Sink Onlytrue positivee True Logic的运放是什么类型的运放

Op-Amp_Concepts(运放的基本概念)_图文_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
Op-Amp_Concepts(运放的基本概念)
上传于||暂无简介
阅读已结束,如果下载本文需要使用1下载券
想免费下载本文?
定制HR最喜欢的简历
下载文档到电脑,查找使用更方便
还剩47页未读,继续阅读
定制HR最喜欢的简历
你可能喜欢IC产品 CIRRUS LOGIC - PA88 - 芯片 运算放大器 450V 低静态电流 - 北京齐天芯科技有限公司
Driver IC trade leads
CIRRUS LOGIC - PA88 - 芯片 运算放大器 450V 低静态电流
250)this.width=250;">
制造商:CIRRUS LOGIC
库存编号:
制造商编号:PA88
库存状态:上海 0 , 新加坡 0 , 英国5
包装规格:1
最小订单量:1
多重订单量:1
单位价格(不含税):CNY 2,621.84
数量
单位价格(不含税)
CNY 2,621.84
描述信息:
运放类型:高功率
放大器数目:1
工作温度范围:-25°C to +85°C
封装类型:TO-3
-3dB带宽增益乘积:2.1MHz
变化斜率:8V/μs
器件标号:88
增益带宽:2.1MHz
工作温度最低:-25°C
工作温度最高:85°C
放大器类型:功率
电源电压 最大:225V
电源电压 最小:15V
表面安装器件:通孔安装
输出电流 + 最大:100mA
额定电源电压, +:225V
产品属性:
重量(公斤):0.0002
最近制造加工所发生的国家:
描述信息:
运放类型:高功率
放大器数目:1
工作温度范围:-25°C to +85°C
封装类型:TO-3
-3dB带宽增益乘积:2.1MHz
变化斜率:8V/μs
器件标号:88
增益带宽:2.1MHz
工作温度最低:-25°C
工作温度最高:85°C
放大器类型:功率
电源电压 最大:225V
电源电压 最小:15V
表面安装器件:通孔安装
输出电流 + 最大:100mA
额定电源电压, +:225V
Copyright:()北京齐天芯科技科技有限公司
电话:(86)010-47 ,传真:(86)010- Email:
地址:中国北京市北京市北京市海淀区花园路3号院1号楼806室
京ICP备 号-1
京公网安备 93 号当前位置: >>
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 Single Supply Quad Operational AmplifiersThe LM324 series are low?cost, quad operational amplifiers with true differential inputs. They ha
ve several distinct advantages over standard operational amplifier types in single supply applications. The quad amplifier can operate at supply voltages as low as 3.0 V or as high as 32 V with quiescent currents about one?fifth of those associated with the MC1741 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage.Features PDIP?14 N SUFFIX CASE 646 14 1 SOIC?14 D SUFFIX CASE 751A? ? ? ? ? ? ? ? ? ? ?Short Circuited Protected Outputs True Differential Input Stage Single Supply Operation: 3.0 V to 32 V Low Input Bias Currents: 100 nA Maximum (LM324A) Four Amplifiers Per Package Internally Compensated Common Mode Range Extends to Negative Supply Industry Standard Pinouts ESD Clamps on the Inputs Increase Ruggedness without Affecting Device Operation NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes Pb?Free Packages are Available14 114TSSOP?14 DTB SUFFIX CASE 948G 1PIN CONNECTIONSOut 1 Inputs 13 1 2 * 1 ) * ) 14 13Out 4 Inputs 4412 11VCC Inputs 24 5 6 ) 2 * 3 ) *VEE, GND Inputs 310 9 8Out 27Out 3(Top View)ORDERING INFORMATIONSee detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.DEVICE MARKING INFORMATIONSee general marking information in the device marking section on page 12 of this data sheet.? Semiconductor Components Industries, LLC, 2006October, 2006 ? Rev. 201Publication Order Number: LM324/D LM324, LM324A, LM224, LM2902, LM2902V, NCV2902MAXIMUM RATINGS (TA = + 25°C, unless otherwise noted.)Rating Power Supply Voltages Single Supply Split Supplies Input Differential Voltage Range (Note 1) Input Common Mode Voltage Range Output Short Circuit Duration Junction Temperature (Note 2) Thermal Resistance, Junction?to?Air (Note 3) Case 646 Case 751A Case 948G Symbol VCC VCC, VEE VIDR VICR tSC TJ RqJA Value 32 ±16 ±32 ?0.3 to 32 Continuous 150 118 156 190 ?65 to +150
