果下载本文需要使用3下载券
想免费下载本文?
定制HR最喜欢的简历
下载文档到电脑,查找使用更方便
还剩4页未读,继续阅读
定制HR最喜欢的简历
你可能喜欢[转载]景观分析工具:arcgis中patch&analyst模块
模块下载地址:
模块安装步骤:
1. First uninstall any existing versions of Patch Analyst and
then run the setup program (e.g., pa_Setup_v93.exe).
2. Open ArcMap, but note that on Windows 7
and Vista you must right click on the ArcMap icon, and "Run as
Admin " in order to see the dlls and finish the final install
steps, even if you are logged on to the computer as Admin.
You probably also need to be logged on as Admin on Win XP.
3. Click on "Tools and select "Customize".
4. Click on the "Commands" tab.
5. Find "Menus" in the 'Categories' column and click on it.
6. - Click the "Add from file" button at the bottom.
- Navigate to the directory where Patch Analyst is stored (usually
FilesArcGISextensionsPatchAnalyst).
- Select "PatchAnalystv93.dll".
- A window will appear showing the objects added. Click "OK".
- Repeat for PatchGridv93.dll
7. In the 'Commands' column (right hand side) click and drag and
drop "Patch" (or "Patch Grid") onto the menu bar.
- When you move the item to an acceptable location (e.g. between
Windows and Help menu items, a vertical bar will appear)
8. Open the tutoria data set map. Under File...Open, navigate to
C:Patch AnalystSamples and select Patch Analyst
Sample Datav93.mxd
(按:大概由于现在所分析的数据空间尺度过大,导致fragstats运行无法分配内存,提示“cannot allocate
memory”,尝试使用arcgis的景观分析模块,正在探索中……)
什么是ARCGIS & 斑块分析师?
斑块分析师是ArcGIS
&软件系统扩展模块,有利于景观斑块的空间分析与建模与修补程序相关的属性。它是用来进行空间格局分析,常栖息地建模,生物多样性保护和森林管理的支持。该方案包括能力的特点补丁模式和分配能力补丁的价值观基础上的补丁属性(例如立场年龄,林冠组成和冠封闭组合)的组合。它有两个版本,斑块和栅格斑块;后者是栅格分析,而前者是用于多边形层。
Patch analyst is an extension to the ArcGIS&software
system that facilitates the spatial analysis of landscape patches
and the modeling of attributes associated with patches. It is used
for spatial pattern analysis, often in support of habitat modeling,
biodiversity conservation and forest management. The program
includes capabilities to characterize patch pattern and the ability
to assign patch values based on combinations of patch attributes
(e.g. combinations of stand age, overstory composition and crown
closure). It is available in two versions, Patch and P
the former is used with polygon layers while the latter is for
raster (grid) layers.
它如何工作的?
&一旦程序下载,并添加到ArcGIS工具栏,用户只需点击修补或修补网格显示下拉菜单一拉。如果相关数据(例如,栅格文件对应于Patch
Grid)不是当前地图的一部分,有关数据类型的属性选项将不可用,并且在菜单上显示为灰色。
Once the program is downloaded and added to the
ArcGIS toolbar the user simply clicks on Patch or
Patch Grid to reveal a pull down menu. If relevant data (e.g. a
raster file for Patch Grid) is not a part of the current map,
options pertaining to that data type will be unavailable and appear
faded on the menu.
&各种可用的操作,允许用户:按字段dissolve(簇)和重分类多边形或栅格,相交(合并)层,建立核心领域,六边形区域,添加或刷新面积和周长字段,从FRI字符串字段创建变量以及对图层中的数据进行各种空间统计参数。
A variety of available operations allow the user to:
dissolve (clump) and re-class polygons or rasters by fields,
intersect (combine) layers, create core areas, make hexagon
regions, add or refresh area and perimeter fields, make variables
from FRI string fields as well as calculate a variety of spatial
statistics on the data in the layers.
&栅格和多边形图层的空间的的计算是不同的,因此是一个“空间统计”的实现要涉及patch analyst
和 patch grid两个模块。
The Spatial Analysis statistics for raster and
polygon layers are calculated differently and therefore there is a
‘Spatial Statistics’ selection on both the Patch Analyst and Patch
Grid menus.
&某些功能有所不同,取决于是否多边形或栅格文件。例如,patch模块的Dissolve功能直接使用了ArcGIS
&的Dissolve工具,而在栅格模块中是将相邻类似像元合并在一起。。
Some functions differ depending on whether the layer
is a polygon or raster file. For example, the dissolve function in
Patch Analyst uses the Dissolve tool in ArcGIS&, while in Patch
Grid the tool clumps adjacent like pixels together.
