由12个触发器构成的寄存器与触发器构成的寄存器与触发器可以存放 位二进制数

寄存器、锁存器的区别 日  触发器:能够存储一位信号的基本单元电路..
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
寄存器、锁存器的区别
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer-4.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口3455人阅读
寄存器一般是边沿触发的触发器,电路里叫register,而触发器就是楼上所说的各种逻辑门构成的包含电平触发和边沿触发的两种,而锁存器则是电平触发的。所以一般说来,我们只叫寄存器和锁存器两种,在时序电路中寄存器的作用就是只在时钟的边沿有效传输data(setup time和hold time满足),而锁存器则在有效电平器件都可以传输data
寄存器:register,由时钟沿触发的,一般是主从的,我们这数字电路里也学过主要是由传输门和反向器构成,应用很广!
锁存器:latch,由电平触发,有很很多种,有我们数字电路里学的JK,RS等,一般是用传输门和反向器构成构成在较多,其优点是面积小,但时序分析较困难!
触发器一般是指寄存器:flip-flop
D触发器上电时Q和Q非的电平是怎样的?&
D触发器刚上不定的。只有当有反馈后才知道。可以在R、S端加RC延时电路来预制初态
在实际的数字系统中,通常把能够用来存储一组二进制代码的同步时序逻辑电路称为寄存器.由于触发器内有记忆功能,因此利用触发器可以方便地构成寄存器。由于一个触发器能够存储一位二进制码,所以把n个触发器的时钟端口连接起来就能构成一个存储n位二进制码的寄存器。锁存器是电平触发的存储单元,数据存储的动作取决于输入时钟(或者使能)信号的电平值,尽当锁存器处于使能状态时,输出才会随着数据输入发生变化。
触发器是边沿敏感的存储单元,数据存储的动作有某一信号的上升或者下降沿进行同步的。在实际的数字系统中,通常把能够用来存储一组二进制代码的同步时序逻辑电路称为寄存器.由于触发器内有记忆功能,因此利用触发器可以方便地构成寄存器。由于一个触发器能够存储一位二进制码,所以把n个触发器的时钟端口连接起来就能构成一个存储n位二进制码的寄存器。寄存器用来存放数据的一些小型存储区域,用来暂时存放参与运算的数据和运算结果。其实寄存器就是一种常用的时序逻辑电路,但这种时序逻辑电路只包含存储电路。寄存器的存储电路是由锁存器或触发器构成的,因为一个锁存器或触发器能存储1位二进制数,所以由N个锁存器或触发器可以构成N位寄存器。
触发器是在时钟的沿进行数据的锁存的,而锁存器是用电平使能来锁存数据的。所以触发器的Q输出端在每一个时钟沿都会被更新,而锁存器只能在使能电平有效器件才会被更新。
有一些教科书里的触发器实际是锁存器。在FPGA设计中建议如果不是必须那么应该尽量使用触发器而不是锁存器。
&&&&&&& 钟控D触发器其实就是D锁存器,边沿D触发器才是真正的D触发器,钟控D触发器在使能情况下输出随输入变化,边沿触发器只有在边沿跳变的情况下输出才变化。两个D锁存器可以构成一个D触发器,归根到底还是dff是边沿触发的,而latch是电平触发的。锁存器的输出对输入透明的,输入是什么,输出就是什么,这就是锁存器不稳定的原因,而触发器是由两个锁存器构成的一个主从触发器,输出对输入是不透明的,必须在时钟的上升/下降沿才会将输入体现到输出,所以能够消除输入的毛刺信号。
触发器与锁存器的比较:
1、latch由电平触发,非同步控制。在使能信号有效时latch相当于通路,在使能信号无效时latch保持输出状态。DFF由时钟沿触发,同步控制。
2、latch对输入电平敏感,受布线延迟影响较大,很难保证输出没有毛刺产生;DFF则不易产生毛刺。
3、如果使用门电路来搭建latch和DFF,则latch消耗的门资源比DFF要少,这是latch比DFF优越的地方。所以,在ASIC中使用 latch的集成度比DFF高,但在FPGA中正好相反,因为FPGA中没有标准的latch单元,但有DFF单元,一个LATCH需要多个LE才能实现。latch是电平触发,相当于有一个使能端,且在激活之后(在使能电平的时候)相当于导线了,随输出而变化。在非使能状态下是保持原来的信号,这就可以看出和flip-flop的差别,其实很多时候latch是不能代替ff的。
