波靶引力波是什么意思思…………

电磁流量计是高精度、高可靠性和使用寿命长的流量仪表,所以在设计产品结构、选材、制定工艺、生产装配和出厂测试等过程中每一个环节我们都非常细致讲究,
地址:江苏省金湖县工业园区理士大道61号
流量仪表销售部:1
压力仪表销售部:6
温度仪表销售部:6
显示仪表销售部:1
校验仪表销售部:6
销售部经理:金中江
系列产品:
  我公司是专业研发、生产及销售工业自动化产品,并提供工业自动化系统集成技术服务的高新技术企业。&
  公司一直注重于高新技术的研发和先进设备的生产应用,现已成为成熟的智能压力检测、物位检测、流量检测、显示调节控制等全系列工业自动化仪表的研发、生产制造基地。产品广泛应用于钢铁、有色冶金、石油化工、电力、城市集中供热、水/污水处理、食品加工、制药等领域。目前,公司拥有多个专业生产车间及标定检测线,120多名员工,技术与销售服务网络遍及华南、华东、华北、西南、西北各省,年销工业自动化仪表产品二十多万台/套。
电磁流量计
椭圆齿轮流量计
玻璃转子流量计
皮托管原理靠背管流量计
双转子流量计
旋翼式蒸汽流量计
电子靶流量计
气体涡轮流量计
液体涡轮流量计
V形锥流量计
金属管转子流量计
金属管浮子流量计
旋进旋涡流量计
楔形流量计
仪表精度:管道式0.5级、1.0级;插入...
椭圆齿轮流量计流量信号(即椭圆齿轮的旋转...
玻璃转子流量计(以下简称流量计)主要用于...
JTK-PT系列流量计由于具有独特的设计...
JTK-LSU-双转子流量计(以下简称流...
被测蒸汽流经流量计本体:时由孔板节流,在...
JTK-LWQ型气体涡轮流量计是吸取了国...
JTK-LWGY系列涡轮流量计是吸取了国...
V形锥流量计源于美国McCROMETER...
JTK50系列金属管转子流量计适用于小口...
LZ系列金属管浮子流量计是基于浮子位置测...
旋进旋涡流量计采用最新微处理技术,具有功...
JTK-LGX楔形流量计是八十年代开始开...
阿牛巴流量计(又称笛形均速管流量计)是根...
德尔塔巴流量计是一种插入式流量测量仪表。...
威立巴流量计计采用了完全符合空气动力学原...
LUGB温压补偿智能型涡街流量传感器是以...
主要用于工业管道介质流体的流量测量,如气...
在流体中设置三角柱型旋涡发生体,则从旋涡...
孔板流量计是将标准孔板与多参数差压变送器...
插入式电磁流量计是由LDEC型插入式电磁...
分体式电磁流量计在满足现场显示的同时,还...
智能电磁流量计是我公司采用国内外最先进技...
造压系统作为压力计量不可缺少的辅助设备,...
版权所有:江苏泰克测控技术有限公司& 地址:江苏省金湖县工业园区理士大道61号
联系人:金中江
电话:1/ 传真:6 手机:靶材自动探伤是什么?
jQuery("#divNotLogin").html(_html);
微信扫一扫收获行业前沿信息
靶材自动探伤是什么?
联系电话:010-&&
传真号码:010-& 电子邮箱:
总部地址:&& 北京市海淀区上地信息产业基地硅谷亮城
生产部地址:河北省廊坊市清华科技园
&&&&&&&&&&朋友在酒吧看到一个女的说波靶_百度知道
朋友在酒吧看到一个女的说波靶
我有更好的答案
那就是,强奸完之后给那个女的呗
其他类似问题
为您推荐:
酒吧的相关知识
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁波函数_百度百科
量子力学中描写微观系统状态的函数。在经典力学中,用的位置和(或速度)来描写宏观质点的状态,这是质点状态的经典描述方式,它突出了质点的。由于具有,粒子的位置和动量不能同时有确定值(见),因而质点状态的经典描述方式不适用于对微观粒子状态的描述,物质波于宏观尺度下表现为对几率波函数的期望值,不确定性失效可忽略不计。
波函数研究过程
波函数(wave function)是中用来描述粒子的的函数。
为了定量地描述的状态,量子力学中引入了波函数,并用ψ表示。一般来讲,波函数是的函数,并且是复函数,即ψ=ψ(x,y,z,t)。将爱因斯坦的“鬼场”和存在的概率之间的关系加以推广,假定ψ就是粒子的,即在时刻t,在点(x,y,z)附近单位体积内发现粒子的。波函数ψ因此就称为。
电子在屏上各个位置出现的概率密度并不是常数:有些地方出现的概率大,即出现干涉图样中的“亮条纹”;而有些地方出现的概率却可以为零,没有电子到达,显示“暗条纹”。