两个模块中相交
Intersect(合并combine)命令也以不同的方式工作。在多边形斑块分析模块进行多边形相交分析时,使用ArcGIS
&的Intersect工具,在栅格斑块分析模块使用另一种针对栅格图层的算法。
The Intersect (combine) command also works
differently in Patch Analyst and Patch Grid. When intersecting
polygons in Patch Analyst, the ArcGIS& Intersect tool is used and
Patch Grid uses a different method for raster layers.
批量及区域分析
BATCH AND REGIONS ANALYSIS
可以自动进行批量分析或区域分析。批量分析将对预先选定的shapefile文件分别进行单独分析。区域分析将一个大的分析图层细分成许多区域,并分析每个更小的分析单位。这些区域可以是行政区,生态区或任意区域,并可以包括行政区域,流域,或六边形网格叠加。斑块分析师提供了一个便于产生六边形叠加的工具,这些叠加可与原来的分析层相交。
Analysis can be automated by using either batch
analysis or regions analysis. Batch analysis will run separate
analyses on pre-selected shapefiles. Regions analysis is used where
a single large analysis layer is subdivided into regions, and
analysis is desired on each of these maller analysis units. Regions
can be administrative, ecological or arbitrary, and can include
such things as administrative districts, watersheds, or a hexagon
grid overlay. Patch Analyst provides a facility to generate a
hexagon overlay, and this overlay can be intersected with the
original analysis layer.
&对栅格数据的斑块分析
从栅格数据创建斑块主题是创建一个新图层(主题),每类像素簇被指定其面积和周长。这是斑块分析的一个必要步骤。
Create Patch Theme from Grid creates a new layer
(theme), where each clump of like-classified pixels is assigned its
own area and perimeter. This is a necessary step for patch
聚集栅格(网格)(与shiape文件的dissolve类似)很复杂,需要对运行过程多加注意。对栅格数据执行景观形状分析经常比对shape文件执行该过程要快。聚集栅格(网格)并不是必要步骤,因为这是Fragstats的常规任务。但是,聚簇需要同一类型的每个斑块信息(即制作斑块直方图)。当从shape
coverage文件创建栅格(网格)时,将提示用户输入要素字段,并用它来创建栅格(网格),聚簇的方法(见下文)以及存储栅格(网格)文件的位置。其结果是输出了带有要素属性表的栅格(网格)数据。属性表中每种类型一行。为了绘制斑块直方图,计算斑块数量,一个类型中的每一斑块都需要用一行进行表示(邻接的像素簇)。解散栅格(网格)将简化表,并对每个斑块创建行。
Clumping rasters (grids) (analogous with dissolve
for shape files) is complex and requires that careful attention be
paid to the process. Performing a landscape pattern analysis on a
raster (grid) file is often faster than on a shape file. Clumping
rasters (grids) is not necessary when performing a spatial analysis
in Patch Grid because this is done by the Fragstats routine.
However, clumping is required when information for each patch
within the same class is needed (i.e., producing patch histograms).
When creating a raster (grid) from a shape file or coverage, the
user is prompted for the feature field to use to create the raster
(grid), the clumping method (see below), and the location to store
the raster (grid). The result is a raster (grid) with a table of
feature attributes. The table contains one row for each class. To
produce patch histograms, calculate the number of patches etc., a
row is needed for each patch (contiguous clump of pixels) within
each class. Dissolving a raster (grid) will simplify the table and
create a row for each patch.
注意:在解散栅格(网格)时会提示选择一种聚簇方法。
Note: When dissolving a raster (grid) you will be asked to select a Clumping Method.
4N和8N之间的区别是聚簇邻接像素的邻居(N)数量。例如,在下面的例子中有两个斑块A和B(白色像元)。如果4N -
使用直角方法被选中,每个像素周围搜索将包括每个像素的四边。任何临边的具有相同值的像素被发现,两个像素将被聚簇在一起。在下面的例子是使用4N-直角方法产生的两个不同的斑块(斑块A和斑块B)。相反,如果8N
- 使用对角线被选中的搜索将包括每个像素的四边和对角线上的每个像素,或每个周围的像素,因此八个邻居。在这个例子中,如使用8N -
使用对角线法定义则将只有一个包括所有白色像素的单独斑块。
&The difference between 4N and 8N is the number of
neighbours (N) used in clumping contiguous pixels. For instance, in
the example below, two patches are present, A and B (white cells).