LM224 LM324, 324A LM2902 LM2902V, NCV2902 (Note 4) TA °C ?25 to +85 0 to +70 ?40 to +105 ?40 to +125 °C °C/W Vdc Vdc Unit VdcStorage Temperature Range ESD Protection at any Pin Human Body Model Machine Model Operating Ambient Temperature RangeTstg Vesd°C VStresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Split Power Supplies. 2. For supply voltages less than 32 V, the absolute maximum input voltage is equal to the supply voltage. 3. All RqJA measurements made on evaluation board with 1 oz. copper traces of minimum pad size. All device outputs were active. 4. NCV2902 is qualified for automitive use.2 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = GND, TA = 25°C, unless otherwise noted.)LM224 Characteristics Input Offset Voltage VCC = 5.0 V to 30 V VICR = 0 V to VCC ?1.7 V, VO = 1.4 V, RS = 0 W TA = 25°C TA = Thigh (Note 5) TA = Tlow (Note 5) Average Temperature Coefficient of Input Offset Voltage TA = Thigh to Tlow (Notes 5 and 7) Input Offset Current TA = Thigh to Tlow (Note 5) Average Temperature Coefficient of Input Offset Current TA = Thigh to Tlow (Notes 5 and 7) Input Bias Current TA = Thigh to Tlow (Note 5) Input Common Mode Voltage Range (Note 6) VCC = 30 V TA = +25°C TA = Thigh to Tlow (Note 5) Differential Input Voltage Range Large Signal Open Loop Voltage Gain RL = 2.0 kW, VCC = 15 V, for Large VO Swing TA = Thigh to Tlow (Note 5) Channel Separation 10 kHz ≤ f ≤ 20 kHz, Input Referenced Common Mode Rejection, RS ≤ 10 kW Power Supply Rejection CS VIDR AVOL 50 100 ? 25 100 ? 25 100 ? 25 100 ? 25 100 ? 0 0 ? ? ? ? 28.3 28 VCC 0 0 ? ? ? ? 28.3 28 VCC 0 0 ? ? ? ? 28.3 28 VCC 0 0 ? ? ? ? 24.3 24 VCC 0 0 ? ? ? ? 24.3 24 VCC V V/mV IIB ? ? ?90 ? ?150 ?300 ? ? ?45 ? ?100 ?200 ? ? ?90 ? ?250 ?500 ? ? ?90 ? ?250 ?500 ? ? ?90 ? ?250 ?500 nA IIO ? ? ? 3.0 ? 10 30 100 ? ? ? ? 5.0 ? 10 30 75 300 ? ? ? 5.0 ? 10 50 150 ? ? ? ? 5.0 ? 10 50 200 ? ? ? ? 5.0 ? 10 50 200 ? nA DVIO/DT Symbol VIO Min Typ Max Min LM324A Typ Max Min LM324 Typ Max Min LM2902 Typ Max LM2902V/NCV2902 Min Typ Max Unit mV? ? ? ?2.0 ? ? 7.05.0 7.0 7.0 ?? ? ? ?2.0 ? ? 7.03.0 5.0 5.0 30? ? ? ?2.0 ? ? 7.07.0 9.0 9.0 ?? ? ? ?2.0 ? ? 7.07.0 10 10 ?? ? ? ?2.0 ? ? 7.07.0 13 10 ? mV/°CDIIO/DTpA/°CVICRV25 ?? ?120? ?15 ?? ?120? ?15 ?? ?120? ?15 ?? ?120? ?15 ?? ?120? ? dBCMR7085?6570?6570?5070?5070?dBPSR65100?65100?65100?50100?50100?dB5. LM224: Tlow = ?25°C, Thigh = +85°C LM324/LM324A: Tlow = 0°C, Thigh = +70°C LM2902: Tlow = ?40°C, Thigh = +105°C LM2902V & NCV2902: Tlow = ?40°C, Thigh = +125°C NCV2902 is qualified for automotive use. 6. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is VCC ?1.7 V, but either or both inputs can go to +32 V without damage, independent of the magnitude of VCC. 7. Guaranteed by design.3 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = GND, TA = 25°C, unless otherwise noted.)LM224 Characteristics Output Voltage ? High Limit (TA = Thigh to Tlow) (Note 8) VCC = 5.0 V, RL = 2.0 kW, TA = 25°C VCC = 30 V RL = 2.0 kW VCC = 30 V RL = 10 kW Output Voltage ? Low Limit, VCC = 5.0 V, RL = 10 kW, TA = Thigh to Tlow (Note 8) Output Source Current (VID = +1.0 V, VCC = 15 V) TA = 25°C TA = Thigh to Tlow (Note 8) Output Sink Current (VID = ?1.0 V, VCC = 15 V) TA = 25°C TA = Thigh to Tlow (Note 8) (VID = ?1.0 V, VO = 200 mV, TA = 25°C) Output Short Circuit to Ground (Note 9) Power Supply Current (TA = Thigh to Tlow) (Note 8) VCC = 30 V VO = 0 V, RL = ∞ VCC = 5.0 V, VO = 0 V, RL = ∞ ISC IO ? 10 20 ? 10 20 ? 10 20 ? 10 20 ? 10 20 ? VOL Symbol VOH Min Typ Max Min LM324A Typ Max Min LM324 Typ Max Min LM2902 Typ Max LM2902V/NCV2902 Min Typ Max Unit V3.3 26 27 ?3.5 ? 28 5.0? ? ? 203.3 26 27 ?3.5 ? 28 5.0? ? ? 203.3 26 27 ?3.5 ? 28 5.0? ? ? 203.3 22 23 ?3.5 ? 24 5.0? ? ? 1003.3 22 23 ?3.5 ? 24 5.0? ? ? 100 mVIO + 20 10 40 20 ? ? 20 10 40 20 ? ? 20 10 40 20 ? ? 20 10 40 20 ? ? 20 10 40 20 ? ?mAmA5.0 128.0 50? ?5.0 128.0 50? ?5.0 128.0 50? ?5.0 ?8.0 ?? ?5.0 ?8.0 ?? ? mA?4060?4060?4060?4060?4060mAICC ? ? ? ? 3.0 1.2 ? ? 1.4 0.7 3.0 1.2 ? ? ? ? 3.0 1.2 ? ? ? ? 3.0 1.2 ? ? ? ? 3.0 1.2mA8. LM224: Tlow = ?25°C, Thigh = +85°C LM324/LM324A: Tlow = 0°C, Thigh = +70°C LM2902: Tlow = ?40°C, Thigh = +105°C LM2902V & NCV2902: Tlow = ?40°C, Thigh = +125°C NCV2902 is qualified for automotive use. 9. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is VCC ?1.7 V, but either or both inputs can go to +32 V without damage, independent of the magnitude of VCC.4 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902Bias Circuitry Common to Four Amplifiers VCC Q14 Q13 Q19 5.0 pF 40 k Q12 25 + Q18 Inputs Q9 ? Q2 Q3 Q4 Q17 Q21 Q6 Q5 Q8 Q26 Q10 2.0 k VEE/GND Q7 Q1 Q25 2.4 k Q20 Q11 Q23 Q22Output Q15 Q16Q24Figure 1. Representative Circuit Diagram (One?Fourth of Circuit Shown)5 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902CIRCUIT DESCRIPTION The LM324 series is made using four internally compensated, two?stage operational amplifiers. The first stage of each consists of differential input devices Q20 and Q18 with input buffer transistors Q21 and Q17 and the differential to single ended converter Q3 and Q4. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance, a smaller compensation capacitor (only 5.0 pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q20 and Q18. Another feature of this input stage is that the input common mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single?ended converter. The second stage consists of a standard current source load amplifier stage.3.0 V to VCC(max) 1 2 3 4 VEE VCC VCC = 15 Vdc RL = 2.0 kW TA = 25°C 1.0 V/DIV5.0 ms/DIVFigure 2. Large Signal Voltage Follower ResponseEach amplifier is biased from an internal?voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.VCC 1 2 3 4 1.5 V to VEE(max) 1.5 V to VCC(max)Single SupplyVEE/GNDSplit Supplies Figure 3.70 60 GAIN MARGIN (dB) 50 40 30 20 10 0 1.0 10 100 1000 LOAD CAPACITANCE (pF) Gain Margin Phase Margin70 60 PHASE MARGIN (°) 50 40 30 20 10 0 10000Figure 4. Gain and Phase