由此可见,在电子双缝干涉实验中观察到的,是大量事件所显示出来的一种概率分布,这正是玻恩对波函数物理意义的解释,即波函数模的平方对应于微观粒子在某处出现的概率密度(probability density):
即是说,微观粒子在各处出现的概率密度才具有明显的物理意义。
据此可以认为波函数所代表的是一种概率的波动。这虽然是人们对所能做出的一种理解,但是波函数概念的形成正是量子力学完全摆脱经典观念、走向成熟的标志;波函数和概率密度,是构成量子力学理论的最基本的概念。
概率幅满足于迭加原理,即:ψ12=ψ1+ψ2(1.26)相应的概率分布为(1.27)
波函数ψ(r,t)是坐标和时间t的复函数。ψ(r,t)的绝对值二次方乘上r 处的体积元dxdydz与粒子在这个体积元中出现的几率p(r,t)成比例。
p(r,t)=с|ψ(r,t)|²dxdydz, с是比例常数。
一个微观系统的波函数,满足。处于具体条件下的微观系统的波函数,可由相应的薛定谔方程解出。例如描写具有确定p和能量E的自由粒子状态的波函数是(公式1)
由|Ф(r,t)|²=|A|²=常量说明自由粒子在空间各点出现的几率相同。
把波函数的绝对值二次方解释为与粒子在单位体积内出现的几率成比例是M.玻恩在E.薛定谔建立波动力学后提出的,被称为是波函数的统计诠释。波函数所表示的波也常被称为。
由于粒子肯定存在于空间中,因此,将波函数对整个空间积分,就得出粒子在空间各点出现几率之和,结果应等于1(公式2)
可以用波函数代替ψ(rr,t)作为波函数, 那么波函数波函数就满足条件(公式3)
这个条件称为波函数的归一化条件,满足这个条件的波函数ψ┡(r,t)称为归一化波函
波函数历史沿革
在1920年代与1930年代,理论量子物理学者大致分为两个阵营。第一个阵营的成员主要为和等等,他们使用的数学工具是,他们共同创建了。第二个阵营的成员主要为和等等,使用,他们建立了。后来,薛定谔证明这两种方法完全等价[1]
德布罗意于1924年提出的表明,每一种微观粒子都具有。电子也不例外,具有这种性质。电子是一种波动,是电子波。电子的能量与动量分别决定了它的频率与波数。既然粒子具有波粒二象性,应该会有一种能够正确描述这种量子特性的,这点子给予极大的启示,他因此开始寻找这波动方程。薛定谔参考先前关于与光学之间的类比这方面的研究,在其中隐藏了一个奥妙的发现,即在零波长极限,趋向于;也就是说,光波的轨道趋向于明确的路径,而这路径遵守。哈密顿认为,在零波长极限,波传播趋向于明确的运动,但他并没有给出一个具体方程来描述这波动行为,而薛定谔给出了这方程。他从成功地推导出薛定谔方程。他又用自己设计的方程来计算的,得到的答案与用计算出的答案相同。他将这波动方程与氢原子光谱分析结果,写为一篇论文,1926年,正式发表于物理学界。从此,量子力学有了一个崭新的理论平台。
薛定谔给出的薛定谔方程能够正确地描述波函数的量子行为。那时,物理学者尚未能解释波函数的涵义,薛定谔尝试用波函数来代表电荷的密度,但遭到失败。1926年,玻恩提出的概念,成功地解释了波函数的物理意义。可是,薛定谔本人不赞同这种统计或方法,和它所伴随的非连续性,如同爱因斯坦认为量子力学只是个决定性理论的统计近似,薛定谔永远无法接受。在他有生最后一年,他写给玻恩的一封信内,薛定谔清楚地表明了这意见。
1927年,道格拉斯·哈特里(Douglas Hartree)与弗拉基米尔·福克(Vladimir Fock)在对于波函数的研究踏出了第一步,他们发展出来近似方程的解。这计算方法最先由哈特里提出,后来福克将之加以改善,能够符合泡利不相容原理的要求。
薛定谔方程不具有,无法准确给出符合相对论的结果。薛定谔试着用相对论的能量动量关系式,来寻找一个相对论性方程,并且描述电子的相对论性量子行为。但是这方程给出的精细结构不符合的结果,又会给出违背量子力学的负概率和怪异的负能量现象,他只好将这相对论性部分暂时搁置一旁,先行发表前面提到的非相对论性部分。
1926年,奥斯卡·克莱因(Oskar Klein)和沃尔特·戈尔登(Walter Gordon)将电磁相对作用纳入考量,独立地给出薛定谔先前推导出的相对论性部分,并且证明其具有洛伦兹不变性。这方程后来称为。
1928年,最先成功地统一了与量子力学,他推导出,适用于电子等等为1/2的粒子。这方程的波函数是一个,拥有自旋性质。
波函数数学表达
