近世代数 [Q(根号P方+Q方分之v2,根号P方+Q方分之v3):Q]和[Q(根号P方+Q方分之v2+根号P方+Q方分之v3):Q]

近世代数题证明Q(根号2 )={a+b根号2| a,b是有理数}是域_百度知道
近世代数题证明Q(根号2 )={a+b根号2| a,b是有理数}是域
答题抽奖
首次认真答题后
即可获得3次抽奖机会,100%中奖。
数学好玩啊123
数学好玩啊123
采纳数:1322
获赞数:3610
显然加法、减法和乘法封闭,只需证明除法封闭即可
(a+b根号2)/(c+d根号2)=(a+b根号2)(c-d根号2)/(c+d根号2)(c-d根号2)
=[ac-2bd+(bc-ad)根号2]/(c^2-2d^2)属于Q(根号2)
由于c,d为有理数且不全为零,所以一定有c^2-2d^2≠0,否则c/d=正负根号2,矛盾。 Q(根号2)是一个加法群,1是零元,a+b根号2的负元是-a-b根号2.Q(根号2)是一个乘法群,单位元为1,任一非零元a+b根号2的逆是(a-b根号)/(a^2-2b^2)因为Q(根号2)是实数环R的子环,R乘法对加法有分配率,所以Q(根号2)的乘法对加法也有分配率。
为你推荐:
其他类似问题
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。近世代数里 Q(根号2)为什么等于a+b根号2_百度知道
近世代数里 Q(根号2)为什么等于a+b根号2
答题抽奖
首次认真答题后
即可获得3次抽奖机会,100%中奖。
数学好玩啊123
来自科学教育类芝麻团
数学好玩啊123
采纳数:1322
获赞数:3610
参与团队:
Q(根号2)是Q的单代数扩域,因为根号2是Q[x]上不可约多项式f(x)=x^2-2的一个根,所以Q(根号2)≌Q[x]/(x^2-2),后者每个元可唯一表成a+bx(a,b∈Q)的形式,故Q(根号2)每个元也能唯一表成a+b√2(a,b∈Q)的形式
为你推荐:
其他类似问题
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。补充回答题主的另一个问题——代数学的分支,前些天我在知乎上分享的两年前写的一篇文章《我的数学初观》。&br&
代数学按结构来分有,群论(群表示、群可解与群幂零、变换群(拓扑群、李群)、离散群等),环论(交换代数与非交换代数、环与模的范畴等),李代数、李超代数、无穷维李代数与代数群等,Hopf代数与量子群(可以与扭结理论、非交换几何有关),数论与代数几何(交叉领域是算术代数几何),其中表示论包括,代数表示、群表示与模表示、几何表示论(应该很热门吧)。按工具分,同调代数,常表示与模表示、代数K理论等。(此处可能存疑,因为我完全不熟悉K理论)。&br&
感觉像在报菜名,我好惭愧的很,想当初也是准备学一点儿的几何表示论,比如D-模、Perverse sheaves、Kazhdan–Lusztig理论等,如今看来只是成为过去的一个愿景。&br&
因为是两年前写的文章,则基本依赖于当时的数学世界观,而且我后来完成最基本的交换代数与同调代数以及少量的李代数知识就很少学习专门的纯代数理论,也就是难以更深入去阐述更精细代数学的分支。&br&—————————————————————————————&br&
近世代数或者抽象代数一般是指一个东西,我们不妨称之为代数基础,有回答者说过,那在这里就不赘叙。&br&
我当年看的是聂灵沼,丁石孙,代数学引论,这本书谈不上很好,几乎没有交换代数与同调代数比较基本的知识,而那时候把书上的习题做得差不多也是扎实了一些基本功,而我个人很喜欢Rotman,Advanced Modern Algebra,2ed,这本书够厚1029页,但例子超级多,习题超级多,而且著者非常友好,Rotman的An Introduction to Homological Algebra,2ed(有影印版,七八十块,小贵)也是非常友好的,比较遗憾前一本书在国内已经绝版,只能打印去看,很惭愧地我只读了一半,因为各种事情耽搁了,本科期间还看了Michael Artin,Algebra,2ed除了群表示以外的大多数章节。&br&
Serge Lang,Algebra,3rd,N. Jacobson,Basic Algebra,1,2,以及gtm73,我所理解的代数基础教程。&br&
我下一届学弟学妹研一学代数基础,授课老师用的是Dummit,D.S.,Foote R.M.,Abstract Algebra,668页。没有读过,不好评价,在这里只是提一下。&br&
很多人说过Serge Lang的代数是一本大词典,但自从完成代数基础之后学习翻它很少,但是比如在学习gtm52,2.8节拿gtm150做过参考,考证如何在环映射之间定义微分。&br&
而Jacobson的两卷书我只是听老一辈数学家看过,啃过上面的习题,Lang代数第一版没有现在这么厚,现在都934页,而且证明很简洁,没有一句废话。&br&
我有时候会想,读一本书特别是自学一本书,适合自己才是最好的,而自学这条路尽量连贯,同时培养对继续深入学习研究的自信显得很实际。&br&
是的,大多数人推荐gtm73,我也经常推荐我的学弟学妹刚读研一看这本书。学习basic algebra是需要做一些习题,而且精读一本就好啦,毕竟你将来具体研究什么方向,还会有相应的专门化基础教程,比如李代数方向的gtm9,代数几何方向的gtm52,量子群方向的gtm155,以及双有理几何领域的Kollár-Mori[1998]等。
补充回答题主的另一个问题——代数学的分支,前些天我在知乎上分享的两年前写的一篇文章《我的数学初观》。 代数学按结构来分有,群论(群表示、群可解与群幂零、变换群(拓扑群、李群)、离散群等),环论(交换代数与非交换代数、环与模的范畴等),李代数、李…
&h2&一.椭圆曲线的介绍&/h2&&p&1.&/p&&p&域k(特征0)上的椭圆曲线可看成由下面方程的解全体再加上一个无穷远点:&img src=&http://www.zhihu.com/equation?tex=y%5E2%3Dx%5E3%2Bax%2Bb%2C%28x%2Cy%29+%5Cin+k%5E2& alt=&y^2=x^3+ax+b,(x,y) \in k^2& eeimg=&1&&,a,b为k中常数,并且右边判别式&img src=&http://www.zhihu.com/equation?tex=%5CDelta+%3D-16%284a%5E%7B3%7D%2B27b%5E%7B2%7D%29& alt=&\Delta =-16(4a^{3}+27b^{2})& eeimg=&1&&不等于0(即为了光滑性要求无重根)。其上的点可以自然地有一个群结构(实数域为例,图自wiki):&/p&&br&&figure&&img src=&https://pic3.zhimg.com/eaba7419436_b.png& data-rawwidth=&697& data-rawheight=&206& class=&origin_image zh-lightbox-thumb& width=&697& data-original=&https://pic3.zhimg.com/eaba7419436_r.jpg&&&/figure&&p&具体说来,取曲线上两个点P,Q,连接P,Q的直线与曲线第三个交点(其存在是因为一元三次方程有两个解在k中,那么由韦达定理第三个也在k中)记为R。不难看出曲线&img src=&http://www.zhihu.com/equation?tex=y%5E2%3Dx%5E3%2Bax%2Bb%2C%28x%2Cy%29+%5Cin+k%5E2& alt=&y^2=x^3+ax+b,(x,y) \in k^2& eeimg=&1&&关于x轴对称,R的对称点就记为&b&P+Q。&/b&这样粗糙的讨论可能会有问题,因为可能会出现图中2,3,4的情况,2的情况把Q看成2重点即可,而3的情况迫使我们引入无穷远点0,规定此时和为0,而如果P,Q重合,那么我们就取切线。定义保证如下性质:&/p&&p&&b&随便取一条直线,其与曲线交于三个点P,Q,R(可能有无穷远点,也可能两个点重合),&/b&&b&那么&img src=&http://www.zhihu.com/equation?tex=P%2BQ%2BR%3D0& alt=&P+Q+R=0& eeimg=&1&&.&/b&&/p&&p&这个定义是“对称”的,可具体写出P+Q的表达式(利用韦达定理):&/p&&p&P,Q不重合时:&/p&&p&&figure&&img src=&https://pic2.zhimg.com/v2-c1ef16d7a6b14b0fa8bd_b.png& data-rawwidth=&125& data-rawheight=&54& class=&content_image& width=&125&&&/figure&&figure&&img src=&https://pic1.zhimg.com/v2-32f85c6b4c097fa7d0ce34_b.png& data-rawwidth=&212& data-rawheight=&54& class=&content_image& width=&212&&&/figure&P,Q重合时:&/p&&figure&&img src=&https://pic1.zhimg.com/v2-75ab42bfd1d1363d8fdda8fc_b.png& data-rawwidth=&200& data-rawheight=&104& class=&content_image& width=&200&&&/figure&&p&总之在椭圆曲线上有一个交换群结构,因此我们可以从&img src=&http://www.zhihu.com/equation?tex=y%5E2%3Dx%5E3%2Bax%2Bb%2C%28x%2Cy%29+%5Cin+k%5E2& alt=&y^2=x^3+ax+b,(x,y) \in k^2& eeimg=&1&&的一个有理解&b&生成&/b&新的有理解,从而得到许多有理解。&/p&&p&椭圆曲线在复数域的图像可以看成复平面模掉一格&img src=&http://www.zhihu.com/equation?tex=%5Cmathbb+C+%2F+%5CLambda+& alt=&\mathbb C / \Lambda & eeimg=&1&&,也就是一个环面:&/p&&figure&&img src=&https://pic1.zhimg.com/921f00b7e3591e61eee9a9c5c01c3784_b.png& class=&content_image&&&/figure&&p&&img src=&http://www.zhihu.com/equation?tex=%5Cmathbb+Q& alt=&\mathbb Q& eeimg=&1&&上图像可直观想象是实数域的椭圆曲线上的有理点:&/p&&p&&figure&&img src=&https://pic4.zhimg.com/v2-7d645cdac424f56833caa3_b.png& data-rawwidth=&500& data-rawheight=&299& class=&origin_image zh-lightbox-thumb& width=&500& data-original=&https://pic4.zhimg.com/v2-7d645cdac424f56833caa3_r.jpg&&&/figure&(图自《数论1 FERMAT的梦想和类域-加藤和也》)&/p&&p&而&img src=&http://www.zhihu.com/equation?tex=%5Cmathbb+Q_p& alt=&\mathbb Q_p& eeimg=&1&&等非阿局部域及&img src=&http://www.zhihu.com/equation?tex=%5Cmathbb+Z%2Fp%5Cmathbb+Z& alt=&\mathbb Z/p\mathbb Z& eeimg=&1&&等有限域的情况没有很好的几何图像(当然有限域的平面是有限个点,此时椭圆曲线就是一堆点)。此时不妨就把它看成代数几何意义上的一条曲线。&/p&&p&为了理解为什么椭圆曲线定义成 &b&y^2=三次多项式 ,&/b&我们简单讨论一番。&/p&&p&&b&上面已经说过,我们希望找一些好的f,使得f=0即解全体&/b&&b&带群结构&/b&&b&。&/b&而这个群结构的产生巧就巧在定义一个乘法,是把两个东西运算得到一个新东西,总共涉及3个object,而三次方程恰好有三个根,并且两个根加上方程系数完全可以求出第三个根。所以右边就&b&提供&/b&了我们一个&b&二元运算&/b&。而左边恰好是为了有一个沿x轴的对称(即(x,y)是解,那么(x,-y)也是),相当于&b&提供&/b&了一个取逆&img src=&http://www.zhihu.com/equation?tex=P+%5Crightarrow-P& alt=&P \rightarrow-P& eeimg=&1&&,而无穷远点&b&提供&/b&给我们一个单位元。&/p&&br&&p&2.&/p&&p&我们需要一些例子。&/p&&p&&b&例子一:&/b&&/p&&p&&img src=&http://www.zhihu.com/equation?tex=y%5E3%3Dx%5E2%2B6& alt=&y^3=x^2+6& eeimg=&1&&没有整数解&br&&/p&&p&由这个例子可见,一些丢番图方程的求解其实就是求某条椭圆曲线上的整点、有理点问题,而代数数论工具可以应用到求解这类方程上来。&br&&/p&&p&&b&例子二:&/b&&/p&&p&&b&Fermat的一些发现&/b&也是椭圆曲线上的整点问题如:立方数=平方数+2只有&img src=&http://www.zhihu.com/equation?tex=3%5E3%3D5%5E2%2B2& alt=&3^3=5^2+2& eeimg=&1&&,立方数=平方数+4只有&img src=&http://www.zhihu.com/equation?tex=2%5E2%2B4%3D2%5E3%2C11%5E2%2B4%3D5%5E3& alt=&2^2+4=2^3,11^2+4=5^3& eeimg=&1&&。不过Fermat可不是用什么素理想分解搞出来这个结果,而是使用他引以为豪的无穷递降法,这又涉及到高度的概念。&/p&&p&&figure&&img src=&https://pic4.zhimg.com/v2-aadfeb0a4c_b.png& data-rawwidth=&657& data-rawheight=&436& class=&origin_image zh-lightbox-thumb& width=&657& data-original=&https://pic4.zhimg.com/v2-aadfeb0a4c_r.jpg&&&/figure&(图自《数论1 FERMAT的梦想和类域-加藤和也》)&/p&&br&&p&由这个例子可见,椭圆曲线的研究有一些不同于代数数论的传统方法的新方法(比如高度)。&/p&&p&&b&例子三:&/b&&/p&&p&&b&著名的同余数问题以及BSD猜想&/b&&/p&&br&&p&&b&例子四:&/b&&br&&/p&&p&实际上我们关于椭圆曲线的定义过于狭隘了,例如:&/p&&p&&img src=&http://www.zhihu.com/equation?tex=%28%5Cfrac%7BD%7BD%2C+%5Cfrac%7BD%7BD%29+& alt=&(\frac{89780}, \frac{89780}) & eeimg=&1&&is a solution for x^3+y^3=7&/p&&p&这是为什么呢?注意到&img src=&http://www.zhihu.com/equation?tex=x%5E3%2By%5E3%3D7& alt=&x^3+y^3=7& eeimg=&1&&有特解&img src=&http://www.zhihu.com/equation?tex=%28%5Cfrac%7B4%7D%7B3%7D%2C%5Cfrac%7B5%7D%7B3%7D%29& alt=&(\frac{4}{3},\frac{5}{3})& eeimg=&1&&,&b&而x^3+y^3=7其实也是椭圆曲线!&/b&&/p&&p&用tangent method可以算出其在某个坐标变换下方程化为&img src=&http://www.zhihu.com/equation?tex=y%5E2+%3Dx%5E3-+21168& alt=&y^2 =x^3- 21168& eeimg=&1&&,当然是一条椭圆曲线的。