If 4N - Use Orthogonals is selected, a search around each pixel
will include the four sides of each pixel. If a pixel with the same
value is found on any of the four sides of pixel, the two pixels
will be clumped together. In the example below there are two
distinct patches when the 4N - Use Orthogonals method is used
(Patch A and Patch B). In contrast, if 8N - Use Diagonals is
selected the searches will include the four sides of each pixel and
the diagonals of each pixel, or each surrounding pixel, hence eight
neighbours. In the example, only one discrete patch would be
defined using the 8N - Use Diagonals method, and it would include
all the white pixels
解散栅格的步骤:
dissolve a raster (grid):
Select the desired raster (grid) to dissolve from the
ArcMap table of contents.
Choose Create Patch Theme from
Grid from the Patch Grid menu .
Choose the field to clump by and then click OK.
Select the Clumping Method
(4N - Use orthogonals or 8N - Use Diagonals) and then click
OK and the tool will execute. For more
information on Clumping Method refer to .
<img TITLE="" BORDER="0" NAME="image_operate_00875" HSPACE="0" src="/blog7style/images/common/sg_trans.gif" real_src ="/bmiddle/44b367b1tad933eb8e514&690"
ALT="[转载]景观分析工具:arcgis中patch&analyst模块" />
叠加(合并)栅格
Intersect (Combine) Grids
相交(合并)栅格允许用户对栅格图层进行叠加,尤其适用于叠加六边形图层(在斑块图层被转换为栅格格式后)。
Intersect (Combine) Grids
allows users to intersect raster (grid) layers (themes), and is
especially useful to intersect the hexagon layer (theme) (once its
been converted to raster (grid) format) with a specified patch
layer (theme).
叠加(合并)栅格教程
Intersect (Combine) Grids Tutorial
Intersecting grids is often the first step for Analysis by
Regions. To combine to raster (grid) layers (themes) into one layer
(theme) select Intersect (Combine)
Grids from the Patch Grid Menu.
Choose the first raster (grid) from the pull down menu of
available layers (themes) and click OK.
Choose the second raster
(grid) from the pull down menu of remaining available layers
(themes) and click OK.
The user will then be
prompted for a name and location of the new layer (theme) that will
be created. Once that is done and the user clicks Save the rasters (grids) will be
将栅格剪辑为多边形主题
Clip Grids to Polygon Theme
此功能将栅格(网格)剪辑为一个多边形图层(主题)。它不同于其他arcgis中你可以找到的类似程序,将新栅格的大小以剪辑的多边形图层大小来定义。其结果是栅格文件占用的空间被大幅度减小,尤其是是由Fragstats导出的栅格文件。使用此功能可能会解决遇到Fragstats引擎输入栅格数据文件的大小限制发生的诸如“Fragstats输出文件未找到”或其他Fragstats错误。
This function will clip a raster (grid) to a polygon layer
(theme). It differs from other similar procedures you might find in
ArcGIS in that the extents of the new grid is defined by the
extents of the clip polygon theme. This results in a considerable
reduction in the size of the grid, and especially the exported grid
file that is used by Fragstats. Using this function may resolve
many of of the "Fragstats Output File Not Found" or other Fragstats
errors encountered, as the Fragstats engine is limited by the size
of the input raster data file.
剪辑栅格为多边形教程
Clip Grids to Polygon Theme Tutorial
To clip a raster (grid) to a polygon layer (theme) select
Clip Grids to Polygon Theme
from the Patch Grid Menu.
A dialog box with a pull-down menu containing all available raster
(grid) layers (themes) (i.e. on the current map) will
<img TITLE="" BORDER="0" HSPACE="0" src="/blog7style/images/common/sg_trans.gif" real_src ="/bmiddle/44b367b1tad&690"
ALT="[转载]景观分析工具:arcgis中patch&analyst模块" />
Choose the raster (grid) layer (theme) that
is to be clipped and click OK.
The next dialog box to appear will contain a list of all possible
polygon layers (themes) that can be used to clip the raster (grid).
Choose one and click OK.