Margin6 LM324, LM324A, LM224, LM2902, LM2902V, NCV290220 A VOL LARGE?SIGNAL , OPEN LOOP VOLTAGE GAIN (dB) 18 ± V , INPUT VOLTAGE (V) I 16 14 12 10 8.0 6.0 4.0 2.0 0 Negative Positive 120 100 80 60 40 20 0 ?20 0 2.0 4.0 6.0 8.0 10 12 14 16 18 20 1.0 10 100 1.0 k 10 k 100 k 1.0 M ± VCC/VEE, POWER SUPPLY VOLTAGES (V) f, FREQUENCY (Hz) VCC = 15 V VEE = GND TA = 25°CFigure 5. Input Voltage RangeFigure 6. Open Loop Frequency14 VOR, OUTPUT VOLTAGE RANGE (Vpp ) VO , OUTPUT VOLTAGE (mV) 12 10 8.0 6.0 4.0 2.0 0 1.0 10 100 f, FREQUENCY (kHz) 1000 RL = 2.0 kW VCC = 15 V VEE = GND Gain = ?100 RI = 1.0 kW RF = 100 kW550 500 450 400 350 300 250 200 0 0 1.0 2.0 3.0 4.0 t, TIME (ms) VCC = 30 V VEE = GND TA = 25°C CL = 50 pF 5.0 6.0 7.0 8.0 Input OutputFigure 7. Large?Signal Frequency ResponseFigure 8. Small?Signal Voltage Follower Pulse Response (Noninverting)2.4 I CC , POWER SUPPLY CURRENT (mA) 2.1 1.8 1.5 1.2 0.9 0.6 0.3 0 0 5.0 10 15 20 25 VCC, POWER SUPPLY VOLTAGE (V) 30 35 I IB, INPUT BIAS CURRENT (nA) TA = 25°C RL = R 90807002.04.0 6.0 8.0 10 12 14 16 VCC, POWER SUPPLY VOLTAGE (V)1820Figure 9. Power Supply Current versus Power Supply VoltageFigure 10. Input Bias Current versus Power Supply Voltage7 LM324, LM324A, LM224, LM2902, LM2902V, NCV290250 k R1 5.0 k VCC VCC R2 ? LM324 +1/410 k Vref VO Vref = R1 R2 1 V 2 CC R?VCC1/4MC1403LM324 +VO 1 fo = 2 p RC C For: fo = 1.0 kHz R = 16 kW C = 0.01 mF2.5 VR CVO = 2.5 V1+Figure 11. Voltage ReferenceFigure 12. Wien Bridge Oscillatore1+ LM324 ? a R11/41 CRR2 R VOH R1 ? Vref1/4Hysteresis+ LM324 ?1/4VO VOR1LM324 + 1 CR ReoVinVOLb R1 ? e2 LM324 +1/4VinL VrefVinHR1 (V ? V ) + Vref VinL = R1 + R2 OL ref VinH = H= R1 (VOH ? Vref) + Vref R1 + R2 R1 (VOH ? VOL) R1 + R2eo = C (1 + a + b) (e2 ? e1)Figure 13. High Impedance Differential AmplifierFigure 14. Comparator with HysteresisR R Vin C1 R2 ? C R ? LM324 + Vref Bandpass Output R2 R1 ? LM324 + Vref Where: Where:1/4 1/4100 k C 100 k ? LM324 + R3 Vref1/41 fo =2 p RC R1 = QR R1 R2 = TBP R3 = TN R2 C1 = 10C For: For: For: For: fo = 1.0 kHz Q = 10 TBP = 1 TN = 1 R C R1 R2 R3 = 160 kW = 0.001 mF = 1.6 MW = 1.6 MW = 1.6 MW Vref = 1 V 2 CCLM324 +1/4VrefC1 Notch OutputT BP = Center Frequency Gain TN = Passband Notch GainFigure 15. Bi?Quad Filter8 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902Vref = Vref 1 V 2 CC + LM324 ?1/4Triangle Wave Output R3 75 k R1 100 k Vref Rf f = R1 + RC 4 CRf R1 if R3 = R2 R1 R2 + R1R2 300 k + LM324 ?1/4VCC C Square Wave Output R1 Vin R2 Vref C R3 ? LM324 + 1 Vref = 2 VCC1/4CO VO CO = 10 CCFigure 16. Function GeneratorFigure 17. Multiple Feedback Bandpass FilterGiven: fo = center frequency A(fo) = gain at center frequency Choose value fo, C Then: R3 = R1 = R2 = Q p fo C R3 2 A(fo) R1 R3 4Q2 R1 ? R3 Qo fo BW & 0.1For less than 10% error from operational amplifier, where fo and BW are expressed in Hz.If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.9 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902ORDERING INFORMATIONDevice LM224D LM224DG LM224DR2 