于是我们可以用特解&img src=&http://www.zhihu.com/equation?tex=P%3D%28%5Cfrac%7B4%7D%7B3%7D%2C%5Cfrac%7B5%7D%7B3%7D%29& alt=&P=(\frac{4}{3},\frac{5}{3})& eeimg=&1&&生成新的有理解&img src=&http://www.zhihu.com/equation?tex=2P%2C3P%2C%5Chdots& alt=&2P,3P,\hdots& eeimg=&1&&,便可以得到一个有理点&img src=&http://www.zhihu.com/equation?tex=%28%5Cfrac%7BD%7BD%2C+%5Cfrac%7BD%7BD%29+& alt=&(\frac{89780}, \frac{89780}) & eeimg=&1&&&/p&&p&这个例子告诉我们,最初的定义是&b&依赖坐标的&/b&。&b&更好的定义为:&/b&&/p&&blockquote&&p&&b&标准的方程:&/b&&br&&/p&&p&&b&&figure&&img src=&https://pic2.zhimg.com/v2-631e088a300af7ead2369_b.png& data-rawwidth=&346& data-rawheight=&42& class=&content_image& width=&346&&&/figure&其中系数都在k中,并且曲线没有奇点,则其称为k上的一条椭圆曲线&/b&&/p&&p&这种方程叫做椭圆曲线的affine Weierstrass form,可以证明一般的椭圆曲线:&/p&&figure&&img src=&https://pic1.zhimg.com/v2-e134c6c9f638cd1318e97eee399ea0cc_b.png& data-rawwidth=&556& data-rawheight=&32& class=&origin_image zh-lightbox-thumb& width=&556& data-original=&https://pic1.zhimg.com/v2-e134c6c9f638cd1318e97eee399ea0cc_r.jpg&&&/figure&&p&都可以化成Weierstrass form&/p&&/blockquote&而一个不依赖坐标的定义为:&blockquote&k(代数闭)上一条椭圆曲线定义为&b&亏格为1&/b&的&b&光滑&/b&的&b&射影&/b&代数曲线,同时带一个特定基点。&br&(对于非代数闭的perfect field k,其上一条椭圆曲线是k的代数闭包上一条defined over k 的椭圆曲线)&/blockquote&&p&或者更形式地,我们定义&/p&&blockquote&一条k上的椭圆曲线为k上的1维射影代数群。&br&&/blockquote&&p&实际上对于椭圆曲线E,&img src=&http://www.zhihu.com/equation?tex=E+%5Crightarrow+Pic%5E%7B0%7D%28E%29+%5C%5C%0AP+%5Crightarrow+%28P%29-%28O%29%0A& alt=&E \rightarrow Pic^{0}(E) \\
P \rightarrow (P)-(O)
& eeimg=&1&&为同构,因此自然给E一个交换群结构。&/p&&p&用Riemann-Roch定理可以很简单证明这些general的定义都可以化成经典的标准型&/p&&p&&figure&&img src=&https://pic2.zhimg.com/v2-631e088a300af7ead2369_b.png& data-rawwidth=&346& data-rawheight=&42& class=&content_image& width=&346&&&/figure&而射影(从而完备)代数群由于刚性其群运算必须交换,并且态射一定差一个translation后为群同态,所以是Abel群,这类代数群称为Abelian varieties,可以看成椭圆曲线的高维推广。&/p&&p&利用&img src=&http://www.zhihu.com/equation?tex=g%3D%28d-1%29%28d-2%29%2F2+& alt=&g=(d-1)(d-2)/2 & eeimg=&1&&可知所有三次的光滑的射影代数曲线(带一个有理点)都是椭圆曲线,特别地&img src=&http://www.zhihu.com/equation?tex=x%5E3%2By%5E3%3D7& alt=&x^3+y^3=7& eeimg=&1&&也是。而光滑的假设不能去掉,典型的奇异三次曲线是&img src=&http://www.zhihu.com/equation?tex=y%5E2%3Dx%5E3& alt=&y^2=x^3& eeimg=&1&&,其在原点附近比较尖,而在平面上的图像有一个cusp,还有&img src=&http://www.zhihu.com/equation?tex=y%5E2%3Dx%5E3%2Bx%5E2& alt=&y^2=x^3+x^2& eeimg=&1&&这类具有结点的例子:&/p&&figure&&img src=&https://pic1.zhimg.com/v2-faa10ddbd95e272bc940_b.png& data-rawwidth=&373& data-rawheight=&269& class=&content_image& width=&373&&&/figure&&b&例子五:&/b&&p&&img src=&http://www.zhihu.com/equation?tex=y%5E2+%3D+x%5E3+%2Bn& alt=&y^2 = x^3 +n& eeimg=&1&&这种椭圆曲线称为 Mordell equation,其中n为一个整数,这类椭圆曲线比较好算,作为练习,我们来算一些例子(来自&a href=&http://link.zhihu.com/?target=http%3A//www.math.uconn.edu/%7Ekconrad/blurbs/gradnumthy/mordelleqn1.pdf& class=& external& target=&_blank& rel=&nofollow noreferrer&&&span class=&invisible&&http://www.&/span&&span class=&visible&&math.uconn.edu/~kconrad&/span&&span class=&invisible&&/blurbs/gradnumthy/mordelleqn1.pdf&/span&&span class=&ellipsis&&&/span&&/a&):&br&&/p&&b&&img src=&http://www.zhihu.com/equation?tex=y%5E2+%3D+x%5E3+%2B+7& alt=&y^2 = x^3 + 7& eeimg=&1&&没有整数解&/b&&p&证:mod 8 知x奇数,由&img src=&http://www.zhihu.com/equation?tex=y%5E2%2B1%3Dx%5E3%2B8%3D%28x%2B2%29%28x%5E2-2x%2B4%29& alt=&y^2+1=x^3+8=(x+2)(x^2-2x+4)& eeimg=&1&&,但x^2-2x+4模4余3,故存在p|x^2-2x+4,p模4余3,所以p|y^2+1,所以&img src=&http://www.zhihu.com/equation?tex=%28%5Cfrac%7B-1%7D%7Bp%7D%29& alt=&(\frac{-1}{p})& eeimg=&1&&=1,这与p模4余3矛盾。&/p&&br&&p&&img src=&http://www.zhihu.com/equation?tex=y%5E2+%3D+x%5E3+-+5+%0A& alt=&y^2 = x^3 - 5
& eeimg=&1&&&b&没有整数解&/b&&br&证:mod4知y偶,x模4余1.由&img src=&http://www.zhihu.com/equation?tex=y%5E2%2B4%3Dx%5E3-1%3D%28x-1%29%28x%5E2%2Bx%2B1%29& alt=&y^2+4=x^3-1=(x-1)(x^2+x+1)& eeimg=&1&&同上可得。&/p&&p&类似地可以证明:&/p&&p&&b&&img src=&http://www.zhihu.com/equation?tex=y%5E2+%3D+x%5E3+%2Bn& alt=&y^2 = x^3 +n& eeimg=&1&&对于n=-3,-6,-9,-12,-24,6,45,46都没有整数解&/b&&/p&&p&这些都是模法和简单的二次剩余的应用,方法是凑出&img src=&http://www.zhihu.com/equation?tex=y%5E2%2Bb%3Dx%5E3-a%5E3%3D%28x-a%29%28x%5E2%2Bax%2Ba%5E2%29& alt=&y^2+b=x^3-a^3=(x-a)(x^2+ax+a^2)& eeimg=&1&&&/p&&p&再考虑右边的素因子p,那么-b自动是p的二次剩余。&/p&&p&另一种方法是凑出&img src=&http://www.zhihu.com/equation?tex=%28y%2B%5Csqrt%7Bn%7D%29%28y-%5Csqrt%7Bn%7D%29%3Dy%5E2-n%3Dx%5E3& alt=&(y+\sqrt{n})(y-\sqrt{n})=y^2-n=x^3& eeimg=&1&&然后在&img src=&http://www.zhihu.com/equation?tex=Q%28%5Csqrt%7Bn%7D%29& alt=&Q(\sqrt{n})& eeimg=&1&&的代数整数环中分解,右边一定是理想的三次方,如果左边两项互素,那么左边也是,然后具体到元素上可能会差代数整数环中的单位。例如:&/p&&p&n=16则只有整数解x=0,y=-4,4&/p&&p&&b&n=-1,&img src=&http://www.zhihu.com/equation?tex=y%5E2+%3D+x%5E3+-1& alt=&y^2 = x^3 -1& eeimg=&1&&只有整数解(0,1)&/b&&/p&&p&证:&img src=&http://www.zhihu.com/equation?tex=x%5E3%3Dy%5E2%2B1& alt=&x^3=y^2+1& eeimg=&1&&,易见x奇数,y偶数,若p|y+i,p|y-i,那么p|2i,所以p|2(i为单位),所以&/p&&p&&img src=&http://www.zhihu.com/equation?tex=2%3Dp%5E2%7C%28y-i%29%28y%2Bi%29%3Dx%5E3%0A& alt=&2=p^2|(y-i)(y+i)=x^3
& eeimg=&1&&推出x为偶数,矛盾。&br&&/p&&p&所以y+i,y-i互素,由Z[i]中单位全为三次方,并且Z[i] PID,故可写&/p&&p&&img src=&http://www.zhihu.com/equation?tex=y%2Bi%3D%28m%2Bni%29%5E3& alt=&y+i=(m+ni)^3& eeimg=&1&&,考虑虚部容易解出n=-1,m=0,y=0,x=1.&br&&/p&&p&类似地:&/p&&p&n=-4,&img src=&http://www.zhihu.com/equation?tex=y%5E2+%3D+x%5E3+-4& alt=&y^2 = x^3 -4& eeimg=&1&&只有整数解&img src=&http://www.zhihu.com/equation?tex=%282%2C%5Cpm+2%29%2C%285%2C%5Cpm+11%29& alt=&(2,\pm 2),(5,\pm 11)& eeimg=&1&&&/p&&p&n=-2,只有整数解(3,5),(3,-5)&/p&&p&更复杂的计算有:&/p&&p&n=1,只有整数解(-1,0),(0,1或-1),(2,3或-3)&/p&&p&当然不要忘记我们最早的例子:&/p&&p&&img src=&http://www.zhihu.com/equation?tex=y%5E2%3Dx%5E3-6& alt=&y^2=x^3-6& eeimg=&1&&没有整数解。&br&&/p&&p&由这个例子可见,计算整解可以用模法和代数数论的一些方法,至于有理解的探寻就有点神秘。尽管我们可以通过P计算2P,用原来的解生成新的解.但如何保证得到的是所有解,还是有些tricky的.&/p&&br&&b&例子六:&/b&&p&&b&&img src=&http://www.zhihu.com/equation?tex=x%5E4%2By%5E4%3Dz%5E4& alt=&x^4+y^4=z^4& eeimg=&1&&没有非平凡的整数解:&br&&/b&&/p&&p&容易看出如果y非0,则&/p&&p&&b&&figure&&img src=&https://pic1.zhimg.com/v2-3d657c2ce1a77f50c2ff9d9cd0a8beec_b.png& data-rawwidth=&204& data-rawheight=&70& class=&content_image& width=&204&&&/figure&故只需要证明y^2=x^3-x上的有理点必须y=0即可.&/b&&/p&&p&这个argument可由无穷递降法(关于高度递降)得到&/p&&p&&b&由这个例子可见,利用椭圆曲线的性质可以证明之前代数数论中的一些问题,例如虚二次域类数1问题,explicit class field theory for imaginary quadratic field。&/b&&/p&&p&&b&(当然还有Fermat 大定理 XD)&/b&&/p&&br&&p&3.&/p&&p&下面是椭圆曲线中一些 广为人知的重要定理。&/p&&p&&b&(Mordell-Weil,1922)&/b&&/p&&blockquote&Q上的椭圆曲线E的有理点&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29& alt=&E(\mathbb Q)& eeimg=&1&&是有限生成Abel群:&br&&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29%3D%5Cmathbb+Z%5Er+%5Coplus+T& alt=&E(\mathbb Q)=\mathbb Z^r \oplus T& eeimg=&1&&,&br&T是挠点全体,为有限Abel群,r称为E的秩&/blockquote&&p&证明需要weak mordell-weil theorem(其由Selmer group有限导出),以及高度的性质。&/p&&br&&p&&b&(Mazur,1977&/b&&b&)&/b&&/p&&blockquote&上面的T只可能为:&br&&img src=&http://www.zhihu.com/equation?tex=%5Cmathbb+Z%2F+N%5Cmathbb+Z+& alt=&\mathbb Z/ N\mathbb Z & eeimg=&1&&,其中&i&N&/i& = 1, 2, ..., 10, or 12, &br&或 &img src=&http://www.zhihu.com/equation?tex=%5Cmathbb+Z%2F2%5Cmathbb+Z+%5Ctimes+%5Cmathbb+Z%2F2N%5Cmathbb+Z+& alt=&\mathbb Z/2\mathbb Z \times \mathbb Z/2N\mathbb Z & eeimg=&1&&其中 &i&N&/i& = 1, 2, 3, 4&br&这15个群之一&/blockquote&&p&例如考虑&img src=&http://www.zhihu.com/equation?tex=E%3Ay%5E2%3Dx%5E3-n%5E2x+%2Cn+%5Cin+%5Cmathbb+N%5E%7B%2A%7D& alt=&E:y^2=x^3-n^2x ,n \in \mathbb N^{*}& eeimg=&1&&其挠点仅四个,从而&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29%2F2E%28%5Cmathbb+Q%29+%5Ccong+%28%5Cmathbb+Z+%2F2+%5Cmathbb+Z%29%5E%7Br%2B2%7D& alt=&E(\mathbb Q)/2E(\mathbb Q) \cong (\mathbb Z /2 \mathbb Z)^{r+2}& eeimg=&1&&,r为rank.