<img TITLE="" BORDER="0" HSPACE="0" src="/blog7style/images/common/sg_trans.gif" real_src ="/bmiddle/44b367b1tad934ad314f3&690"
ALT="[转载]景观分析工具:arcgis中patch&analyst模块" />
The user will then be prompted for a name and
a location (drive path) for the new layer (theme) to be saved. Once
the file name is entered and the user clicks Save,
the tool will execute and clip the raster (grid) to the polygon
layer (theme)。
空间分析(fragstats界面)
Spatial Statistics (FragStats Interface)
从patch grid 菜单选择Spatial Statistics (FragStats
Interface)菜单项打开界面。
Selecting Spatial Statistics (FragStats Interface)
from the Patch Grid menu brings up the "Spatial Statistics"
dialog box.
<img TITLE="" BORDER="0" HSPACE="0" src="/blog7style/images/common/sg_trans.gif" real_src ="/bmiddle/44b367b1tad934cafb6ea&690"
ALT="[转载]景观分析工具:arcgis中patch&analyst模块" />
点击Run按钮时,选定的栅格将输出到系统临时目录,于是产生一个参数列表,Fragstats执行,然后生成的文件frag_av.class,frag_av.land和frag_av.full。这些临时的文本文件将被删除补丁电网与未来的执行,因此,如果你想保留原来的Fragstats输出,重命名文件是必要的。
When Run is clicked, the
selected grid is exported to the system temporary directory,
whereupon a parameter list is generated, Fragstats is executed, and
then the files frag_av.class, frag_av.land, and frag_av.full are
generated. These temporary text files are removed with the next
execution of Patch Grid, therefore renaming the files is necessary
if you wish to keep the original Fragstats output.
从这些统计数据读入ArcGIS中,并在用户指定的位置(如果输出表的名称和位置都没有指定,分析将无法运行)表中。根据被用来运行栅格(网格)图层的大小和计算机的速度,它可能需要几分钟时间,用户得到一个消息,说输出已成功创建。输出表将无法显示,直到收到这个确认消息。
Statistics from these are read into ArcGIS, and presented in a
table in the location specified by the user (analysis will not run
if an output table name and location are not specified). Depending
on the speed of the computer being used to run Patch Grid and the
size of the raster (grid) layer (theme) being analyzed, it may take
a few minutes before the user gets a message saying that the output
was created successfully. The output table will not be available
for viewing until after this confirmation message is received.
以下是栅格数据空间统计的详细参数:
The following is a
breakdown of the "Spatial Statistics for Grids" dialog box, one
section at a time:
这个图层窗口(左上角),ArcMap图层列表中的数据会显示为可选择。图层菜单中的每一个图层都可以作为分析数据。但每运行一次只能分析一个图层。选择需分析的图层。
In the Layers panel (top left), the
layer(s) (theme) selected from ArcMap's table of contents will
appear. Each layer (theme) that is present in the Layers menu can
however, only one layer (theme) can be analyzed at a
time. Select the layer (theme) that you wish to analyze.
类型框属性从选定图层的属性表中选择。
The Class box allows selection of the
class field from the selected layer's attribute table to be
analyzed. Both character and numeric classes can be analyzed.
该参数用于选择在景观还是类型尺度上的统计计算。如图层需进行景观层面的分析,将对无论属于哪种类型的斑块或者单个值的数据都进行统计并生成报告。相反,在类型层面的分析时,统计结果只报告景观中每种类型的情况。
The Analyze By option allows
calculation of spatial statistics at either the Landscape or Class
level. If the layer (theme) is being analyzed at the landscape
level, all patches, regardless of the class they belong to, will be
analyzed and a single value will be reported for each statistic. In
contrast, if the layer (theme) is analyzed at the class level, the
statistics will be reported for each class within the
landscape.