4、latch将静态时序分析变得极为复杂。
<span style="font-size:18 color:#、目前latch只在极高端电的路中使用,如intel 的P4等CPU。 FPGA中有latch单元,寄存器单元就可以配置成latch单元,在xilinx v2p的手册将该单元成为register/latch单元,附件是xilinx半个slice的结构图。
&&&&&&& 一般的设计规则是:在绝大多数设计中避免产生latch。它会让您设计的时序完蛋,并且它的隐蔽性很强,非老手不能查出。latch最大的危害在于不能过滤毛刺。这对于下一级电路是极其危险的。所以,只要能用D触发器的地方,就不用latch。
&&&&&& 有些地方没有时钟,也只能用latch了。比如现在用一个clk接到latch的使能端(假设是高电平使能),这样需要的setup时间,就是数据在时钟的下降沿之前需要的时间,但是如果是一个DFF,那么setup时间就是在时钟的上升沿需要的时间。这就说明如果数据晚于控制信号的情况下,只能用latch,这种情况就是,前面所提到的latch timing borrow。基本上相当于借了一个高电平时间。也就是说,latch借的时间也是有限的。
&&&&&&& 对latch进行STA的分析其实也是可以,但是要对工具相当熟悉才行.不过很容易出错.当前PrimeTime,是支持进行latch分析的.现在一些综合工具内置的STA分析功能也支持,比如RTL compiler, Design Compiler.除了ASIC里可以节省资源以外。latch在同步设计里出现的可能还是挺小的,现在处理过程中大都放在ff里打一下。
版权声明:本文为博主原创文章,未经博主允许不得转载。
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
访问:915826次
积分:11122
积分:11122
排名:第616名
原创:143篇
转载:280篇
评论:212条
(2)(1)(3)(1)(1)(2)(2)(6)(4)(1)(2)(2)(7)(3)(2)(17)(2)(4)(5)(4)(6)(9)(6)(1)(2)(2)(6)(6)(5)(6)(2)(6)(1)(1)(4)(2)(1)(3)(9)(2)(4)(4)(3)(6)(3)(7)(8)(4)(9)(13)(22)(19)(44)(126)触发器_图文_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
文档贡献者
评价文档:
大小:3.08MB
登录百度文库,专享文档复制特权,财富值每天免费拿!
你可能喜欢1N个触发器可以构成能寄存_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
1N个触发器可以构成能寄存
上传于||文档简介
&&1&#8203;N&#8203;个&#8203;触&#8203;发&#8203;器&#8203;可&#8203;以&#8203;构&#8203;成&#8203;能&#8203;寄&#8203;存
阅读已结束,如果下载本文需要使用
想免费下载本文?
你可能喜欢触发器寄存器 - 名词简介
:flipflop,:register触发器是边沿敏感的,数据存储的动作有某一信号的上升或者下降沿进行同步的。 寄存器用来存放数据的一些小型存储区域,用来暂时存放参与运算的数据和运算结果。其实寄存器就是一种常用的时序逻辑电路,但这种时序逻辑电路只包含存储电路。寄存器的存储电路是由锁存器或触发器构成的,因为一个锁存器或触发器能存储1位二进制数,所以由N个锁存器或触发器可以构成N位寄存器。触发器是在时钟的沿进行数据的锁存的,而锁存器是用电平使能来锁存数据的。所以触发器的Q输出端在每一个时钟沿都会被更新,而所存器只能在使能电平有效器件才会被更新。在FPGA设计中建议如果不是必须那么应该尽量使用触发器而不是所存器。触发器的语言描述:processbeginwaituntilclk’eventandclk=’1’;q&=d;所存器的语言描述:process(en,d)beginifen=’1’thenq&=d; 触发器(flip-flop)VS寄存器(register)触发器:仅能存储一位二进制信息寄存器:多个触发器构成,存储多位二进制信息 触发器:能够存储一位信号的基本单元电路称为“触发器”;寄存器:在实际的数字系统中,通常把能够用来存储一组二进制代码的称为寄存器。由于触发器内有记忆功能,因此利用触发器可以方便地构成寄存器。由于一个触发器能够存储一位二进制码,所以把n个触发器的时钟端口连接起来就能构成一个存储n位二进制码的寄存器。