&/p&&br&&p&&b&(Siegel,1929)&/b&&br&&/p&&blockquote&Q上的椭圆曲线E的整点(坐标均为整数的点),或者更一般的坐标有一者为整数的点,只有&b&有限个&/b&。&/blockquote&&p&其证明用到了一些高度的性质和有理数逼近的Roth theorem。对于亏格&1的曲线的有理点也有类似的有限性定理,其由Faltings证明。&/p&&p&&b&(Hasse)&/b&&/p&&blockquote&&p&If &i&N&/i& is the number of points on the elliptic curve &i&E&/i& over a finite field with &i&q&/i& elements, then&/p&&figure&&img src=&https://pic2.zhimg.com/v2-546d0dbe01_b.png& data-rawwidth=&187& data-rawheight=&55& class=&content_image& width=&187&&&/figure&&/blockquote&&p&显然&img src=&http://www.zhihu.com/equation?tex=N+%5Cleq+%5C%23+P%5E2%28F_q%29%3Dq%5E2%2Bq%2B1& alt=&N \leq \# P^2(F_q)=q^2+q+1& eeimg=&1&&.&/p&&p&接下来是研究有理点的具体结构。&/p&&h2&二.挠点&/h2&&p&&figure&&img src=&https://pic2.zhimg.com/v2-95bc79d8a968b69c4ef2e1_b.png& data-rawwidth=&335& data-rawheight=&190& class=&content_image& width=&335&&&/figure&&img src=&http://www.zhihu.com/equation?tex=E& alt=&E& eeimg=&1&&是&img src=&http://www.zhihu.com/equation?tex=%5Cmathbb+Q& alt=&\mathbb Q& eeimg=&1&&上一条椭圆曲线,则在合适的坐标下其可写成&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29%3D%5C%7B%28x%2Cy%29+%5Cin+%5Cmathbb+Q%5E2%7Cy%5E2%3Dx%5E3%2Bax%2Bb+%5C%7D+%5Ccup+%5C%7B%5Cinfty%5C%7D& alt=&E(\mathbb Q)=\{(x,y) \in \mathbb Q^2|y^2=x^3+ax+b \} \cup \{\infty\}& eeimg=&1&&&br&&/p&&p&其中a,b是整数,(未归一化的)判别式&img src=&http://www.zhihu.com/equation?tex=%5CDelta+%3D-%284a%5E%7B3%7D%2B27b%5E%7B2%7D%29+%5Cnot+%3D+0& alt=&\Delta =-(4a^{3}+27b^{2}) \not = 0& eeimg=&1&&&/p&&p&我们知道一条通有的直线与E有三个交点,这给出E的所有有理点的一个交换群结构(&img src=&http://www.zhihu.com/equation?tex=O%3D%5Cinfty& alt=&O=\infty& eeimg=&1&&为单位元)。研究&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29& alt=&E(\mathbb Q)& eeimg=&1&&的具体群结构应从挠点开始,下面的目标是证明关于挠点的如下定理&/p&&p&Nagell–Lutz theorem&br&&/p&&p&&img src=&http://www.zhihu.com/equation?tex=P%3D%28x%2Cy%29+%5Cin+E%28%5Cmathbb+Q%29& alt=&P=(x,y) \in E(\mathbb Q)& eeimg=&1&&如果是torsion point(即存在正整数n,使得&img src=&http://www.zhihu.com/equation?tex=nP%3DO& alt=&nP=O& eeimg=&1&&,其全体记为&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29_%7Btor%7D& alt=&E(\mathbb Q)_{tor}& eeimg=&1&&),则&br&&/p&&p&&b&x和y都是整数,并且&img src=&http://www.zhihu.com/equation?tex=y%3D0& alt=&y=0& eeimg=&1&&或者&img src=&http://www.zhihu.com/equation?tex=y%5E2%7C%5CDelta& alt=&y^2|\Delta& eeimg=&1&&&/b&&br&&/p&&p&——————————————————————&/p&&p&先从一些看似无关的讨论开始。&/p&&p&一般地,合理地在整体域(如数域)、局部域(如p-adic 域)、有限域间转换可以使问题得到简化,不过假设今天读者不知道局部域,而仅仅知道有限域&img src=&http://www.zhihu.com/equation?tex=%5Cmathbb+F_p%3D+%5Cmathbb+Z+%2Fp+%5Cmathbb+Z& alt=&\mathbb F_p= \mathbb Z /p \mathbb Z& eeimg=&1&&(p是一个素数).&/p&&p&E是一条射影曲线,在射影坐标下可以写成&/p&&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29%3D%5C%7B%5Bx%2Cy%2Cz%5D+%5Cin+%5Cmathbb+P%5E2%28%5Cmathbb+Q%29%7Cy%5E2z%3Dx%5E3%2Baxz%5E2%2Bbz%5E3+%5C%7D+& alt=&E(\mathbb Q)=\{[x,y,z] \in \mathbb P^2(\mathbb Q)|y^2z=x^3+axz^2+bz^3 \} & eeimg=&1&&&br&&p&注意到&img src=&http://www.zhihu.com/equation?tex=%5Cmathbb+P%5E2%28%5Cmathbb+Q%29%3D%5Cmathbb+P%5E2%28%5Cmathbb+Z%29& alt=&\mathbb P^2(\mathbb Q)=\mathbb P^2(\mathbb Z)& eeimg=&1&&,即任一点&img src=&http://www.zhihu.com/equation?tex=P+%5Cin+%5Cmathbb+P%5E2%28%5Cmathbb+Q%29& alt=&P \in \mathbb P^2(\mathbb Q)& eeimg=&1&&都可以唯一写成&img src=&http://www.zhihu.com/equation?tex=%5Bx%2Cy%2Cz%5D& alt=&[x,y,z]& eeimg=&1&&,x,y,z是三个互素的整数&/p&&p&于是mod p给出&img src=&http://www.zhihu.com/equation?tex=%5Cmathbb+Z+%5Crightarrow+%5Cmathbb+F_p%3D+%5Cmathbb+Z+%2Fp+%5Cmathbb+Z& alt=&\mathbb Z \rightarrow \mathbb F_p= \mathbb Z /p \mathbb Z& eeimg=&1&&,从而给出约化映射&img src=&http://www.zhihu.com/equation?tex=%5Cmathbb+P%5E2%28%5Cmathbb+Q%29%3D%5Cmathbb+P%5E2%28%5Cmathbb+Z%29+%5Crightarrow+%5Cmathbb+P%5E2%28%5Cmathbb+F_p%29& alt=&\mathbb P^2(\mathbb Q)=\mathbb P^2(\mathbb Z) \rightarrow \mathbb P^2(\mathbb F_p)& eeimg=&1&&&br&&/p&&p&限制在&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29& alt=&E(\mathbb Q)& eeimg=&1&&上我们得到了&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29%5Crightarrow+%5Cbar+E%28%5Cmathbb+F_p%29%3D%5C%7B%5Bx%2Cy%2Cz%5D+%5Cin+%5Cmathbb+P%5E2%28%5Cmathbb+F_p%29%7Cy%5E2z%3Dx%5E3%2Baxz%5E2%2Bbz%5E3+%5C%7D+& alt=&E(\mathbb Q)\rightarrow \bar E(\mathbb F_p)=\{[x,y,z] \in \mathbb P^2(\mathbb F_p)|y^2z=x^3+axz^2+bz^3 \} & eeimg=&1&&&/p&&p&如果&img src=&http://www.zhihu.com/equation?tex=p+%5Cnot+%7C+%5CDelta& alt=&p \not | \Delta& eeimg=&1&&且p&2,则&img src=&http://www.zhihu.com/equation?tex=%5Cbar+E%28%5Cmathbb+F_p%29& alt=&\bar E(\mathbb F_p)& eeimg=&1&&是&img src=&http://www.zhihu.com/equation?tex=%5Cmathbb+F_p%3D+%5Cmathbb+Z+%2Fp+%5Cmathbb+Z& alt=&\mathbb F_p= \mathbb Z /p \mathbb Z& eeimg=&1&&上一条椭圆曲线,此时称E在p处有good reduction,由于约化映射保持直线,我们得到此时&/p&&p&&b&&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29%5Crightarrow+%5Cbar+E%28%5Cmathbb+F_p%29& alt=&E(\mathbb Q)\rightarrow \bar E(\mathbb F_p)& eeimg=&1&&是一个群同态&/b&&br&&/p&&p&这个映射的Kernel是什么?不难看出即为&img src=&http://www.zhihu.com/equation?tex=E%5E1%3D%5C%7B%28x%2Cy%29%5Cin+E%28%5Cmathbb+Q%29%7C+v_p%28y%29%3C0%2Cv_p%28%5Cfrac%7Bx%7D%7By%7D%29+%5Cgeq+1+%5C%7D++%5Ccup+%5C%7B%5Cinfty%5C%7D& alt=&E^1=\{(x,y)\in E(\mathbb Q)| v_p(y)&0,v_p(\frac{x}{y}) \geq 1 \}
\cup \{\infty\}& eeimg=&1&&&br&&/p&&p&这启发我们类似对任何正整数n和任何素数p定义&/p&&img src=&http://www.zhihu.com/equation?tex=E%5En%3D%5C%7B%28x%2Cy%29%5Cin+E%5E1%28%5Cmathbb+Q%29%7C+y+%5Cnot+%3D0%2Cv_p%28%5Cfrac%7Bx%7D%7By%7D%29+%5Cgeq+n+%5C%7D++%5Ccup+%5C%7B%5Cinfty%5C%7D& alt=&E^n=\{(x,y)\in E^1(\mathbb Q)| y \not =0,v_p(\frac{x}{y}) \geq n \}
\cup \{\infty\}& eeimg=&1&&&br&&p&自然要问:&img src=&http://www.zhihu.com/equation?tex=E%5En& alt=&E^n& eeimg=&1&&是不是&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29& alt=&E(\mathbb Q)& eeimg=&1&&的子群?&/p&&p&这要求我们研究&img src=&http://www.zhihu.com/equation?tex=t%3D%5Cfrac%7Bx%7D%7By%7D& alt=&t=\frac{x}{y}& eeimg=&1&&在加法下的变化.为此我们采用无穷远处坐标即令&img src=&http://www.zhihu.com/equation?tex=t%3D%5Cfrac%7Bx%7D%7By%7D%2Cs%3D%5Cfrac%7B1%7D%7By%7D& alt=&t=\frac{x}{y},s=\frac{1}{y}& eeimg=&1&&,则&br&&/p&&p&&img src=&http://www.zhihu.com/equation?tex=y%5E2%3Dx%5E3%2Bax%2Bb& alt=&y^2=x^3+ax+b& eeimg=&1&&化为&img src=&http://www.zhihu.com/equation?tex=s%3Dt%5E3%2Bats%5E2%2Bbs%5E3& alt=&s=t^3+ats^2+bs^3& eeimg=&1&&&b& ①&/b&&br&&/p&&p&因此&img src=&http://www.zhihu.com/equation?tex=%28x%2Cy%29+%5Cin+E%5En+%5CRightarrow+v_p%28t%29+%5Cgeq+n%2Cv_p%28s%29+%5Cgeq+3n& alt=&(x,y) \in E^n \Rightarrow v_p(t) \geq n,v_p(s) \geq 3n& eeimg=&1&&&br&&/p&&p&(首先&img src=&http://www.zhihu.com/equation?tex=v_p%28y%29%3C0+%5CRightarrow++v_p%28s%29%3E0& alt=&v_p(y)&0 \Rightarrow