&输出表格名称
Output Table
输出表的名称是输出表的名称(和驱动器的路径),将创建一个包含空间统计。如果该表已经存在,附加/覆盖选项将变为可用。默认是追加。
Output Table Name is the name (and
drive path) of the output table that will be created containing the
spatial statistics. If the table already exists, the
Append/Overwrite options become available. The default is
Statistics
栅格板块分析提供了6大类统计项:
There are six categories of statistics
available in the Patch Grid Analyst:
Patch Density and Size Metrics
斑块密度和大小
Edge Metrics边缘
Shape Metrics形状
Diversity Metrics多样性
Core Area Metrics核心区
只需选择要计算的,并在空间统计输出表中报告的统计数据。选择“选择所有”选择所有的统计信息,或选择“选择”无“,以明确的选择。某些统计数字只适用于在景观水平。同样,某些统计数字只适用多边形层(主题)。对于统计的适用性(多边形或栅格)和缩写可参见统计摘要(附注1)。
&Simply select the statistics to be calculated
and reported in the spatial statistics output table. Choose "Select
All" to select all the statistics or choose "Select None" to clear
the selection. Certain statistics are only applicable at the
landscape level. Similarly, certain statistics are only applicable
on polygon layers (themes). For a listing of statistic
applicability (polygon or raster) and abbreviations refer to
Area核心区
只适用于栅格数据的空间统计对话框中的核心区度量。当要求对矢量图层进行核心区分析时,用户必须首先从patch
菜单建立核心区(创建一个核心区图层),然后把它当作一个正常的斑块图层的进行分析。从空间统计的对话中选择所需的统计项(即,平均斑块大小,等等),结果将是核心区的统计数据。在创建核心区层(主题)时会有两个字段添加到图层的属性表:I)的核心区面积和II)斑块面积。然后可以确定选择适当的位置来对核心区图层进行统计分析。
Core Area Metrics from the spatial
statistics dialog are only available for raster (grid) layers
(themes). When core area statistics are required for vector layers
(themes), the user must first
(create a core area layer (theme)) from the
Patch menu and then treat the core area layer (theme) as a
normal patch layer (theme). Choose the desired statistics (i.e.,
Mean Patch size, etc.) from the spatial statistics dialogue and the
result will be core area statistics. When creating core area layers
(themes) two fields are added to the layer's attribute table: i)
Core Area and ii) Patch Area. Therefore be sure to
choose the proper field to calculate statistics when analyzing core
area layers (themes).
设置分析界限参数
Set Analysis
Parameters
Fragstats还允许用户改变一些其他的分析参数,包括MPI的阈值,缓冲距离,文件名CWED,和边界的影响。这些参数的当前设置可以看出,在“分析参数”,“栅格数据空间统计”对话框的底部面板。要更改其中的任何设置,点击“设置分析参数”按钮。
Fragstats also allows the user to change some other analysis
parameters including the MPI Threshold, Buffer Distance, CWED file
name, and the Boundary Influence. The current settings of these
parameters can be seen in the "Analysis Parameters" panel at the
bottom of the "Spatial Statistics for Grids" dialog. To change any
of these settings, click the Set
Analysis Parameters
空间分析输出表格
Spatial Statistics
Output Table
从景观格局分析创建的空间统计输出表中查看分析结果。无论分析栅格数据还是矢量图层,前四列/字段将永远是相同的。这四个字段分别为:i)数据名称,II)分析日期,III)运行(运行数)和
IV)类型(类统计代表某个特定的行)。如果是在景观水平上进行分析,类型字段将报告整体的。下面表中的字段包含“空间统计”对话框中选定的统计项。作为一个完整的清单,包括缩写和单位,参考统计项汇总表(附注1)。每个统计项的一个完整的定义,也可在函数定义(附注2)页面找到。
The spatial statistics output table
created from a landscape pattern analysis contains the results of
the analysis. The first four columns/fields will always be the same
regardless of whether a raster (grid) or vector layer (theme) was
analyzed. The four fields are: i) (the name of the layer (theme)
analyzed), ii) Run Date (the date of the analysis), iii) Run (the
Run number), and iv) Class ( the class that the statistics for a
particular row represent). If an analysis is performed at the
landscape level the Class field will report full. The following
fields in the table will contain the statistics that were selected
in the "Spatial Statistics" dialog box. For a complete listing
including abbreviations and units that the statistics are reported
in refer to the
table. A full definition of each statistic is
also available on the
输出表将作为一个dBASE IV(DBF)文件被保存到用户指定的位置。在程序运行前系统将提示用户指定输出表名称及其位置。
The output table will be
saved as a dBase IV (.dbf) file and will be saved to the location
predetermined by the user. The user will be prompted to name the
output table and set it's location before the analysis will
Patch Analyst Statistic Summary
Abbreviation
Applicable
Applicable
Layer (Theme)
Class Area
Total Landscape Area
Percentage of Landscape (%)
Largest Patch Index (%)
Density & Size Metrics
No. of Patches
Mean Patch Size
Median Patch Size
Patch Size Coefficient of Variance
Patch Size Standard Deviation
Patch Richness
Patch Richness Density
Total Edge
Edge Density
Mean Patch Edge
Contrasted Weighted Edge Density
Mean Shape Index
Area Weighted Mean Shape Index
Mean Perimeter-Area Ratio
Mean Patch Fractal Dimension
Area Weighted Mean Patch Fractal Dimension
Landscape Shape Index
Double Log Fractal Dimension
& Interspersion Metrics
Mean Nearest Neighbour Distance
Mean Proximity Index
Interspersion Juxtaposition Index
Shannon's Diversity Index*
Shannon's Evenness Index*
Simpson's Diversity Index*
Simpson's Evenness Index
Modified Simpson's
Diversity Index
Total Core Area
Mean Core Area
Core Area Standard Deviation
Core Area Coefficient of Variance
Core Area Density
Total Core Area Index
Core Area percent of Land (%)
Number of Core Areas
Mean Corea Area per patch (ha)
Patch Core Area Standard Deviation (ha)
Patch Core Area Coefficient of Variation (%)
Mean Core Area Index
All core area metrics are per
disjunct cores.