LM224DR2G LM224DTB LM224DTBG LM224DTBR2 LM224DTBR2G LM224N LM224NG LM324D LM324DG LM324DR2 LM324DR2G LM324DTB LM324DTBG LM324DTBR2 LM324DTBR2G LM324N LM324NG LM324AD LM324ADG LM324ADR2 LM324ADR2G LM324ADTB LM324ADTBG LM324ADTBR2 LM324ADTBR2G LM324AN LM324ANG 0°C to +70°C ?25°C to +85°C Operating Temperature Range Package SOIC?14 SOIC?14 (Pb?Free) SOIC?14 SOIC?14 (Pb?Free) TSSOP?14* TSSOP?14* TSSOP?14* TSSOP?14* PDIP?14 PDIP?14 (Pb?Free) SOIC?14 SOIC?14 (Pb?Free) SOIC?14 SOIC?14 (Pb?Free) TSSOP?14* TSSOP?14* TSSOP?14* TSSOP?14* PDIP?14 PDIP?14 (Pb?Free) SOIC?14 SOIC?14 (Pb?Free) SOIC?14 SOIC?14 (Pb?Free) TSSOP?14* TSSOP?14* TSSOP?14* TSSOP?14* PDIP?14 PDIP?14 (Pb?Free) 25 Units/Rail 2500/Tape & Reel 55 Units/Rail 25 Units/Rail 2500/Tape & Reel 55 Units/Rail 25 Units/Rail 2500/Tape & Reel 55 Units/Rail Shipping ?96 Units/Tube2500/Tape & Reel96 Units/Tube2500/Tape & Reel96 Units/Tube2500/Tape & Reel?For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *This package is inherently Pb?Free.10 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902ORDERING INFORMATION (continued)Device LM2902D LM2902DG LM2902DR2 LM2902DR2G LM2902DTB LM2902DTBG LM2902DTBR2 LM2902DTBR2G LM2902N LM2902NG LM2902VD LM2902VDG LM2902VDR2 LM2902VDR2G LM2902VDTB LM2902VDTBG LM2902VDTBR2 LM2902VDTBR2G LM2902VN LM2902VNG NCV2902DR2 NCV2902DR2G NCV2902DTBR2G ?40°C to +125°C ?40°C to +105°C Operating Temperature Range Package SOIC?14 SOIC?14 (Pb?Free) SOIC?14 SOIC?14 (Pb?Free) TSSOP?14* TSSOP?14* TSSOP?14* TSSOP?14* PDIP?14 PDIP?14 (Pb?Free) SOIC?14 SOIC?14 (Pb?Free) SOIC?14 SOIC?14 (Pb?Free) TSSOP?14* TSSOP?14* TSSOP?14* TSSOP?14* PDIP?14 PDIP?14 (Pb?Free) SOIC?14 SOIC?14 (Pb?Free) TSSOP?14* 2500/Tape & Reel 25 Units/Rail 2500/Tape & Reel 55 Units/Rail 25 Units/Rail 2500/Tape & Reel 55 Units/Rail Shipping ?96 Units/Tube2500/Tape & Reel96 Units/Tube2500/Tape & Reel?For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *This package is inherently Pb?Free.11 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902MARKING DIAGRAMSPDIP?14 N SUFFIX CASE 646 14 LM324AN AWLYYWWG 1 1 14 LMx24N AWLYYWWG 1 SOIC?14 D SUFFIX CASE 751A 14 LM324ADG AWLYWW 1 1 14 LMx24DG AWLYWW 1 14 LM2902DG AWLYWW 1 14 LM2902VDG AWLYWW 14 LM2902N AWLYYWWG 1 14 LM2902VN AWLYYWWG*TSSOP?14 DTB SUFFIX CASE 948G 14 x24 ALYWG G 1 1 14 324A ALYWG G 1 14 2902 ALYWG G 1 14 2902 V ALYWG Gx = 2 or 3 A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or G = Pb?Free Package (Note: Microdot may be in either location) *This marking diagram also applies to NCV2902.12 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902PACKAGE DIMENSIONSPDIP?14 CASE 646?06 ISSUE P148B1 7NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.290 0.310 ??? 10 _ 0.015 0.039 MILLIMETERS MIN MAX 18.16 19.56 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.37 7.87 ??? 