v_p(s)&0& eeimg=&1&&,再比较&img src=&http://www.zhihu.com/equation?tex=s%3Dt%5E3%2Bats%5E2%2Bbs%5E3& alt=&s=t^3+ats^2+bs^3& eeimg=&1&& 两边赋值即得&img src=&http://www.zhihu.com/equation?tex=v_p%28s%29+%5Cgeq+3n& alt=&v_p(s) \geq 3n& eeimg=&1&&)&/p&&p&在这个坐标下把群运算写下来就是:&br&&/p&&p&取&img src=&http://www.zhihu.com/equation?tex=P_i%3D%28t_i%2Cs_i%29%2Ci%3D1%2C2& alt=&P_i=(t_i,s_i),i=1,2& eeimg=&1&&,连接这两点的直线方程为&img src=&http://www.zhihu.com/equation?tex=s%3D%5Calpha+t+%2B+%5Cbeta& alt=&s=\alpha t + \beta& eeimg=&1&&,与E第三个交点记为&img src=&http://www.zhihu.com/equation?tex=%28t_3%2Cs_3%29& alt=&(t_3,s_3)& eeimg=&1&&,则易见&img src=&http://www.zhihu.com/equation?tex=P_1%2BP_2%3D%28-t_3%2C-s_3%29& alt=&P_1+P_2=(-t_3,-s_3)& eeimg=&1&&&/p&&p&那么把直线方程代入椭圆曲线方程我们有&/p&&p&&img src=&http://www.zhihu.com/equation?tex=t_1%2Bt_2%2Bt_3%3D-%283%5Calpha%5E2%5Cbeta+b%2B2+%5Calpha+%5Cbeta+a%29%281%2Ba%5Calpha+%5E2%2B%5Calpha+%5E3b%29%5E%7B-1%7D& alt=&t_1+t_2+t_3=-(3\alpha^2\beta b+2 \alpha \beta a)(1+a\alpha ^2+\alpha ^3b)^{-1}& eeimg=&1&&&b&②&/b&&br&&/p&&p&如果&img src=&http://www.zhihu.com/equation?tex=t_1+%5Cnot+%3D+t_2& alt=&t_1 \not = t_2& eeimg=&1&&,斜率&img src=&http://www.zhihu.com/equation?tex=%5Calpha%3D+%5Cfrac%7Bs_2-s_1%7D%7Bt_2-t_1%7D& alt=&\alpha= \frac{s_2-s_1}{t_2-t_1}& eeimg=&1&&&/p&&p&如果&img src=&http://www.zhihu.com/equation?tex=t_1+%3D+t_2& alt=&t_1 = t_2& eeimg=&1&&,隐函数求导给出斜率&img src=&http://www.zhihu.com/equation?tex=%5Calpha+%3D%283t_1%5E2%2Bas_1%5E2%29%281-2at_1s_1-3bs_1%5E2%29%5E%7B-1%7D& alt=&\alpha =(3t_1^2+as_1^2)(1-2at_1s_1-3bs_1^2)^{-1}& eeimg=&1&&&b& ③&/b&&/p&&p&利用这几式可以得到:&/p&&p&&b&Prop 1.&img src=&http://www.zhihu.com/equation?tex=%5Cforall+P_1%2CP_2+%5Cin+E%5En%2Cn+%5Cgeq+1& alt=&\forall P_1,P_2 \in E^n,n \geq 1& eeimg=&1&&成立&img src=&http://www.zhihu.com/equation?tex=t%28P_1%29%2Bt%28P_2%29%5Cequiv+t%28P_1%2BP_2%29+%5Coperatorname%7Bmod%7D+p%5E%7B5n%7D& alt=&t(P_1)+t(P_2)\equiv t(P_1+P_2) \operatorname{mod} p^{5n}& eeimg=&1&&(&img src=&http://www.zhihu.com/equation?tex=t%28%5Cinfty%29%3A%3D0& alt=&t(\infty):=0& eeimg=&1&&)&br&&/b&&/p&&p&&b&Pf:&/b&&/p&&p&只要证明②右边赋值不小于5n,这就要估计&img src=&http://www.zhihu.com/equation?tex=%5Calpha%2C%5Cbeta& alt=&\alpha,\beta& eeimg=&1&&,由①得到&/p&&img src=&http://www.zhihu.com/equation?tex=s_2-s_1+%3Dt_2%5E3-t_1%5E3%2Bat_2s_2%5E2-at_1s%5E2_1+%2B+b%28s%5E3_2-s%5E3_1%29+& alt=&s_2-s_1 =t_2^3-t_1^3+at_2s_2^2-at_1s^2_1 + b(s^3_2-s^3_1) & eeimg=&1&&&br&&p&即&img src=&http://www.zhihu.com/equation?tex=%28s_2-s_1%29A%3D%28t_2-t_1%29B& alt=&(s_2-s_1)A=(t_2-t_1)B& eeimg=&1&&&br&&/p&&img src=&http://www.zhihu.com/equation?tex=A%3D1%2Ba%28s_1%2Bs_2%29-b%28s_1%5E2%2B2s_1s_2%2Bs_2%5E2%29%2CB%3Dt_1%5E2%2Bt_1t_2%2Bt_2%5E2-as_1%5E2& alt=&A=1+a(s_1+s_2)-b(s_1^2+2s_1s_2+s_2^2),B=t_1^2+t_1t_2+t_2^2-as_1^2& eeimg=&1&&&br&&p&由于&img src=&http://www.zhihu.com/equation?tex=v_p%28t%29+%5Cgeq+n%5Cgeq+1%2C+v_p%28s%29+%5Cgeq+3n& alt=&v_p(t) \geq n\geq 1, v_p(s) \geq 3n& eeimg=&1&&,我们有&img src=&http://www.zhihu.com/equation?tex=v_p%28A%29%3D0%2Cv_p%28B%29+%5Cgeq+2n& alt=&v_p(A)=0,v_p(B) \geq 2n& eeimg=&1&&&/p&&p&如果&img src=&http://www.zhihu.com/equation?tex=t_1+%5Cnot+%3D+t_2& alt=&t_1 \not = t_2& eeimg=&1&&,则&img src=&http://www.zhihu.com/equation?tex=v_p%28%5Calpha%29%3Dv_p%28B%29+%5Cgeq+2n& alt=&v_p(\alpha)=v_p(B) \geq 2n& eeimg=&1&&&/p&&p&如果&img src=&http://www.zhihu.com/equation?tex=t_1+%3D+t_2& alt=&t_1 = t_2& eeimg=&1&&,由&img src=&http://www.zhihu.com/equation?tex=%5Calpha+%3D%283t_1%5E2%2Bas_1%5E2%29%281-2at_1s_1-3bs_1%5E2%29%5E%7B-1%7D& alt=&\alpha =(3t_1^2+as_1^2)(1-2at_1s_1-3bs_1^2)^{-1}& eeimg=&1&&也可以知&img src=&http://www.zhihu.com/equation?tex=v_p%28%5Calpha%29+%5Cgeq+2n& alt=&v_p(\alpha) \geq 2n& eeimg=&1&&&br&&/p&&p&&br&而&img src=&http://www.zhihu.com/equation?tex=%5Cbeta%3Ds_1-%5Calpha+t_1& alt=&\beta=s_1-\alpha t_1& eeimg=&1&&,所以&img src=&http://www.zhihu.com/equation?tex=v_p%28%5Cbeta%29+%5Cgeq+3n& alt=&v_p(\beta) \geq 3n& eeimg=&1&&&/p&&p&从而&img src=&http://www.zhihu.com/equation?tex=t_1%2Bt_2%2Bt_3%3D-%283%5Calpha%5E2%5Cbeta+b%2B2+%5Calpha+%5Cbeta+a%29%281%2Ba%5Calpha+%5E2%2B%5Calpha+%5E3b%29%5E%7B-1%7D& alt=&t_1+t_2+t_3=-(3\alpha^2\beta b+2 \alpha \beta a)(1+a\alpha ^2+\alpha ^3b)^{-1}& eeimg=&1&& ②右边赋值大于等于5n,即证&br&&/p&&p&&b&推论1:&/b&&/p&&p&&img src=&http://www.zhihu.com/equation?tex=E%5En& alt=&E^n& eeimg=&1&&是&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29& alt=&E(\mathbb Q)& eeimg=&1&&的子群,且&img src=&http://www.zhihu.com/equation?tex=t%3AE%5En+%5Crightarrow++p%5En%5Cmathbb+Z_%7B%28p%29%7D+%3A+P+%5Cmapsto+t%28P%29%3D%5Cfrac%7Bx_p%7D%7By_p%7D& alt=&t:E^n \rightarrow
p^n\mathbb Z_{(p)} : P \mapsto t(P)=\frac{x_p}{y_p}& eeimg=&1&&诱导出&b&单的群同态&/b&:&/p&&img src=&http://www.zhihu.com/equation?tex=t%3AE%5En%2FE%5E%7B5n%7D+%5Chookrightarrow+p%5En+%5Cmathbb+Z_%7B%28p%29%7D%2F+p%5E%7B5n%7D+%5Cmathbb+Z_%7B%28p%29%7D%3D+p%5En+%5Cmathbb+Z%2F+p%5E%7B5n%7D+%5Cmathbb+Z& alt=&t:E^n/E^{5n} \hookrightarrow p^n \mathbb Z_{(p)}/ p^{5n} \mathbb Z_{(p)}= p^n \mathbb Z/ p^{5n} \mathbb Z& eeimg=&1&&&br&&p&&b&推论2:&/b&&/p&&p&&img src=&http://www.zhihu.com/equation?tex=E%5E1& alt=&E^1& eeimg=&1&&是&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29& alt=&E(\mathbb Q)& eeimg=&1&&的无挠子群&/p&&p&&b&Pf:&br&&/b&如果&img src=&http://www.zhihu.com/equation?tex=mP%3DO%0A& alt=&mP=O
& eeimg=&1&&,m是正整数,P不等于O,注意到&img src=&http://www.zhihu.com/equation?tex=%5Cbigcap_%7Bn%7D%5E%7B%7D++E%5En+%3D%5C%7BO%5C%7D& alt=&\bigcap_{n}^{}
E^n =\{O\}& eeimg=&1&&,所以存在n使得P属于&img src=&http://www.zhihu.com/equation?tex=E%5En& alt=&E^n& eeimg=&1&&但不属于&img src=&http://www.zhihu.com/equation?tex=E%5E%7Bn%2B1%7D& alt=&E^{n+1}& eeimg=&1&&&/p&&p&取素数p大于m,则在&img src=&http://www.zhihu.com/equation?tex=p%5En+%5Cmathbb+Z%2F+p%5E%7B5n%7D+%5Cmathbb+Z& alt=&p^n \mathbb Z/ p^{5n} \mathbb Z& eeimg=&1&&中&/p&&br&&img src=&http://www.zhihu.com/equation?tex=mt%28P%29%3D0++& alt=&mt(P)=0
& eeimg=&1&&&br&&p&这推出&img src=&http://www.zhihu.com/equation?tex=t%28P%29%3D0& alt=&t(P)=0& eeimg=&1&&,从而&img src=&http://www.zhihu.com/equation?tex=P+%5Cin+E%5E%7B5n%7D+%5Csubseteq+E%5E%7Bn%2B1%7D+& alt=&P \in E^{5n} \subseteq E^{n+1} & eeimg=&1&&,矛盾!&/p&&p&&b&推论3:&/b&&/p&&p&如果&img src=&http://www.zhihu.com/equation?tex=p+%5Cnot+%7C+%5CDelta& alt=&p \not | \Delta& eeimg=&1&&且p&2,则&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29%5Crightarrow+%5Cbar+E%28%5Cmathbb+F_p%29& alt=&E(\mathbb Q)\rightarrow \bar E(\mathbb F_p)& eeimg=&1&&限制在&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29_%7Btor%7D& alt=&E(\mathbb Q)_{tor}& eeimg=&1&&上给出嵌入:&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29_%7Btor%7D+%5Chookrightarrow+%5Cbar+E%28%5Cmathbb+F_p%29& alt=&E(\mathbb Q)_{tor} \hookrightarrow \bar E(\mathbb F_p)& eeimg=&1&&&br&&b&Pf:&/b&&/p&&p&&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29%5Crightarrow+%5Cbar+E%28%5Cmathbb+F_p%29& alt=&E(\mathbb Q)\rightarrow \bar E(\mathbb F_p)& eeimg=&1&&的Kernel是&img src=&http://www.zhihu.com/equation?tex=E%5E1& alt=&E^1& eeimg=&1&&,而&img src=&http://www.zhihu.com/equation?tex=E%5E1%5Ccap+E%28%5Cmathbb+Q%29_%7Btor%7D%3D0& alt=&E^1\cap E(\mathbb Q)_{tor}=0& eeimg=&1&&&br&&/p&&p&&b&推论4:&/b&&br&&/p&&p&&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29_%7Btor%7D& alt=&E(\mathbb Q)_{tor}& eeimg=&1&&是有限Abel群;特别地,如果E在p=3处为good reduction,则&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29_%7Btor%7D+& alt=&E(\mathbb Q)_{tor} & eeimg=&1&&阶小于等于13&br&&/p&&p&&b&Pf:&/b&&br&&/p&&p&任取一个素数&img src=&http://www.zhihu.com/equation?tex=p+%5Cnot+%7C+%5CDelta& alt=&p \not | \Delta& eeimg=&1&&且p&2,则&img src=&http://www.zhihu.com/equation?tex=%5C%23+E%28%5Cmathbb+Q%29_%7Btor%7D+%7C+%5C%23+%5Cbar+E%28%5Cmathbb+F_p%29+%5Cleq+%5C%23+%5Cmathbb+P%5E2%28%5Cmathbb+F_p%29%3Dp%5E2%2Bp%2B1%3C+%5Cinfty& alt=&\# E(\mathbb Q)_{tor} | \# \bar E(\mathbb F_p) \leq \# \mathbb P^2(\mathbb F_p)=p^2+p+1& \infty& eeimg=&1&&&/p&&p&&b&推论5:&/b&&br&&/p&&p&&img src=&http://www.zhihu.com/equation?tex=P%3D%28x%2Cy%29+%5Cin+E%28%5Cmathbb+Q%29& alt=&P=(x,y) \in E(\mathbb Q)& eeimg=&1&&如果是torsion point,则x和y都是整数&/p&&p&&b&Pf:&/b&&/p&&p&否则存在素数p,使得&img src=&http://www.zhihu.com/equation?tex=v_p%28x%29+%3C0& alt=&v_p(x) &0& eeimg=&1&&或者&img src=&http://www.zhihu.com/equation?tex=v_p%28y%29+%3C0& alt=&v_p(y) &0& eeimg=&1&&,此时由&/p&&p&&img src=&http://www.zhihu.com/equation?tex=y%5E2%3Dx%5E3%2Bax%2Bb& alt=&y^2=x^3+ax+b& eeimg=&1&&得出存在正整数n使得&/p&&img src=&http://www.zhihu.com/equation?tex=v_p%28y%29%3D-3n%2Cv_p%28x%29%3D-2n& alt=&v_p(y)=-3n,v_p(x)=-2n& eeimg=&1&&&br&&p&于是&img src=&http://www.zhihu.com/equation?tex=P+%5Cin+E%5E1& alt=&P \in E^1& eeimg=&1&&,这与&img src=&http://www.zhihu.com/equation?tex=E%5E1& alt=&E^1& eeimg=&1&&是&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29& alt=&E(\mathbb Q)& eeimg=&1&&的无挠子群矛盾!