* applicable only at the landscape
** core area metrics are directly applicable for
raster (grid) layers (themes). For vector layers (themes) create a
core area layer (theme).
Metric Definitions (from
McGarigal and Marks, 1994 and McGarigal and Marks,
Class Area (CA)
areas of all patches belonging to a given class.
Example: Conifer Class Area (CA) =
CA = 69.6626 hectares
If the map units are not specified
(i.e., Data F see ) and "State areas in Hectares" has not been
selected in the "Advanced Options" of the "Spatial Statistics"
dialog box, then the resulting statistics will be reported in
native map units (vector layers (themes) only).
units). This is the case for most statistics.
Landscape Area (TLA)
Sum of areas of all patches in the
landscape.
Example: Landscape Area (TLA) =
TLA = 184.11 hectares
Percentage of Landscape
When analyzing by class,
ZLAND is the percentage of the total landscape made up of the
corresponding class (patch type).
Number of Patches (NumP)
Total number of patches in the
landscape if "Analyze by Landscape" is selected, or Number of
Patches for each individual class, if "Analyze by Class" is
Example: Class Level: Number of Patches
Mixedwood = 5, Conifer = 4, Deciduous =
Landscape Level: Number of Patches
(NumP) = 14
Patch Richness
the number of different patch types within the landcape's
Richness Density (PRD)
is equal to PR divided by the total area of the landscape (metres
squared) multiplied by 10,000 and then 100 (to convert to hundreds
of hectares).
Largest Patch Index
The LPI is equal to the
percent of the total landscape that is made up by the largest
When the entire landscape
is made up of a single patch, the LPI will equal 100. As the size
of the largest patch decreases, the LPI approaches
Mean Patch Size (MPS)
Average patch size.
Example: Mean Patch Size of Conifer
Patches (Class Level)
MPS = 17.42 hectares
Example: Mean Patch Size of Patches
(Landscape Level)
MPS = 13.15 hectares
Median Patch Size (MedPS)
The middle patch size, or 50th
percentile.
Example: Median Patch size of Conifer
Patches (Class Level)
MedPS = 13.22 hectares
Example: Median Patch size of all
patches (Landscape Level)
MedPS = 7.59 hectares
Patch Size Standard Deviation (PSSD)
Standard Deviation of patch areas.
Example: Patch Size Standard Deviation
of Conifer Patches (Class Level)
PSSD = 11.05 hectares
Example: Patch Size Standard Deviation
of all patches (Landscape Level)
PSSD = 9.51 hectares
Patch Size Coefficient of Variance (PSCoV)
Coefficient of variation of
Example: Coefficient of Variation of
Conifer patches (Class Level)
PSCoV = PSSD/MPS = (11.05 hectares /
17.42 hectares) *100 = 63
Example: Coefficient of Variation of
all patches (Landscape Level)
PSCoV = (9.51 hectares / 13.15
hectares)*100 =72
Total Edge (TE)
Perimeter of patches.
Example: Total Edge Conifer (Class
TE = Sum of perimeter of all conifer
TE = 10858.88 metres
Units are expressed in native maps
Example: Total Edge all patches
(Landscape Level)
TE = Sum of perimeter of all
TE = 28607.27 metres
case of vector layers (themes), edge calculations include all the
edge on the landscape including boundary edge. The contrasted
weighted edge feature allows edge weight at the boundaries to be
set to zero. In the case of raster (grid) layers (themes), edge
calculations do not include the edges that surround the landscape
boundary edge or any interior edges that include pixels classified
as No Data.
Edge Density (ED)
Amount of edge relative to the
landscape area.
Example: Edge Density Conifer (Class
ED = TE / TLA
ED = 10858.88 metres/184.11 hectares =
58.98 metres/hectare
Example: Edge Density of all Patches
(Landscape Level)
ED = 28607.27 metres/184.11 hectares =
155.38 metres/hectare
Mean Patch Edge (MPE)
Average amount of edge per patch.