触发器寄存器 - 具体阐述
一、触发器触发器,数据库领域名词。触发器(trigger)是个特殊的存储过程,它的执行不是由程序调用,也不是手工启动,而是由个事件来触发,比如当对一个表进行操作(insert,delete,update)时就会激活它执行。触发器经常用于加强数据的完整性约束和业务规则等。触发器可以从DBA_TRIGGERS,USER_TRIGGERS数据字典中查到。触发器可以查询其他表,而且可以包含复杂的SQL语句。它们主要用于强制服从复杂的业务规则或要求。例如:您可以根据客户当前的帐户状态,控制是否允许插入新订单。触发器也可用于强制,以便在多个表中添加、更新或删除行时,保留在这些表之间所定义的关系。然而,强制引用完整性的最好方法是在相关表中定义主键和外键约束。如果使用数据库关系图,则可以在表之间创建关系以自动创建外键约束。  创建触发器的SQL语法  |  CREATETRIGGER``.``    ON  FOREACHROW  BEGIN  --dosomething  END|触发器的优点触发器可通过数据库中的相关表实现级联更改;不过,通过级联引用完整性约束可以更有效地执行这些更改。触发器可以强制比用定义的约束更为复杂的约束。与CHECK约束不同,触发器可以引用其它表中的列。例如,触发器可以使用另一个表中的SELECT比较插入或更新的数据,以及执行其它操作,如修改数据或显示用户定义错误信息。触发器也可以评估数据修改前后的表状态,并根据其差异采取对策。一个表中的多个同类触发器(INSERT、UPDATE或DELETE)允许采取多个不同的对策以响应同一个修改语句。比较触发器与约束约束和触发器在特殊情况下各有优势。触发器的主要好处在于它们可以包含使用Transact-SQL代码的复杂处理逻辑。因此,触发器可以支持约束的所有功能;但它在所给出的功能上并不总是最好的方法。实体完整性总应在最低级别上通过索引进行强制,这些索引或是PRIMARYKEY和UNIQUE约束的一部分,或是在约束之外独立创建的。假设功能可以满足应用程序的功能需求,应通过CHECK约束进行强制,而引用完整性(RI)则应通过FOREIGNKEY约束进行强制。在约束所支持的功能无法满足应用程序的功能要求时,触发器就极为有用。例如:除非REFERENCES子句定义了级联引用操作,否则FOREIGNKEY约束只能以与另一列中的值完全匹配的值来验证列值。CHECK约束只能根据逻辑表达式或同一表中的另一列来验证列值。如果应用程序要求根据另一个表中的列验证列值,则必须使用触发器。约束只能通过标准的系统错误信息传递错误信息。如果应用程序要求使用(或能从中获益)自定义信息和较为复杂的错误处理,则必须使用触发器。触发器可通过数据库中的相关表实现级联更改;不过,通过级联引用完整性约束可以更有效地执行这些更改。触发器可以禁止或回滚违反引用完整性的更改,从而取消所尝试的数据修改。当更改外键且新值与主键不匹配时,此类触发器就可能发生作用。例如,可以在titleauthor.title_id上创建一个插入触发器,使它在新值与titles.title_id中的某个值不匹配时回滚一个插入。不过,通常使用FOREIGNKEY来达到这个目的。如果触发器表上存在约束,则在INSTEADOF触发器执行后但在AFTER触发器执行前检查这些约束。如果约束破坏,则回滚INSTEADOF触发器操作并且不执行AFTER触发器。触发器到底可不可以在视图上创建在SQLServer?联机丛书中,是没有说触发器不能在视图上创建的,并且在语法解释中表明:在CREATETRIGGER的ON之后可以是视图。然而,事实似乎并不是如此,很多专家也说触发器不能在视图上创建。我也专门作了测试,的确如此,不管是普通视图还是索引视图,都无法在上面创建触发器,真的是这样吗?请点击详细,但是无可厚非的是:当在临时表或系统表上创建触发器时会遭到拒绝。