&br&&/p&&p&&b&推论6:&/b&&/p&&h1&Nagell–Lutz theorem&/h1&&p&&b&Pf:&/b&&/p&&p&前半部分是推论5,后半部分推理如下:&/p&&p&&b&如果P是torsion point,那么2P也是torsion point,所以由推论5知其坐标也是整数(如果2P不是无穷远点的话)&/b&&/p&&p&容易看出&img src=&http://www.zhihu.com/equation?tex=2P%3DO& alt=&2P=O& eeimg=&1&&等价于&img src=&http://www.zhihu.com/equation?tex=y%3D0& alt=&y=0& eeimg=&1&&&/p&&p&现设&img src=&http://www.zhihu.com/equation?tex=2P+%5Cnot%3DO& alt=&2P \not=O& eeimg=&1&&,则记&br&&figure&&img src=&https://pic4.zhimg.com/v2-9573b0cdef2e_b.png& data-rawwidth=&156& data-rawheight=&35& class=&content_image& width=&156&&&/figure&&/p&&p&&figure&&img src=&https://pic2.zhimg.com/v2-c18eb6c10df21cca605781_b.png& data-rawwidth=&154& data-rawheight=&42& class=&content_image& width=&154&&&/figure&椭圆曲线方程为&img src=&http://www.zhihu.com/equation?tex=y%5E2%3Dx%5E3%2Bax%2Bb%3Dg%28x%29& alt=&y^2=x^3+ax+b=g(x)& eeimg=&1&&,则由群运算公式得到:&br&&/p&&p&&figure&&img src=&https://pic2.zhimg.com/v2-cbb7c6a1aeed35e222ac12e9_b.png& data-rawwidth=&254& data-rawheight=&82& class=&content_image& width=&254&&&/figure&所以&img src=&http://www.zhihu.com/equation?tex=y_1+%7C+g%27%28x_1%29& alt=&y_1 | g'(x_1)& eeimg=&1&&&/p&&p&由于&img src=&http://www.zhihu.com/equation?tex=y_1%5E2%3Dg%28x_1%29& alt=&y_1^2=g(x_1)& eeimg=&1&&,再注意到判别式&img src=&http://www.zhihu.com/equation?tex=%5CDelta& alt=&\Delta& eeimg=&1&&即为&/p&&p&&figure&&img src=&https://pic4.zhimg.com/v2-68dde531da42d1f154de0e7_b.png& data-rawwidth=&449& data-rawheight=&42& class=&origin_image zh-lightbox-thumb& width=&449& data-original=&https://pic4.zhimg.com/v2-68dde531da42d1f154de0e7_r.jpg&&&/figure&的整数倍,即得&img src=&http://www.zhihu.com/equation?tex=y%5E2%7C%5CDelta& alt=&y^2|\Delta& eeimg=&1&&&br&&/p&&p&证毕.&/p&&h2&实例:&/h2&&p&①&/p&&img src=&http://www.zhihu.com/equation?tex=y%5E2+%3D+x%5E3+%2B+1& alt=&y^2 = x^3 + 1& eeimg=&1&&&br&&p&则&img src=&http://www.zhihu.com/equation?tex=%5CDelta%3D-27& alt=&\Delta=-27& eeimg=&1&&,不难求出其只有6个torsion points,&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29_%7Btor%7D+%5Ccong+%5Cmathbb+Z%2F+6%5Cmathbb+Z& alt=&E(\mathbb Q)_{tor} \cong \mathbb Z/ 6\mathbb Z& eeimg=&1&&由&img src=&http://www.zhihu.com/equation?tex=%282%2C3%29& alt=&(2,3)& eeimg=&1&&生成&/p&&p&②&/p&&p&a是一个奇数,则 &img src=&http://www.zhihu.com/equation?tex=y%5E2%3Dx%5E3-ax%2B1& alt=&y^2=x^3-ax+1& eeimg=&1&&有无穷多个有理点&/p&&p&这是因为&img src=&http://www.zhihu.com/equation?tex=P%3D%280%2C1%29& alt=&P=(0,1)& eeimg=&1&&在E上,但是P不是torsion point,因为&img src=&http://www.zhihu.com/equation?tex=2P& alt=&2P& eeimg=&1&&的横坐标是&img src=&http://www.zhihu.com/equation?tex=%5Cfrac%7Ba%5E2%7D%7B4%7D& alt=&\frac{a^2}{4}& eeimg=&1&&非整数.&/p&&p&③&/p&&p&&img src=&http://www.zhihu.com/equation?tex=y%5E2%3Dx%5E3-q%5E2x%2B1& alt=&y^2=x^3-q^2x+1& eeimg=&1&&,q是一个素数且不等于2,3,则E的挠点只有无穷远点.&br&&/p&&p&这是因为&img src=&http://www.zhihu.com/equation?tex=%5CDelta%3D4q%5E6-27& alt=&\Delta=4q^6-27& eeimg=&1&&,所以E在p=3,5处均为good reduction.&/p&&p&而mod 3 后即 &img src=&http://www.zhihu.com/equation?tex=y%5E2%3Dx%5E3-x%2B1& alt=&y^2=x^3-x+1& eeimg=&1&&over &img src=&http://www.zhihu.com/equation?tex=%5Cmathbb+F_3& alt=&\mathbb F_3& eeimg=&1&&,所以&img src=&http://www.zhihu.com/equation?tex=%5C%23+%5Cbar+E%28%5Cmathbb+F_3%29%3D7& alt=&\# \bar E(\mathbb F_3)=7& eeimg=&1&&&/p&&p&而mod 5后 即 &img src=&http://www.zhihu.com/equation?tex=y%5E2%3Dx%5E3-x%2B1& alt=&y^2=x^3-x+1& eeimg=&1&& or&img src=&http://www.zhihu.com/equation?tex=y%5E2%3Dx%5E3%2Bx%2B1& alt=&y^2=x^3+x+1& eeimg=&1&&over &img src=&http://www.zhihu.com/equation?tex=%5Cmathbb+F_5& alt=&\mathbb F_5& eeimg=&1&&,&img src=&http://www.zhihu.com/equation?tex=%5C%23+%5Cbar+E%28%5Cmathbb+F_5%29%3D8%2C9& alt=&\# \bar E(\mathbb F_5)=8,9& eeimg=&1&&&br&&/p&&p&④&/p&&figure&&img src=&https://pic4.zhimg.com/v2-da79dd9dce6d87a7a81fa710d0789293_b.png& data-rawwidth=&1003& data-rawheight=&220& class=&origin_image zh-lightbox-thumb& width=&1003& data-original=&https://pic4.zhimg.com/v2-da79dd9dce6d87a7a81fa710d0789293_r.jpg&&&/figure&&p&上面的证明避开了GTM106中的局部域的讨论,因此略简单。&br&&/p&&p&&b&注:&/b&&br&&/p&&p&&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29_%7Btor%7D+%5Chookrightarrow+%5Cbar+E%28%5Cmathbb+F_p%29& alt=&E(\mathbb Q)_{tor} \hookrightarrow \bar E(\mathbb F_p)& eeimg=&1&&得到&img src=&http://www.zhihu.com/equation?tex=%5C%23+E%28%5Cmathbb+Q%29_%7Btor%7D+%7C+%5C%23+%5Cbar+E%28%5Cmathbb+F_p%29+%5Cleq+%5C%23+%5Cmathbb+P%5E2%28%5Cmathbb+F_p%29%3Dp%5E2%2Bp%2B1%3C+%5Cinfty& alt=&\# E(\mathbb Q)_{tor} | \# \bar E(\mathbb F_p) \leq \# \mathbb P^2(\mathbb F_p)=p^2+p+1& \infty& eeimg=&1&&&br&&/p&&p&这引发我们对&img src=&http://www.zhihu.com/equation?tex=%5C%23+%5Cbar+E%28%5Cmathbb+F_p%29& alt=&\# \bar E(\mathbb F_p)& eeimg=&1&&的好奇,上面的结果表明挠点的大量存在将给出&img src=&http://www.zhihu.com/equation?tex=%5C%23+%5Cbar+E%28%5Cmathbb+F_p%29& alt=&\# \bar E(\mathbb F_p)& eeimg=&1&&的一个下界,从而干扰&img src=&http://www.zhihu.com/equation?tex=a_p%3Dp%2B1-%5C%23+%5Cbar+E%28%5Cmathbb+F_p%29& alt=&a_p=p+1-\# \bar E(\mathbb F_p)& eeimg=&1&&。&/p&&p&接下来我们来讨论椭圆曲线在有限域的点个数。&/p&&h2&三.有限域上解个数&/h2&&p&&figure&&img src=&https://pic1.zhimg.com/v2-55ea8e91d8a5da373db40fc_b.jpg& data-rawwidth=&613& data-rawheight=&539& class=&origin_image zh-lightbox-thumb& width=&613& data-original=&https://pic1.zhimg.com/v2-55ea8e91d8a5da373db40fc_r.jpg&&&/figure&&img src=&http://www.zhihu.com/equation?tex=E& alt=&E& eeimg=&1&&是有限域&img src=&http://www.zhihu.com/equation?tex=%5Cmathbb+F_q& alt=&\mathbb F_q& eeimg=&1&&上一条椭圆曲线(&img src=&http://www.zhihu.com/equation?tex=q%3Dp%5Er& alt=&q=p^r& eeimg=&1&&,p是一个素数),之前我们遇到了&img src=&http://www.zhihu.com/equation?tex=%5C%23E%28%5Cmathbb+F_q%29& alt=&\#E(\mathbb F_q)& eeimg=&1&&,下面继续讨论.&/p&&p&与&img src=&http://www.zhihu.com/equation?tex=%5Cmathbb+Q& alt=&\mathbb Q& eeimg=&1&&上情况相同,&img src=&http://www.zhihu.com/equation?tex=%5Cmathbb+F_q& alt=&\mathbb F_q& eeimg=&1&&上椭圆曲线也总可以化成以下标准形式(但在特征2,3时略复杂一些):&br&&/p&&p&&figure&&img src=&https://pic3.zhimg.com/v2-5f16290acf61a5df217ffe8bdb577606_b.png& data-rawwidth=&352& data-rawheight=&266& class=&content_image& width=&352&&&/figure&所以&img src=&http://www.zhihu.com/equation?tex=%5Cmathbb+F_q& alt=&\mathbb F_q& eeimg=&1&&上椭圆曲线同构意义下只有有限条,例如二元域上椭圆曲线可以给出分类:&/p&&figure&&img src=&https://pic2.zhimg.com/v2-9f18142faead999cf32e81_b.png& data-rawwidth=&700& data-rawheight=&303& class=&origin_image zh-lightbox-thumb& width=&700& data-original=&https://pic2.zhimg.com/v2-9f18142faead999cf32e81_r.jpg&&&/figure&&p&假设&img src=&http://www.zhihu.com/equation?tex=y%5E2%3Dx%5E3%2Bax%2Bb%3Dg%28x%29& alt=&y^2=x^3+ax+b=g(x)& eeimg=&1&&是一条有限域上的椭圆曲线。固定x,如果g(x)是平方元,则y一般有2种选择,如果g(x)不是平方元,则y没有选择.