Example: Mean Patch Edge Conifer (Class
MPE = TE / NumP
MPE = 10858.88 metres/4 patches =
2714.72 metres/patch
Example: Mean Patch Edge all Patches
(Landscape Level)
MPE = TE / NumP
MPE = 28607.27 metres/14 patches =
2043.38 metres/patch
Contrasted Weighted Edge
Density (CWED)
CWED is a measure of
density of edge in a landscape (metres per hectare) with a
user-specified contrast weight.
CWED is equal to 0 when there is no
edge in the landscape, in other words the whole landscape and it's
border are made up of a single patch. It's value increases as the
amount of edge in the landscape increases and/or as the user
increases the contrast weight.
Landscape Shape Index
LSI is the total
landscape boundary and all edge within the boundary divided by the
square root of the total landscape area (square metres) and
adjusted by a constant (circular standard for vector layers, square
standard for rasters). The LSI will increase with increasing
landscape shape irregularity or increasing amounts of edge within
the landscape.
Double Log Fractal Dimension
DLFD is a measure of
patch perimeter complexity. It nears 1 when patch shapes are
'simple', such as circles or squares and it approaches 2 as patch
shape perimeter complexity increases.
Mean Perimeter-Area Ratio (MPAR)
Shape Complexity.
Example: Mean perimeter-area ratio
Conifer (Class Level)
MPAR = Sum of each patches
perimeter/area ratio divided by number of patches.
MPAR = (132 m/ha + 112 m/ha + 201 m/ha
+ 84 m/ha)/4 patches
MPAR = 182 metres/hectare
Example: Mean perimeter-area ratio all
patches (Landscape Level)
MPAR = (200 m/ha + 132 m/ha + ... + 175
m/ha)/14 patches
MPAR = 185 metres/hectare
Mean Shape Index (MSI)
Shape Complexity.
&MSI is equal to 1
when all patches are circular (for polygons) or square (for rasters
(grids)) and it increases with increasing patch shape
irregularity.
MSI = sum of each patch's perimeter
divided by the square root of patch area (in hectares) for each
class (when analyzing by class) or all patches (when analyzing by
landscape), and adjusted for circular standard ( for polygons), or
square standard (for rasters (grids)), divided by the number of
Area Weighted Mean Shape
Index (AWMSI)
AWMSI is equal to 1 when
all patches are circular (for polygons) or square (for rasters
(grids)) and it increases with increasing patch shape
irregularity.
AWMSI equals the sum of
each patch's perimeter, divided by the square root of patch area
(in hectares) for each class (when analyzing by class) or for all
patches (when analyzing by landscape), and adjusted
for circular standard ( for polygons), or square standard (for
rasters (grids)), divided by the number of patches. It differs from the MSI
in that it's weighted by patch area so larger patches will weigh
more than smaller ones.
Mean Patch Fractal Dimension (MPFD)
Shape Complexity.
Mean patch fractal dimension (MPFD) is
another measure of shape complexity. Mean fractal dimension
approaches one for shapes with simple perimeters and approaches two
when shapes are more complex.
Area Weighted Mean Patch Fractal Dimension (AWMPFD)
Shape Complexity adjusted for shape
Area weighted mean patch fractal
dimension is the same as mean patch fractal dimension with the
addition of individual patch area weighting applied to each patch.
Because larger patches tend to be more complex than smaller
patches, this has the effect of determining patch complexity
independent of its size. The unit of measure is the same as mean
patch fractal dimension.
Mean Nearest Neighbor (MNN)
Measure of patch isolation.
The nearest neighbor distance of an
individual patch is the shortest distance to a similar patch (edge
to edge). The mean nearest neighbor distance is the average of
these distances (metres) for individual classes at the class level
and the mean of the class nearest neighbor distances at the
landscape level.
Interspersion Juxtaposition Index (IJI)
Measure of patch adacency.
Approaches zero when the distribution
of unique patch adjacencies becomes uneven and 100 when all patch
types are equally adjacent.
Interspersion requires that the
landscape be made up of a minimum of three classes. At the class
level interspersion is a measure of relative interspersion of each
class. At the landscape level it is a measure of the interspersion
of the each patch in the landscape.
Mean Proximity Index (MPI)
Measure of the degree of isolation and
fragmentation.