深刻理解FORCREATETRIGGER语句的FOR关键字之后可以跟INSERT、UPDATE、DELETE中的一个或多个,也就是说在其它情况下是不会触发触发器的,包括SELECT、TRUNCATE、WRITETEXT、UPDATETEXT。相关内容一个有趣的应用我们看到许多注册系统在注册后都不能更改用户名,但这多半是由应用程序决定的,如果直接打开数据库表进行更改,同样可以更改其用户名,在触发器中利用回滚就可以巧妙地实现无法更改用户名……详细内容触发器内部语句出错时……这种情况下,前面对数据更改操作将会无效。举个例子,在表中插入数据时触发触发器,而触发器内部此时发生了运行时错误,那么将返回一个错误值,并且拒绝刚才的数据插入。不能在触发器中使用的语句触发器中可以使用大多数T-SQL语句,但如下一些语句是不能在触发器中使用的。  ,如:CREATEDATABASE、CREATETABLE、CREATEINDEX等。  ,如:ALTERDATABASE、ALTERTABLE、ALTERINDEX等。  ,如:DROPDATABASE、DROPTABLE、DROPINDEX等。  DISK语句,如:DISKINIT、DISKRESIZE。  LOAD语句,如:LOADDATABASE、LOADLOG。  RESTORE语句,如:RESTOREDATABASE、RESTORELOG。  RECONFIGURE  TRUNCATETABLE语句在sybase的触发器中不可使用!慎用触发器触发器功能强大,轻松可靠地实现许多复杂的功能,为什么又要慎用呢。触发器本身没有过错,但由于我们的滥用会造成数据库及应用程序的维护困难。在数据库操作中,我们可以通过关系、触发器、存储过程、应用程序等来实现数据操作……同时规则、约束、缺省值也是保证数据完整性的重要保障。如果我们对触发器过分的依赖,势必影响数据库的结构,同时增加了维护的复杂程序.二、寄存器  寄存器定义寄存器是中央处理器内的组成部份。寄存器是有限存贮容量的高速存贮部件,它们可用来暂存指令、数据和位址。在中央处理器的控制部件中,包含的寄存器有指令寄存器(IR)和程序计数器(PC)。在中央处理器的算术及逻辑部件中,包含的寄存器有累加器(ACC)。寄存器是中的最顶端,也是系统获得操作资料的最快速途径。寄存器通常都是以他们可以保存的位元数量来估量,举例来说,一个“8位元寄存器”或“32位元寄存器”。寄存器现在都以寄存器档案的方式来实作,但是他们也可能使用单独的正反器、高速的核心内存、薄膜内存以及在数种机器上的其他方式来实作出来。寄存器通常都用来意指由一个指令之输出或输入可以直接索引到的暂存器群组。更适当的是称他们为“架构寄存器”。例如,x86指令及定义八个32位元寄存器的集合,但一个实作x86指令集的CPU可以包含比八个更多的寄存器。寄存器是CPU内部的元件,寄存器拥有非常高的读写速度,所以在寄存器之间的数据传送非常快。寄存器用途1.可将寄存器内的数据执行算术及逻辑运算;2.存于寄存器内的地址可用来指向内存的某个位置,即寻址;3.可以用来读写数据到电脑的周边设备。数据寄存器位寄存器,这14个寄存器按其用途可分为(1)通用寄存器、(2)指令指针、(3)标志寄存器和(4)段寄存器等4类。(1)通用寄存器有8个,又可以分成2组,一组是数据寄存器(4个),另一组是指针寄存器及变址寄存器(4个).数据寄存器分为:AH&AL=AX():,常用于运算;在乘除等指令中指定用来存放操作数,另外,所有的I/O指令都使用这一寄存器与外界设备传送数据.BH&BL=BX(base):基址寄存器,常用于地址索引;CH&CL=CX(count):,常用于计数;常用于保存计算值,如在移位指令,循环(loop)和串处理指令中用作隐含的计数器.DH&DL=DX(data):数据寄存器,常用于数据传递。他们的特点是,这4个16位的寄存器可以分为高8位:AH,BH,CH,DH.以及低八位:AL,BL,CL,DL。这2组8位寄存器可以分别寻址,并单独使用。另一组是指针寄存器和变址寄存器,包括:  SP(StackPointer):堆栈指针,与SS配合使用,可指向目前的堆栈位置;  BP(BasePointer):基址指针寄存器,可用作SS的一个相对基址位置;  SI(SourceIndex):源变址寄存器可用来存放相对于DS段之源变址指针;  DI(DestinationIndex):目的变址寄存器,可用来存放相对于ES段之目的变址指针。这4个16位寄存器只能按16位进行存取操作,主要用来形成操作数的地址,用于堆栈操作和变址运算中计算操作数的有效地址。