而char &2的有限域上平方元和非平方元各占一半,所以如果g(x)随x的选取随机波动,则g(x)是平方元的概率是1/2,所以每个x对应的解y的个数平均是&img src=&http://www.zhihu.com/equation?tex=1%2F2+%5Ctimes+2+%2B1%2F2+%5Ctimes+0%3D1& alt=&1/2 \times 2 +1/2 \times 0=1& eeimg=&1&&个,故&img src=&http://www.zhihu.com/equation?tex=x+%5Cin+%5Cmathbb+F_q& alt=&x \in \mathbb F_q& eeimg=&1&&共给出q个解(x,y),再加上无穷远点这个解,我们得到:&/p&&p&&b&&img src=&http://www.zhihu.com/equation?tex=y%5E2%3Dx%5E3%2Bax%2Bb%3Dg%28x%29& alt=&y^2=x^3+ax+b=g(x)& eeimg=&1&&在&img src=&http://www.zhihu.com/equation?tex=%5Cmathbb+F_q+%5E2& alt=&\mathbb F_q ^2& eeimg=&1&&的解大概有q+1个&/b&&br&&/p&&p&&b&例子:&/b&&/p&&p&&img src=&http://www.zhihu.com/equation?tex=y%5E2%3Dx%5E3%2BA%2C+A%5Cin+%5Cmathbb+F_q-%5C%7B0%5C%7D& alt=&y^2=x^3+A, A\in \mathbb F_q-\{0\}& eeimg=&1&&,则如果&img src=&http://www.zhihu.com/equation?tex=q+%5Cnot+%3D1+%28%5Coperatorname%7Bmod%7D3%29& alt=&q \not =1 (\operatorname{mod}3)& eeimg=&1&&,我们有&img src=&http://www.zhihu.com/equation?tex=%5C%23E%28%5Cmathbb+F_q%29%3Dq%2B1& alt=&\#E(\mathbb F_q)=q+1& eeimg=&1&&,因为&img src=&http://www.zhihu.com/equation?tex=x+%5Crightarrow+x%5E3%2BA& alt=&x \rightarrow x^3+A& eeimg=&1&&为&img src=&http://www.zhihu.com/equation?tex=%5Cmathbb+F_q& alt=&\mathbb F_q& eeimg=&1&&到自身的双射。&br&&/p&&p&一般地希望用q+1作为中位数衡量&img src=&http://www.zhihu.com/equation?tex=%5C%23E%28%5Cmathbb+F_q%29& alt=&\#E(\mathbb F_q)& eeimg=&1&&,即考虑q+1与&img src=&http://www.zhihu.com/equation?tex=%5C%23E%28%5Cmathbb+F_q%29& alt=&\#E(\mathbb F_q)& eeimg=&1&&的误差。&br&&/p&&p&此时有著名的Hasse估计:&br&&/p&&p&&b&Prop 1.&/b&&/p&&h1&Hasse's theorem&/h1&&img src=&http://www.zhihu.com/equation?tex=%7C%5C%23E%28%5Cmathbb+F_q%29-1-q%7C+%5Cleq+2+%5Csqrt+%7Bq%7D& alt=&|\#E(\mathbb F_q)-1-q| \leq 2 \sqrt {q}& eeimg=&1&&&br&&p&&b&Pf:&/b&&/p&&p&考虑Frobenius映射 &img src=&http://www.zhihu.com/equation?tex=Frob_q+%3AE+%5Crightarrow+E+%3A+%28x%2Cy%29+%5Crightarrow+%28x%5Eq%2Cy%5Eq%29& alt=&Frob_q :E \rightarrow E : (x,y) \rightarrow (x^q,y^q)& eeimg=&1&&,即&img src=&http://www.zhihu.com/equation?tex=Frob_q%3D%5Ctheta_E%5Er& alt=&Frob_q=\theta_E^r& eeimg=&1&&(&img src=&http://www.zhihu.com/equation?tex=%5Ctheta_E& alt=&\theta_E& eeimg=&1&&为乘p次幂)&br&&/p&&p&则对&img src=&http://www.zhihu.com/equation?tex=P+%5Cin+E%28+%5Cbar%7B+%5Cmathbb+F%7D_q%29& alt=&P \in E( \bar{ \mathbb F}_q)& eeimg=&1&&,&img src=&http://www.zhihu.com/equation?tex=P+%5Cin+E%28+%7B+%5Cmathbb+F%7D_q%29& alt=&P \in E( { \mathbb F}_q)& eeimg=&1&&当且仅当P是&img src=&http://www.zhihu.com/equation?tex=Frob_q& alt=&Frob_q& eeimg=&1&&的不动点.&/p&&p&所以&img src=&http://www.zhihu.com/equation?tex=%5C%23E%28%5Cmathbb+F_q%29%3D%5C%23Ker%281-Frob_q%29%3Ddeg%281-Frob_q%29& alt=&\#E(\mathbb F_q)=\#Ker(1-Frob_q)=deg(1-Frob_q)& eeimg=&1&&(注意到1-Frob_q可分)&/p&&p&而&img src=&http://www.zhihu.com/equation?tex=deg1%3D1%2CdegFrob_q%3Dq& alt=&deg1=1,degFrob_q=q& eeimg=&1&&&/p&&p&其中&img src=&http://www.zhihu.com/equation?tex=deg+%3AEnd+E+%5Crightarrow+%5Cmathbb+Z_%7B%5Cgeq+0+%7D%3A+%5Cphi++%5Crightarrow+%5BK%28E%29%3A%5Cphi+%5E%7B%2A%7DK%28E%29%5D& alt=&deg :End E \rightarrow \mathbb Z_{\geq 0 }: \phi
\rightarrow [K(E):\phi ^{*}K(E)]& eeimg=&1&&由于dual isogeny的存在是一个二次型(&img src=&http://www.zhihu.com/equation?tex=%3Ca%2Cb%3E%3Ddeg%28a%2Bb%29-deg%28a%29-deg%28b%29& alt=&&a,b&=deg(a+b)-deg(a)-deg(b)& eeimg=&1&&双线性),从而满足Cauchy-Schwarz不等式,我们有&/p&&img src=&http://www.zhihu.com/equation?tex=2%5Coperatorname%7Bdeg%7D%28a-b%29%3D%3Ca-b%2Ca-b%3E%3D%3Ca%2Ca%3E%2B%3Cb%2Cb%3E-2%3Ca%2Cb%3E+& alt=&2\operatorname{deg}(a-b)=&a-b,a-b&=&a,a&+&b,b&-2&a,b& & eeimg=&1&&&br&&p&所以&img src=&http://www.zhihu.com/equation?tex=%7C2%5Coperatorname%7Bdeg%7D%28a-b%29-2%5Coperatorname%7Bdeg%7Da-2%5Coperatorname%7Bdeg%7Db%7C+%3D2%7C%3Ca%2Cb%3E%7C+%5Cleq+2+%5Csqrt%7B%3Ca%2Ca%3E%3Cb%2Cb%3E%7D& alt=&|2\operatorname{deg}(a-b)-2\operatorname{deg}a-2\operatorname{deg}b| =2|&a,b&| \leq 2 \sqrt{&a,a&&b,b&}& eeimg=&1&&&/p&&p&从而&img src=&http://www.zhihu.com/equation?tex=%7C%5Coperatorname%7Bdeg%7D%28a-b%29-%5Coperatorname%7Bdeg%7Da-%5Coperatorname%7Bdeg%7Db%7C++%5Cleq+2+%5Csqrt%7B%5Coperatorname%7Bdeg%7Da%5Coperatorname%7Bdeg%7Db%7D& alt=&|\operatorname{deg}(a-b)-\operatorname{deg}a-\operatorname{deg}b|
\leq 2 \sqrt{\operatorname{deg}a\operatorname{deg}b}& eeimg=&1&&,代入a=1,b=Frob_q即得估计,即证.&/p&&p&&b&推论:&/b&&/p&&p&&img src=&http://www.zhihu.com/equation?tex=%5C%23E%28%5Cmathbb+F_q%29+++%5Cgeq+q%2B1-2%5Csqrt%7Bq%7D%3E0& alt=&\#E(\mathbb F_q)
\geq q+1-2\sqrt{q}&0& eeimg=&1&&,所以有限域上椭圆曲线一定有&img src=&http://www.zhihu.com/equation?tex=%5Cmathbb+F_q& alt=&\mathbb F_q& eeimg=&1&&中点,并且随q趋于无穷点个数将趋于无穷.&br&&/p&&p&&img src=&http://www.zhihu.com/equation?tex=%5C%23E%28%5Cmathbb+F_q%29+++%5Cleq+q%2B1%2B2%5Csqrt%7Bq%7D%3Cq%2B1%2Bq%5E2%3D+%5C%23+%5Cmathbb+P%5E2%28%5Cmathbb+F_q%29& alt=&\#E(\mathbb F_q)
\leq q+1+2\sqrt{q}&q+1+q^2= \# \mathbb P^2(\mathbb F_q)& eeimg=&1&&,这符合一维的曲线不能覆盖满二维的射影平面这一直觉.&/p&&p&&b&知道有限域上的解的个数有什么用呢?一个用处是判断是否同构.&/b&&/p&&p&&b&Prop 2.&/b&&br&&/p&&p&E,F是&img src=&http://www.zhihu.com/equation?tex=%5Cmathbb+F_q& alt=&\mathbb F_q& eeimg=&1&&上两条椭圆曲线,如果E,F同源(即存在非0的群同态&img src=&http://www.zhihu.com/equation?tex=%5Cphi+%3AE+%5Crightarrow+F& alt=&\phi :E \rightarrow F& eeimg=&1&&),则&img src=&http://www.zhihu.com/equation?tex=%5C%23E%28%5Cmathbb+F_q%29%3D%5C%23F%28%5Cmathbb+F_q%29& alt=&\#E(\mathbb F_q)=\#F(\mathbb F_q)& eeimg=&1&&&/p&&p&&b&Pf:&/b&&/p&&p&Frobenius映射的函子性给出交换图表:&figure&&img src=&https://pic3.zhimg.com/v2-dfdf27ab6a_b.png& data-rawwidth=&120& data-rawheight=&94& class=&content_image& width=&120&&&/figure&&/p&&p&由于E,F都定义在&img src=&http://www.zhihu.com/equation?tex=%5Cmathbb+F_q& alt=&\mathbb F_q& eeimg=&1&&上,所以&img src=&http://www.zhihu.com/equation?tex=E%5E%7B%28q%29%7D%3DE%2CF%5E%7B%28q%29%7D%3DF& alt=&E^{(q)}=E,F^{(q)}=F& eeimg=&1&&,两边取degree得到&img src=&http://www.zhihu.com/equation?tex=deg+%5Cphi%5E%7B%28q%29%7D%3Ddeg+%5Cphi& alt=&deg \phi^{(q)}=deg \phi& eeimg=&1&&&/p&&p&再由交换图表得到&img src=&http://www.zhihu.com/equation?tex=%5Cphi%5E%7B%28q%29%7D%281-Frob_q%28E%29%29%3D%281-Frob_q%28F%29%29%5Cphi& alt=&\phi^{(q)}(1-Frob_q(E))=(1-Frob_q(F))\phi& eeimg=&1&&,两边取degree即证.&/p&&p&我们还关心&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+F_q%29& alt=&E(\mathbb F_q)& eeimg=&1&&自身的群结构,其是一个有限Abel群,所以根据有限Abel群结构定理知道&/p&&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+F_q%29+%5Ccong+C_%7Bn_1%7D+%5Ctimes+%5Chdots+C_%7Bn_r%7D%2C+n_1%7Cn_2%7C%5Chdots+%7Cn_r& alt=&E(\mathbb F_q) \cong C_{n_1} \times \hdots C_{n_r}, n_1|n_2|\hdots |n_r& eeimg=&1&&&br&&p&但是&img src=&http://www.zhihu.com/equation?tex=%5C%23+E%28%5Cmathbb+F_q%29%5Bn_1%5D+%5Cleq+%5C%23+E%28%5Cbar%7B%5Cmathbb+F%7D_q%29%5Bn_1%5D++%5Cleq+deg%5Bn_1%5D+%3Dn_1%5E2& alt=&\# E(\mathbb F_q)[n_1] \leq \# E(\bar{\mathbb F}_q)[n_1]
\leq deg[n_1] =n_1^2& eeimg=&1&&,所以r小于等于2,我们得到&/p&&p&&b&Prop 3.&/b&&/p&&p&&b&&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+F_q%29+& alt=&E(\mathbb F_q) & eeimg=&1&&是有限循环群或者两个有限循环群的直和&/b&&br&&/p&&p&我们还可以问:&/p&&p&固定一个有限域,其上椭圆曲线的点的个数的具体取值范围是?