Mean proximity index is a measure of
the degree of isolation and fragmentation of a patch. MPI uses the
nearest neighbor statistic. The distance threshold default is
1,000,000. If MPI is required at specific distances, select Set MPI
Threshold from the main Patch pull-down menu and enter a threshold
Both MNN and MPI use the nearest
neighbor statistic of similar polygons in their algorithm.
Occasionally a blank or zero will be reported in MNN and MPI
fields. This happens when one polygon vertex touches another
polygons border but the two similar polygons do not share a common
border. When this happens a manual edit (move) of the touching
vertex will correct the problem in the layer (theme). This problem
will not happen when analyzing raster (grid) layers (themes).
Shannon's Diversity Index (SDI)
Measure of relative patch
diversity.
Shannon's diversity index is only
available at the landscape level and is a relative measure of patch
diversity. The index will equal zero when there is only one patch
in the landscape and increases as the number of patch types or
proportional distribution of patch types increases.
Diversity Index (SIDI)
Measure of relative patch
diversity.
Simpson's diversity index is only
available at the landscape level and is a relative measure of patch
diversity. The index will equal zero when there is only one patch
in the landscape and increases as the number of patch types or
proportional distribution of patch types increases.
Shannon's Evenness Index (SEI)
Measure of patch distribution and
abundance.
Shannon's evenness index is equal to
zero when the observed patch distribution is low and approaches one
when the distribution of patch types becomes more even. Shannon's
evenness index is only available at the landscape level.
Simpson's Evenness Index
SIEI is a measure of the distribution
of area among patch types. It equals 1 when the distribution of
area among patches is exactly even. SIEI approaches 0 as the
distribution of area among the patches become more and more
dominated by one patch type.
Modified Simpson's Diversity Index
MSIDI is a measure of
patch diversity. It equals zero when there is only one patch in the
landscape and increases as the number of different patch types (PR)
increases and the area among patch types becomes more
Modified Simpson's Evenness
Index (MSIEI)
MSIEI is a
measure of the distribution of area among patch
types. It equals 1 when the distribution of area among patches is
exactly even. SIEI approaches 0 as the distribution of area among
the patches become more and more dominated by one patch type. It
differs from SIEI in that it is derived from the Modified Simpson's
Diversity Index (MSIDI) rather than the Simpson's Diversity Index
Direct analyses of Core Area through the
spatial statistics dialogue are only available for raster (grid)
layers (themes). If core area statistics are required for vector
layers (themes), first
(create a new core area theme) from the
Patch pull-down menu and then calculate statistics for the
new layer (theme) as you would for a normal vector layer (theme).
The results will be core area statistics.
Total Core Area (CA)
The total size of disjunct core
The total size of disjunct core area
patches (hectares).
Mean Core Area (MCA)
The average size of disjunct core
The mean size of disjunct core area
patches (hectares).
Number of Core Areas
The total number of
disjunct core areas within each patch of a corresponding patch type
(or class).
Mean Core Area Index
MCAI is the average percentage
of a landscape patch that is core area. It will be equal to 0 when
there is no core area present in any patch in the landscape and it
increases (towards 100%) when patches contain mostly core
Core Area Standard Deviation (CASD)
Measure of variability in core area
The standard deviation of disjunct core
areas (hectares).
Core Area Density (CAD)
The relative number of disjunct core
patches relative to the landscape area.
The total number of all disjunct
patches divided by the landscape area (number of disjunct core
patches/hectare).
Total Core Area Index (TCAI)
Measure of amount of core area in the
landscape.
Total core area index is a measure of
the amount of core area in the landscape. Total core area index is
a proportion of core area in the entire landscape and is equal to
zero when no patches in the landscape contain core and approaches
one as the relative proportion of core area in the landscape
increases.
Core Area Percentage of Land
C_LAND is the percentage
of the total landscape which is made up of core
Mean Core Area per Patch
MCA1 is the average core
area per patch (as opposed to all distunct core
It equals the sum of the
core areas of each patch or corresponding patch type, divided by
the number of total patches of the same type, divided by 10, 000
(to convert to hectares).
Core Area Coefficient of
Variance (CACOV)
CACOV represents the variability in
size of disjunct core areas in relation to the mean core area.
Patch Core Area Standard
Deviation (CASD1)
Measure of variability in
patch core area size.
The standard deviation of
patch core areas (hectares).
Patch Core Area Coefficient
of Variation (CACV1)
The standard deviation in
core areas (CASD) divided by the mean core area per patch (MCA) and
multplied by 100 (%).
The variablility in core
area among patches relative to the mean core
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。}

我要回帖

更多关于 arcgis模型 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信