(2)指令指针IP(InstructionPointer)指令指针IP是一个16位专用寄存器,它指向当前需要取出的指令字节,当BIU从内存中取出一个指令字节后,IP就自动加1,指向下一个指令字节。注意,IP指向的是指令地址的段内地址偏移量,又称(OffsetAddress)或有效地址(EA,EffectiveAddress)。(3)标志寄存器FR(FlagRegister)8086有一个18位的标志寄存器FR,在FR中有意义的有9位,其中6位是状态位,3位是控制位。OF:溢出标志位OF用于反映有符号数加减运算所得结果是否溢出。如果运算结果超过当前运算位数所能表示的范围,则称为溢出,OF的值被置为1,否则,OF的值被清为0。DF:方向标志DF位用来决定在串操作指令执行时有关指针寄存器发生调整的方向。IF:中断允许标志IF位用来决定CPU是否响应CPU外部的发出的中断请求。但不管该标志为何值,CPU都必须响应CPU外部的不可屏蔽中断所发出的中断请求,以及CPU内部产生的中断请求。具体规定如下:(1)、当IF=1时,CPU可以响应CPU外部的可屏蔽中断发出的中断请求;(2)、当IF=0时,CPU不响应CPU外部的可屏蔽中断发出的中断请求。TF:跟踪标志TF。该标志可用于程序调试。TF标志没有专门的指令来设置或清楚。(1)如果TF=1,则CPU处于单步执行指令的工作方式,此时每执行完一条指令,就显示CPU内各个寄存器的当前值及CPU将要执行的下一条指令。(2)如果TF=0,则处于连续工作模式。SF:符号标志SF用来反映运算结果的符号位,它与运算结果的最高位相同。在微机系统中,有符号数采用补码表示法,所以,SF也就反映运算结果的正负号。运算结果为正数时,SF的值为0,否则其值为1。ZF:零标志ZF用来反映运算结果是否为0。如果运算结果为0,则其值为1,否则其值为0。在判断运算结果是否为0时,可使用此标志位。AF:下列情况下,AF的值被置为1,否则其值为0:(1)、在字操作时,发生低字节向高字节进位或借位时;(2)、在字节操作时,发生低4位向高4位进位或借位时。PF:奇偶标志PF用于反映运算结果中“1”的个数的奇偶性。如果“1”的个数为偶数,则PF的值为1,否则其值为0。CF:进位标志CF主要用来反映运算是否产生进位或借位。如果运算结果的最高位产生了一个进位或借位,那么,其值为1,否则其值为0。)4)段寄存器(SegmentRegister)为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址:  CS(CodeSegment):代码段寄存器;  DS(DataSegment):数据段寄存器;  SS(StackSegment):寄存器;  ES(ExtraSegment):附加段寄存器。当一个程序要执行时,就要决定程序代码、数据和堆栈各要用到内存的哪些位置,通过设定段寄存器CS,DS,SS来指向这些起始位置。通常是将DS固定,而根据需要修改CS。所以,程序可以在可寻址空间小于64K的情况下被写成任意大小。所以,程序和其数据组合起来的大小,限制在DS所指的64K内,这就是COM文件不得大于64K的原因。8086以内存做为战场,用寄存器做为军事基地,以加速工作。以上是8086寄存器的整体概况,自80386开始,PC进入32bit时代,其寻址方式,寄存器大小,功能等都发生了变化。以下是80386的寄存器的一些资料:寄存器都是32-bits宽。A、通用寄存器下面介绍通用寄存器及其习惯用法。顾名思义,通用寄存器是那些你可以根据自己的意愿使用的寄存器,修改他们的值通常不会对计算机的运行造成很大的影响。通用寄存器最多的用途是计算。EAX:通用寄存器。相对其他寄存器,在进行运算方面比较常用。在保护模式中,也可以作为内存偏移指针(此时,DS作为段寄存器或选择器)EBX:通用寄存器。通常作为内存偏移指针使用(相对于EAX、ECX、),DS是默认的段寄存器或选择器。在保护模式中,同样可以起这个作用。ECX:通用寄存器。通常用于特定指令的计数。在保护模式中,也可以作为内存偏移指针(此时,DS作为寄存器或段选择器)。EDX:通用寄存器。在某些运算中作为EAX的溢出寄存器(例如乘、除)。在保护模式中,也可以作为内存偏移指针(此时,DS作为段寄存器或选择器)。同AX分为AH&AL一样,上述寄存器包括对应的16-bit分组和8-bit分组。