&/p&&p&我们有(证略)&/p&&p&&figure&&img src=&https://pic1.zhimg.com/v2-3bc5a4e6f81f672cd408_b.png& data-rawwidth=&828& data-rawheight=&346& class=&origin_image zh-lightbox-thumb& width=&828& data-original=&https://pic1.zhimg.com/v2-3bc5a4e6f81f672cd408_r.jpg&&&/figure&&figure&&img src=&https://pic3.zhimg.com/v2-0f370d8c8bc1a414d3b60fdc8e8bf30a_b.png& data-rawwidth=&1011& data-rawheight=&223& class=&origin_image zh-lightbox-thumb& width=&1011& data-original=&https://pic3.zhimg.com/v2-0f370d8c8bc1a414d3b60fdc8e8bf30a_r.jpg&&&/figure&&br&现在我们进一步来考察&img src=&http://www.zhihu.com/equation?tex=%5C%23E%28%5Cmathbb+F_%7Bq%5En%7D%29& alt=&\#E(\mathbb F_{q^n})& eeimg=&1&&,同理有:&br&&img src=&http://www.zhihu.com/equation?tex=%5C%23E%28%5Cmathbb+F_%7Bq%5En%7D%29%3Ddeg%281-Frob_q%5En%29%3D1%2Bq%5En-%3C1%2CFrob_q%5En%3E& alt=&\#E(\mathbb F_{q^n})=deg(1-Frob_q^n)=1+q^n-&1,Frob_q^n&& eeimg=&1&&&/p&&p&看起来我们要找到&img src=&http://www.zhihu.com/equation?tex=deg%281-Frob_q%5En%29%2Cdeg%281-Frob_q%29& alt=&deg(1-Frob_q^n),deg(1-Frob_q)& eeimg=&1&&的联系,这时候可以借助tate module的存在即&/p&&figure&&img src=&https://pic1.zhimg.com/v2-ef9f9fd6fac4fc97cde00abc_b.png& data-rawwidth=&794& data-rawheight=&409& class=&origin_image zh-lightbox-thumb& width=&794& data-original=&https://pic1.zhimg.com/v2-ef9f9fd6fac4fc97cde00abc_r.jpg&&&/figure&&p&&b&Lemma&/b&&/p&&p&&figure&&img src=&https://pic3.zhimg.com/v2-2a1f7a7f48fe41c0a814d48eaab2e8ee_b.png& data-rawwidth=&611& data-rawheight=&150& class=&origin_image zh-lightbox-thumb& width=&611& data-original=&https://pic3.zhimg.com/v2-2a1f7a7f48fe41c0a814d48eaab2e8ee_r.jpg&&&/figure&&figure&&img src=&https://pic2.zhimg.com/v2-3c131c9b6bbd018caba569_b.png& data-rawwidth=&789& data-rawheight=&417& class=&origin_image zh-lightbox-thumb& width=&789& data-original=&https://pic2.zhimg.com/v2-3c131c9b6bbd018caba569_r.jpg&&&/figure&而判别式和迹相比degree来说简单得多,由上容易得到&img src=&http://www.zhihu.com/equation?tex=deg%281-Frob_q%5En%29%2Cdeg%281-Frob_q%29& alt=&deg(1-Frob_q^n),deg(1-Frob_q)& eeimg=&1&&的联系,即&/p&&figure&&img src=&https://pic4.zhimg.com/v2-d42d1cdae323db637558ef_b.png& data-rawwidth=&784& data-rawheight=&293& class=&origin_image zh-lightbox-thumb& width=&784& data-original=&https://pic4.zhimg.com/v2-d42d1cdae323db637558ef_r.jpg&&&/figure&&p&&figure&&img src=&https://pic1.zhimg.com/v2-739f8590c08fff069065abd3f99f5efc_b.png& data-rawwidth=&776& data-rawheight=&123& class=&origin_image zh-lightbox-thumb& width=&776& data-original=&https://pic1.zhimg.com/v2-739f8590c08fff069065abd3f99f5efc_r.jpg&&&/figure&其中&img src=&http://www.zhihu.com/equation?tex=K_n%3D%5Cmathbb+F_%7Bq%5En%7D& alt=&K_n=\mathbb F_{q^n}& eeimg=&1&&,对K_1上任何一个projective variety V定义&br&&figure&&img src=&https://pic2.zhimg.com/v2-f95ae304cd0b89edb4eff020a2a0fa71_b.png& data-rawwidth=&450& data-rawheight=&83& class=&origin_image zh-lightbox-thumb& width=&450& data-original=&https://pic2.zhimg.com/v2-f95ae304cd0b89edb4eff020a2a0fa71_r.jpg&&&/figure&&/p&&p&上面的定理即给出了V是椭圆曲线时zeta function的描述(满足有理函数、函数方程、有理分解的次数关系、黎曼猜想),称为Weil conjecture for elliptic curves&/p&&p&&b&推论:&/b&&/p&&p&对于&img src=&http://www.zhihu.com/equation?tex=%5Cmathbb+F_q& alt=&\mathbb F_q& eeimg=&1&&上椭圆曲线E,&img src=&http://www.zhihu.com/equation?tex=%5C%23E%28%5Cmathbb+F_q%5En%29+%2Cn%3D1%2C2%2C3%2C4%2C%5Chdots& alt=&\#E(\mathbb F_q^n) ,n=1,2,3,4,\hdots& eeimg=&1&&由&img src=&http://www.zhihu.com/equation?tex=%5C%23E%28%5Cmathbb+F_q%29& alt=&\#E(\mathbb F_q)& eeimg=&1&&唯一决定.&/p&&p&注:&br&&/p&&p&对于有限域上亏格为g的光滑射影曲线成立:&/p&&figure&&img src=&https://pic1.zhimg.com/v2-9a7c1c2eea4c_b.png& data-rawwidth=&234& data-rawheight=&39& class=&content_image& width=&234&&&/figure&&p&Ref:&a href=&http://link.zhihu.com/?target=http%3A//www.math.iitb.ac.in/%7Ejkv/acag/sury2.pdf& class=& external& target=&_blank& rel=&nofollow noreferrer&&&span class=&invisible&&http://www.&/span&&span class=&visible&&math.iitb.ac.in/~jkv/ac&/span&&span class=&invisible&&ag/sury2.pdf&/span&&span class=&ellipsis&&&/span&&/a&&/p&&h2&四.秩与同余数&/h2&&p&&b&(Mordell-Weil,1922)&/b&&/p&&blockquote&Q上的椭圆曲线E的有理点&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29& alt=&E(\mathbb Q)& eeimg=&1&&是有限生成Abel群:&br&&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29%3D%5Cmathbb+Z%5Er+%5Coplus+T& alt=&E(\mathbb Q)=\mathbb Z^r \oplus T& eeimg=&1&&,&br&T是挠点全体,为有限Abel群,r称为E的秩&/blockquote&&p&证明的第一步是证明&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29%2F2+E%28%5Cmathbb+Q%29& alt=&E(\mathbb Q)/2 E(\mathbb Q)& eeimg=&1&&有限&b&(weak mordell-weil),&/b&再转为证明Selmer group有限。&b&不过今天我们假设读者不知道什么是上同调,也不知道什么p-adic域,&/b&此时下面的推导仍可得到对于一大类椭圆曲线E,&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29%2F2+E%28%5Cmathbb+Q%29& alt=&E(\mathbb Q)/2 E(\mathbb Q)& eeimg=&1&&有限.&/p&&p&——————————————————————————————————&br&&/p&&p&如果知道Mordell-Weil theorem,接下来的问题是如何对具体的椭圆曲线求出&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29& alt=&E(\mathbb Q)& eeimg=&1&&。首先挠部分是好求的,这是因为上面提到过的:&/p&&h1&Nagell–Lutz theorem&/h1&&blockquote&&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29%3D%5C%7B%28x%2Cy%29+%5Cin+%5Cmathbb+Q%5E2%7Cy%5E2%3Dx%5E3%2Bax%2Bb+%5C%7D+%5Ccup+%5C%7B%5Cinfty%5C%7D& alt=&E(\mathbb Q)=\{(x,y) \in \mathbb Q^2|y^2=x^3+ax+b \} \cup \{\infty\}& eeimg=&1&&&p&&img src=&http://www.zhihu.com/equation?tex=P%3D%28x%2Cy%29+%5Cin+E%28%5Cmathbb+Q%29& alt=&P=(x,y) \in E(\mathbb Q)& eeimg=&1&&如果是torsion point(即存在正整数n,使得&img src=&http://www.zhihu.com/equation?tex=nP%3DO& alt=&nP=O& eeimg=&1&&,其全体记为&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29_%7Btor%7D& alt=&E(\mathbb Q)_{tor}& eeimg=&1&&),则&/p&&p&x和y都是整数,并且&img src=&http://www.zhihu.com/equation?tex=y%3D0& alt=&y=0& eeimg=&1&&或者&img src=&http://www.zhihu.com/equation?tex=y%5E2%7C4a%5E3%2B27b%5E2& alt=&y^2|4a^3+27b^2& eeimg=&1&&&/p&&/blockquote&&p&而自由部分理应较复杂,例如如何求出其秩&img src=&http://www.zhihu.com/equation?tex=%5Coperatorname%7Brank%7D+E& alt=&\operatorname{rank} E& eeimg=&1&&就是一个有趣(而困难)的问题.著名的open problem是:&b&Q上的椭圆曲线的秩&img src=&http://www.zhihu.com/equation?tex=%5Coperatorname%7Brank%7D+E& alt=&\operatorname{rank} E& eeimg=&1&&有没有上界?&/b&&/p&&p&已知最大的例子是(by Elkies,其rank大于等于28)&/p&&p&&figure&&img src=&https://pic4.zhimg.com/v2-5fd031a957d686ceadaebb_b.png& data-rawwidth=&823& data-rawheight=&189& class=&origin_image zh-lightbox-thumb& width=&823& data-original=&https://pic4.zhimg.com/v2-5fd031a957d686ceadaebb_r.jpg&&&/figure&而最大的已知rank的例子是(rank=19)&/p&&figure&&img src=&https://pic3.zhimg.com/v2-f7ea085e5a56dbbdf8a32e361e90e44e_b.png& data-rawwidth=&685& data-rawheight=&158& class=&origin_image zh-lightbox-thumb& width=&685& data-original=&https://pic3.zhimg.com/v2-f7ea085e5a56dbbdf8a32e361e90e44e_r.jpg&&&/figure&&p&回到求rank,先求出&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29& alt=&E(\mathbb Q)& eeimg=&1&&再求出&img src=&http://www.zhihu.com/equation?tex=%5Coperatorname%7Brank%7D+E& alt=&\operatorname{rank} E& eeimg=&1&&这种粗暴的方法显然行不通因为有理点较难求,因此希望避开直接求出&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29& alt=&E(\mathbb Q)& eeimg=&1&&而先得到&img src=&http://www.zhihu.com/equation?tex=%5Coperatorname%7Brank%7D+E& alt=&\operatorname{rank} E& eeimg=&1&&.&b&一个方法是考虑&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29%2F2+E%28%5Cmathbb+Q%29& alt=&E(\mathbb Q)/2 E(\mathbb Q)& eeimg=&1&&&/b&,因为我们有:&/p&&p&&figure&&img src=&https://pic3.zhimg.com/v2-8c20b03e6a_b.png& data-rawwidth=&288& data-rawheight=&46& class=&content_image& width=&288&&&/figure&其中&img src=&http://www.zhihu.com/equation?tex=T%2F2T%3D%28%5Cmathbb+Z+%2F+2+%5Cmathbb+Z%29%5Es& alt=&T/2T=(\mathbb Z / 2 \mathbb Z)^s& eeimg=&1&&,即&img src=&http://www.zhihu.com/equation?tex=2%5Es%3D%5C%23E%28%5Cmathbb+Q%29%5B2%5D& alt=&2^s=\#E(\mathbb Q)[2]& eeimg=&1&&,而我们知道对于&img src=&http://www.zhihu.com/equation?tex=y%5E2%3Dg%28x%29& alt=&y^2=g(x)& eeimg=&1&&型的椭圆曲线,其上点P是2-torsion的等价于y=0或P=O,所以&img src=&http://www.zhihu.com/equation?tex=2%5Es%3D%5C%23E%28%5Cmathbb+Q%29%5B2%5D& alt=&2^s=\#E(\mathbb Q)[2]& eeimg=&1&&即g的有理根个数+1,所以&img src=&http://www.zhihu.com/equation?tex=s%3D0%2C1%2C2& alt=&s=0,1,2& eeimg=&1&&.&/p&&p&为了简单起见,我们只考虑如下形状的椭圆曲线E:&/p&&figure&&img src=&https://pic1.zhimg.com/v2-31fd13dbb34_b.png& data-rawwidth=&362& data-rawheight=&62& class=&content_image& width=&362&&&/figure&&p&其中&img src=&http://www.zhihu.com/equation?tex=a_i& alt=&a_i& eeimg=&1&&是互不相同的整数,判别式&figure&&img src=&https://pic2.zhimg.com/v2-65bbcc68ed_b.png& data-rawwidth=&201& data-rawheight=&73& class=&content_image& width=&201&&&/figure&此时s=2,所以求出了&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29%2F2+E%28%5Cmathbb+Q%29& alt=&E(\mathbb Q)/2 E(\mathbb Q)& eeimg=&1&&就求出了秩.