10 _ 0.38 1.01A F N ?T?SEATING PLANEL CHGD 14 PLKMJ MDIM A B C D F G H J K L M N0.13 (0.005)13 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902PACKAGE DIMENSIONSSOIC?14 CASE 751A?03 ISSUE H?A?14 8?B?P 7 PL 0.25 (0.010)MBM17NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.G C ?T?SEATING PLANER X 45 _FD 14 PL 0.25 (0.010)KMMSJT BASDIM A B C D F G J K M P RMILLIMETERS MIN MAX 8.55 8.75 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50INCHES MIN MAX 0.337 0.344 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.228 0.244 0.010 0.019SOLDERING FOOTPRINT*7X7.04 1 0.5814X14X1.521.27 PITCHDIMENSIONS: MILLIMETERS*For additional information on our Pb?Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.14 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902PACKAGE DIMENSIONSTSSOP?14 CASE 948G?01 ISSUE B14X K REF0.10 (0.004) 0.15 (0.006) T USMT USVSN2XL/21480.25 (0.010) MLPIN 1 IDENT. 1 7B ?U?N F DETAIL E K K1 J J1NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE ?W?. DIM A B C D F G H J J1 K K1 L M MILLIMETERS MIN MAX 4.90 5.10 4.30 4.50 ??? 1.20 0.05 0.15 0.50 0.75 0.65 BSC 0.50 0.60 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0_ 8_ INCHES MIN MAX 0.193 0.200 0.169 0.177 ??? 0.047 0.002 0.006 0.020 0.030 0.026 BSC 0.020 0.024 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0_ 8_0.15 (0.006) T USA ?V?SECTION N?N ?W?C 0.10 (0.004) ?T? SEATINGPLANEDGHDETAIL ESOLDERING FOOTPRINT*7.06 10.3614X14X1.26*For additional information on our Pb?Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.15??? ??? ??? ???0.65 PITCHDIMENSIONS: MILLIMETERS LM324, LM324A, LM224, LM2902, LM2902V, NCV2902ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.PUBLICATION ORDERING INFORMATIONLITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303?675?2175 or 800?344?3860 Toll Free USA/Canada Fax: 303?675?2176 or 800?344?3867 Toll Free USA/Canada Email:
N. American Technical Support: 800?282?9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81?3? ON Semiconductor Website:
Order Literature: /orderlit For additional information, please contact your local Sales Representative16LM324/D
常用运算放大器大全_电子/电路_工程科技_专业资料。常用运算放大器列表L...(JEET) MC1458 双运放(内补偿) LF147/347 JEET 输入型运算放大器 LF156/...10种运算放大器_信息与通信_工程科技_专业资料。各种不同类型的运算放大器介绍一.uA741M,uA741I,uA741C(单运放)高增益运算放大器用于军事, 工业和商业应用.这...各种运放的个人意见和评价_信息与通信_工程科技_专业资料。各种运放的个人意见和评价 各种运放的个人意见和评价首先玩音乐这是一门比较败家的行当啊! 花费的金钱不...推荐运放学习的书籍_信息与通信_工程科技_专业资料。我的运放学习心得运放是模拟电路,是信号链路一个非常基础但是又非常重要 的一块内容,学好运放,基本你的模拟电路...常见运放引脚图_电子/电路_工程科技_专业资料。单运放8P 双路运放8P 四路运放14P引脚图 LM224,LM324, OPA4350,TL084 LM339,TLC374 LM358,LM393,LM2904,OPA...运放的主要参数介绍 本节以《中国集成电路大全》集成运算放大器为主要参考资料,同时参考了其它 相关资料.集成运放的参数较多,其中主要参数分为直流指标和交流指标。 ...LM358双运放简介_信息与通信_工程科技_专业资料。双运算放大器集成电路LM358性能特点简介 LM358 双运放简介 LM358 内部包括有两个独立的、高增益、内部频率补偿的...几种运算放大器的简单介绍_信息与通信_工程科技_专业资料。几种常用型运算放大器...该运放的引脚图如右图所示: 引脚 1,5 为偏置输入,3,2 为同相反相输入,7,...常用运放型号简介_信息与通信_工程科技_专业资料。电子制作 运放型号简介 1. 普通运放: (1)运放 LM301 运算放大器 NS[DATA] LM308 运算放大器 NS[DATA] LM...运放应用大全_电子/电路_工程科技_专业资料。1.集成运算放大器的主要应用 集成运算放大器的两个输入端分别为同相输入端 uP 和反相输入端 uN,这里的“同相” 和...
All rights reserved Powered by
copyright &copyright 。文档资料库内容来自网络,如有侵犯请联系客服。}

我要回帖

更多关于 sink in 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信