B、用作内存指针的特殊寄存器ESI:通常在内存操作指令中作为“源地址指针”使用。当然,ESI可以被装入任意的数值,但通常没有人把它当作通用寄存器来用。DS是默认段寄存器或选择器。EDI:通常在内存操作指令中作为“目的地址指针”使用。当然,EDI也可以被装入任意的数值,但通常没有人把它当作通用寄存器来用。DS是默认段寄存器或选择器。:这也是一个作为指针的寄存器。通常,它被高级语言编译器用以建造‘堆'来保存函数或过程的局部变量,不过,还是那句话,你可以在其中保存你希望的任何数据。SS是它的默认段寄存器或选择器。注意,这三个寄存器没有对应的8-bit分组。换言之,你可以通过SI、DI、BP作为别名访问他们的低16位,却没有办法直接访问他们的低8位。C、段选择器:实模式下的段寄存器到保护模式下摇身一变就成了选择器。不同的是,实模式下的“段寄存器”是16-bit的,而保护模式下的选择器是32-bit的。CS代码段,或代码选择器。同IP寄存器(稍后介绍)一同指向当前正在执行的那个地址。处理器执行时从这个寄存器指向的段(实模式)或内存(保护模式)中获取指令。除了跳转或其他分支指令之外,你无法修改这个寄存器的内容。DS数据段,或数据选择器。这个寄存器的低16bit连同ESI一同指向的指令将要处理的内存。同时,所有的内存操作指令默认情况下都用它指定操作段(实模式)或内存(作为选择器,在保护模式。这个寄存器可以被装入任意数值,然而在这么做的时候需要小心一些。方法是,首先把数据送给AX,然后再把它从AX传送给DS(当然,也可以通过堆栈来做).ES附加段,或附加选择器。这个寄存器的低16bit连同EDI一同指向的指令将要处理的内存。同样的,这个寄存器可以被装入任意数值,方法和DS类似。FSF段或F选择器(推测F可能是Free?)。可以用这个寄存器作为默认段寄存器或选择器的一个替代品。它可以被装入任何数值,方法和DS类似。GSG段或G选择器(G的意义和F一样,没有在Intel的文档中解释)。它和FS几乎完全一样。 SS堆栈段或堆栈选择器。这个寄存器的低16bit连同ESP一同指向下一次堆栈操作(push和pop)所要使用的堆栈地址。这个寄存器也可以被装入任意数值,你可以通过入栈和出栈操作来给他赋值,不过由于堆栈对于很多操作有很重要的意义,因此,不正确的修改有可能造成对堆栈的破坏。*注意一定不要在初学汇编的阶段把这些寄存器弄混。他们非常重要,而一旦你掌握了他们,你就可以对他们做任意的操作了。段寄存器,或选择器,在没有指定的情况下都是使用默认的那个。这句话在现在看来可能有点稀里糊涂,不过你很快就会在后面知道如何去做。指令指针寄存器:EIP这个寄存器非常的重要。这是一个32位宽的寄存器,同CS一同指向即将执行的那条指令的地址。不能够直接修改这个寄存器的值,修改它的唯一方法是跳转或分支指令。(CS是默认的段或选择器)上面是最基本的寄存器。下面是一些其他的寄存器,你甚至可能没有听说过它们。(都是32位宽):CR0,CR2,CR3(控制寄存器)。举一个例子,CR0的作用是切换实模式和保护模式。还有其他一些寄存器,D0,D1,D2,D3,D6和D7(调试寄存器)。他们可以作为调试器的硬件支持来设置条件断点。TR3,TR4,TR5,TR6和TR?寄存器(测试寄存器)用于某些条件测试。
触发器寄存器 - 参考资料
1.http://www..cn/index.php/%E5%AF%84%E5%AD%98%E5%99%A82.&汇编语言程序设计》3./Article/cxsj/hbyy/jcjchbyy//Article_51498.html4.5.
为本词条添加和相关影像
互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于。
登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和专业认证智愿者沟通。
您也可以使用以下网站账号登录:
此词条还可添加&
编辑次数:
参与编辑人数:
最近更新时间: 21:43:26
贡献光荣榜
扫描二维码用手机浏览词条
保存二维码可印刷到宣传品
扫描二维码用手机浏览词条
保存二维码可印刷到宣传品}

我要回帖

更多关于 触发器 锁存器 寄存器 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信