&br&&/p&&p&如果要求&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29%2F2+E%28%5Cmathbb+Q%29& alt=&E(\mathbb Q)/2 E(\mathbb Q)& eeimg=&1&&,第一个问题是:&/p&&p&&b&什么时候E上点&img src=&http://www.zhihu.com/equation?tex=P%3D%28x%2Cy%29+%5Cin+2E%28%5Cmathbb+Q%29& alt=&P=(x,y) \in 2E(\mathbb Q)& eeimg=&1&&?&/b&&/p&&p&&b&Prop 1.&/b&&/p&&p&E上点&img src=&http://www.zhihu.com/equation?tex=P%3D%28x_0%2Cy_0%29+%5Cin+2E%28%5Cmathbb+Q%29& alt=&P=(x_0,y_0) \in 2E(\mathbb Q)& eeimg=&1&&当且仅当&img src=&http://www.zhihu.com/equation?tex=x_0-a_i+%5Cin+%5Cmathbb+Q%5E2+%2C%5Cforall+i%3D1%2C2%2C3& alt=&x_0-a_i \in \mathbb Q^2 ,\forall i=1,2,3& eeimg=&1&&&br&&/p&&p&&b&Pf:&/b&如果&img src=&http://www.zhihu.com/equation?tex=P%3D%28x_0%2Cy_0%29+%5Cin+2E%28%5Cmathbb+Q%29& alt=&P=(x_0,y_0) \in 2E(\mathbb Q)& eeimg=&1&&,则存在E上一点&img src=&http://www.zhihu.com/equation?tex=P_1%3D%28x_1%2Cy_1%29& alt=&P_1=(x_1,y_1)& eeimg=&1&&其切线&img src=&http://www.zhihu.com/equation?tex=y%3Dmx%2Bn& alt=&y=mx+n& eeimg=&1&&与E的另一个交点是P,所以&img src=&http://www.zhihu.com/equation?tex=%28x-a_1%29%28x-a_2%29%28x-a_3%29-%28mx%2Bn%29%5E2%3D%28x-x_1%29%5E2%28x-x_0%29& alt=&(x-a_1)(x-a_2)(x-a_3)-(mx+n)^2=(x-x_1)^2(x-x_0)& eeimg=&1&&,令&img src=&http://www.zhihu.com/equation?tex=x%3Da_i& alt=&x=a_i& eeimg=&1&&即得.&/p&&p&反之,如果&img src=&http://www.zhihu.com/equation?tex=x_0-a_i+%5Cin+%5Cmathbb+Q%5E2+%2C%5Cforall+i%3D1%2C2%2C3& alt=&x_0-a_i \in \mathbb Q^2 ,\forall i=1,2,3& eeimg=&1&&,我们平移x轴不妨设&img src=&http://www.zhihu.com/equation?tex=x_0%3D0& alt=&x_0=0& eeimg=&1&&,此时条件转换为可找到&img src=&http://www.zhihu.com/equation?tex=%5Calpha_i& alt=&\alpha_i& eeimg=&1&&使得&figure&&img src=&https://pic3.zhimg.com/v2-a8cbaea6a1b1f8fe3e0a_b.png& data-rawwidth=&112& data-rawheight=&34& class=&content_image& width=&112&&&/figure&&/p&&p&接下来只需要找到一条过P的与E相切于另一点的直线:&figure&&img src=&https://pic1.zhimg.com/v2-21fe2bd9ab4c_b.png& data-rawwidth=&148& data-rawheight=&42& class=&content_image& width=&148&&&/figure&&/p&&p&即确定有理数m使得关于x的多项式&/p&&p&&figure&&img src=&https://pic4.zhimg.com/v2-6fe8aa7d841c69a1aab4043_b.png& data-rawwidth=&442& data-rawheight=&51& class=&origin_image zh-lightbox-thumb& width=&442& data-original=&https://pic4.zhimg.com/v2-6fe8aa7d841c69a1aab4043_r.jpg&&&/figure&有重根&/p&&p&虽然这个东西看起来很可怕,但是不要忘记x=0是它的解(因为P在上面),记&br&&figure&&img src=&https://pic3.zhimg.com/v2-1ccf7fbbcefc968d1e563cbac1f8bef2_b.png& data-rawwidth=&573& data-rawheight=&58& class=&origin_image zh-lightbox-thumb& width=&573& data-original=&https://pic3.zhimg.com/v2-1ccf7fbbcefc968d1e563cbac1f8bef2_r.jpg&&&/figure&&/p&&p&提出x=0这一因式,问题化为求出m使得下列二次方程有重根:&/p&&p&&figure&&img src=&https://pic2.zhimg.com/v2-775df8cd32e7748f82caa5_b.png& data-rawwidth=&401& data-rawheight=&40& class=&content_image& width=&401&&&/figure&这等价于判别式=0:&/p&&p&&figure&&img src=&https://pic3.zhimg.com/v2-0673dea0e9fdd2fdb31056_b.png& data-rawwidth=&308& data-rawheight=&42& class=&content_image& width=&308&&&/figure&接下来就是要证明这个四次方程有有理解,可验证&img src=&http://www.zhihu.com/equation?tex=m%3D%5Calpha_1%2B%5Calpha_2-%5Calpha_3& alt=&m=\alpha_1+\alpha_2-\alpha_3& eeimg=&1&&是一个解.&/p&&p&&b&证毕.&/b&&br&&/p&&p&这启发我们&定义&映射:&/p&&p&&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29+%5Crightarrow+%5Cmathbb+Q+%5Ctimes+%5Cmathbb+Q+%5Ctimes+%5Cmathbb+Q+%3A+P%3D%28x%2Cy%29+%5Cmapsto+%28x-a_i%29++& alt=&E(\mathbb Q) \rightarrow \mathbb Q \times \mathbb Q \times \mathbb Q : P=(x,y) \mapsto (x-a_i)
& eeimg=&1&&(暂时忽略无穷远点)&br&&/p&&p&其像落在&img src=&http://www.zhihu.com/equation?tex=%5Cmathbb+Q%5E2+%5Ctimes+%5Cmathbb+Q%5E2+%5Ctimes+%5Cmathbb+Q+%5E2& alt=&\mathbb Q^2 \times \mathbb Q^2 \times \mathbb Q ^2& eeimg=&1&&单且仅当&img src=&http://www.zhihu.com/equation?tex=P%3D%28x%2Cy%29+%5Cin+2E%28%5Cmathbb+Q%29& alt=&P=(x,y) \in 2E(\mathbb Q)& eeimg=&1&&,如果这个映射还是个群同态,那么就允许我们把&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29%2F2+E%28%5Cmathbb+Q%29& alt=&E(\mathbb Q)/2 E(\mathbb Q)& eeimg=&1&&嵌入一个已知的空间中,方便了解其性质.&/p&&p&而实际上这应该是个乘法群的同态,即应该考虑下列映射&/p&&img src=&http://www.zhihu.com/equation?tex=E%28%5Cmathbb+Q%29+%5Crightarrow+%5Cmathbb+Q%5E%7B%5Ctimes%7D%2F%5Cmathbb+Q%5E%7B%5Ctimes+2%7D+%5Ctimes+%5Cmathbb+Q%5E%7B%5Ctimes%7D%2F%5Cmathbb+Q%5E%7B%5Ctimes+2%7D+%5Ctimes+%5Cmathbb+Q%5E%7B%5Ctimes%7D%2F%5Cmathbb+Q%5E%7B%5Ctimes+2%7D%3A+P%3D%28x%2Cy%29+%5Cmapsto+%28x-a_i%29++& alt=&E(\mathbb Q) \rightarrow \mathbb Q^{\times}/\mathbb Q^{\times 2} \times \mathbb Q^{\times}/\mathbb Q^{\times 2} \times \mathbb Q^{\times}/\mathbb Q^{\times 2}: P=(x,y) \mapsto (x-a_i)
& eeimg=&1&&&br&&p&但是又出现了问题,例如点(a_1,0)被映过去第一个分量应该是0,从而不能定义在&img src=&http://www.zhihu.com/equation?tex=%5Cmathbb+Q%5E%7B%5Ctimes%7D& alt=&\mathbb Q^{\times}& eeimg=&1&&里,为此我们定义改良后的映射:&/p&&p&任取&img src=&http://www.zhihu.com/equation?tex=a+%5Cin+%5C%7Ba_1%2Ca_2%2Ca_3%5C%7D& alt=&a \in \{a_1,a_2,a_3\}& eeimg=&1&&定义&img src=&http://www.zhihu.com/equation?tex=%5Cwidetilde+%5Cpsi_a%3AE%28%5Cmathbb+Q%29+%5Crightarrow+%5Cmathbb+Q%5E%7B%5Ctimes%7D%2F%5Cmathbb+Q%5E%7B%5Ctimes+2%7D& alt=&\widetilde \psi_a:E(\mathbb Q) \rightarrow \mathbb Q^{\times}/\mathbb Q^{\times 2}& eeimg=&1&&如下:&/p&&figure&&img src=&https://pic1.zhimg.com/v2-b24326dbee344c392f623f8_b.png& data-rawwidth=&636& data-rawheight=&133& class=&origin_image zh-lightbox-thumb& width=&636& data-original=&https://pic1.zhimg.com/v2-b24326dbee344c392f623f8_r.jpg&&&/figure&&p&(b,c为剩下的两个a_i)&br&&b&Prop 2.&/b&&img src=&http://www.zhihu.com/equation?tex=%5Cwidetilde+%5Cpsi_a%3AE%28%5Cmathbb+Q%29+%5Crightarrow+%5Cmathbb+Q%5E%7B%5Ctimes%7D%2F%5Cmathbb+Q%5E%7B%5Ctimes+2%7D& alt=&\widetilde \psi_a:E(\mathbb Q) \rightarrow \mathbb Q^{\times}/\mathbb Q^{\times 2}& eeimg=&1&&是一个群同态,且在&img src=&http://www.zhihu.com/equation?tex=2E%28%5Cmathbb+Q%29& alt=&2E(\mathbb Q)& eeimg=&1&&上vanish.&/p&&p&&b&Pf:&/b&定义中只出现了x坐标所以&img src=&http://www.zhihu.com/equation?tex=%5Cwidetilde+%5Cpsi_a%28P%29%5E%7B-1%7D%3D%5Cwidetilde+%5Cpsi_a%28P%29%3D%5Cwidetilde+%5Cpsi_a%28-P%29& alt=&\widetilde \psi_a(P)^{-1}=\widetilde \psi_a(P)=\widetilde \psi_a(-P)& eeimg=&1&&.只需要说明如果一条直线&img src=&http://www.zhihu.com/equation?tex=y%3Dmx%2Bb& alt=&y=mx+b& eeimg=&1&&交E于三点&img src=&http://www.zhihu.com/equation?tex=P_i%3D%28x_i%2Cy_i%29%2Ci%3D1%2C2%2C3& alt=&P_i=(x_i,y_i),i=1,2,3& eeimg=&1&&,则&img src=&http://www.zhihu.com/equation?tex=%5Cprod_%7Bi%3D1%7D%5E%7B3%7D+%5Cwidetilde+%5Cpsi_a%28P_i%29& alt=&\prod_{i=1}^{3} \widetilde \psi_a(P_i)& eeimg=&1&&是平方元.这可由&/p&&p&&figure&&img src=&https://pic1.zhimg.com/v2-51dbd25ca0a_b.png& data-rawwidth=&750& data-rawheight=&52& class=&origin_image zh-lightbox-thumb& width=&750& data-original=&https://pic1.zhimg.com/v2-51dbd25ca0a_r.jpg&&&/figure&直接验证,即证其为群同态,而vanish的结果由Prop 1即得.&/p&&p&&b&证毕.&/b&&/p&&p&所以诱导出&b&单的群同态&/b&:&/p&&figure&&img src=&https://pic2.zhimg.com/v2-288cfc274bd77c36a9afab4d186d2335_b.png& data-rawwidth=&235& data-rawheight=&36& class=&content_image& width=&235&&&/figure&&p&&figure&&img src=&https://pic3.zhimg.com/v2-8094b24daf2bdcd5fa756_b.png& data-rawwidth=&557& data-rawheight=&47& class=&origin_image zh-lightbox-thumb& width=&557& data-original=&https://pic3.zhimg.com/v2-8094b24daf2bdcd5fa756_r.jpg&&&/fi}

我要回帖

更多关于 3Q 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信