量子力学假设一:对于一个微观体系,他的任何一个状态都可以用一个坐标和时间的连续、单值、平方可积的函数Ψ来描述。Ψ是体系的,它是所有粒子的坐标函数,也是时间函数。
(Ψ)Ψdτ为时刻t及在体积元dτ内出现的概率。Ψ是的:∫(Ψ)Ψdτ=1式中是对坐标的全部变化区域积分。(注:(Ψ)指Ψ的共厄)
量子力学假设二:体系的任何一个可观测力学量A都可与一个线性算符对应,算符按以下规律构成:
(1)坐标q和时间t对应的算符为用q和t来相乘。
(2)与q相关联的动量p的算符{p}=-i(h/(2π))(d/dq)(注:d指偏微分,以后不特别说明都指偏微分)
(3)对任一力学量{A}先用经典方法写成q,p,t的函数A=A(q,p,t)则对应的算符为:{A}=A(q,-i(h/(2π))(d/dq),t)
则:能量算符为:{H}=-h^2/(8π^2m)△+V(其中△为算符)
△=d^2/dx^2+d^2/dy^2+d^2/dz^2(直角坐标)
△=(1/r^2)d(r^2d/dr)/dr+(1/(r^2sinθ))d(sinθd/dθ)/dθ+(1/(r^2sin^2θ))d^2/dφ^2(球坐标)
角动量算符:
{L[x]}=-i(h/(2π))(yd/dz-zd/dy)
{L[y]}=-i(h/(2π))(zd/dx-xd/dz)
{L[z]}=-i(h/(2π))(xd/dy-yd/dx)
L^2={L[x]}^2+{L[y]}^2+{L[z]}^2
量子力学假设三:若某一力学量A的算符{A}作用于某一状态函数ψ后,等于一常数a乘以ψ,即{A}ψ=aψ则称力学量A对ψ描述的状态有确定的数值a。a称的本征值,ψ称的本征波函数,方程{A}ψ=aψ称的。
显然,对能量来说,{H}ψ=Eψ即为的薛定鄂方程。含时的薛定鄂方程为:{H}Ψ=ih/(2π)dΨ/dt
量子力学假设四:若ψ[1],ψ[2]…ψ[n]为某一微观体系的可能状态,则他们的线性组合∑Cψ也是该体系的可能状态,称ψ的这一性质为叠加原理。
(1)有本征值力学量的平均值:设ψ对应本征值为a,体系处于状态ψ,若ψ已归一化则:
a(平均值)=∫(ψ){A}ψdτ=∑|C|^2a
(2)无本征值力学量的平均值:
F(平均值)=∫(ψ){F}ψdτ
则定态中所有的力学量平均值都不随时间变化。
如图:为S亚层的轨道3s1电子经过10万次影象合成的波函数图象。
波函数概率诠释
波函数是概率波。其模的平方代表粒子在该处出现的概率密度。
既然是概率波,那么它当然具有归一性。即在全空间的积分。
然而大多数情况下由薛定谔方程求出的波函数并不归一,要在前面乘上一个系数N,即把它带入条件,解出N。至此,得到的才是归一化之后的波函数。注意N并不唯一。
波函数不是买彩票的中奖几率,彩票的中奖几率是线性相加的,买两张彩票,中奖几率就变为2倍,买N张彩票,中奖几率就是N倍。波函数具有相干性,具体地说,两个波函数叠加,概率并非变成12+12=24倍,而是在有的地方变成(1+1)2=4倍,有的地方变成(1-1)2=0,具体取决于两个波函数的相位差。联想一下光学中的杨氏,不难理解这个问题。
波函数重要概念
在量子力学中,可观测的A以算符的形式出现,代表对波函数的一种运算。
例如,在坐标表象下,动量算符对应的A称为力学量的本征值,ψ称为力学量的本征态。如果测量位于的ψ上的力学量A,那么它的值是唯一确定的。
波函数重要原理
如果ψ1是体系的一个本征态,对应的本征值为A1,ψ2也是体系的一个本征态,对应的本征值为A2,那么ψ=C1ψ1+C2ψ2是体系一个可能的存在状态,如果在这个状态下对力学量A进行
测量,测量到的A值既有可能是A1也有可能是A2,相应的概率之比为。A的平均值为。或者采用记为。
波函数定态问题
在中,一类基本的问题是不是时间的函数的情况。这时,可以分解成一个只与空间有关的函数和一个只与时间有关的函数乘积,即把它带入就会得到。
.维基百科[引用日期]您好,欢迎来到新东方
热门搜索:
按拼音检索:
词语:中波
[拼音]:zhōnɡ bō
[释义]:指波长从100米到1000米(相应的频率从3兆赫到300千赫)的无线电波段。中波通信主要依靠天波和地波传播。一般用于导航、固定和移动通信业务及近距离广播等。
有关中波的成语
有关中波的歇后语
zhēng xiē
1.差点儿;险些儿。
热门课程推荐}

我要回帖

更多关于 波光粼粼的意思是什么 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信